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Abstract

Lung macrophages (LM) are in the first line of defense against inhaled pathogens and can

undergo phenotypic polarization to the proinflammatory M1 after stimulation with Toll-like

receptor agonists. The objective of the present work was to characterize the metabolic alter-

ations occurring during the experimental M1 LM polarization. Human LM were obtained

from resected lungs and cultured for 24 hrs in medium alone or with 10 ng.mL-1 lipopolysac-

charide. Cells and culture supernatants were subjected to extraction for metabolomic analy-

sis with high-resolution LC-MS (HILIC and reverse phase -RP- chromatography in both

negative and positive ionization modes) and GC-MS. The data were analyzed with R and

the Worklow4Metabolomics and MetaboAnalyst online infrastructures. A total of 8,741 and

4,356 features were detected in the intracellular and extracellular content, respectively, after

the filtering steps. Pathway analysis showed involvement of arachidonic acid metabolism,

tryptophan metabolism and Krebs cycle in the response of LM to LPS, which was confirmed

by the specific quantitation of selected compounds. This refined analysis highlighted a regu-

lation of the kynurenin pathway as well as the serotonin biosynthesis pathway, and an

involvement of aspartate-arginosuccinate shunt in the malate production. Macrophages M1

polarization is accompanied by changes in the cell metabolome, with the differential expres-

sion of metabolites involved in the promotion and regulation of inflammation and antimicro-

bial activity. The analysis of this macrophage immunometabolome may be of interest for the

understanding of the pathophysiology of lung inflammatory disesases.
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Introduction

Lung macrophages are in the first line of defense against inhaled pathogens. They are major

effectors of the immune response as they express membrane receptors, including Toll-like

receptors (TLRs), able to recognize conserved microbial ligands [1]. Once activated, TLRs

induce the production of a pattern of cytokines, chemokines and mediators, such as metabo-

lites from the arachidonic acid pathway, involved in the inflammatory response and character-

istics of a macrophage engagement towards a M1 polarization state [1, 2]. Lipopolysacharide

(LPS) is the archetypal TLR ligand for the induction of M1 macrophage polarization [1]. Like

allergens (e.g. ragweed pollen, house dust extract, and cat dander) or air pollutants, LPS binds

to and activates TLR4, the first subtype among the TLR family to be identified in humans.

Beyond this role in cell signaling, TLRs also play a role in the primary function of macro-

phages, consisting in the phagocytosis and killing of pathogens [3]. For phagocytosis, the pro-

duction of hydrolytic enzymes and reactive oxygen species (ROS) is required, the latter also

resulting from oxidase or lipoxygenase enzyme metabolism [4]. The enzymatic machinery is

therefore modulated following the presence of microorganisms, and more generally by the

external environment, and consequently the resulting production of metabolites varies, being

likely to adapt to the different stimuli to which macrophages can be exposed [5]. Cell metabo-

lism and macrophages functions are tightly linked, as already shown in murine bone-marrow-

derived macrophages. Hence, the presence of PGE2, one on the main arachidonic acid deriva-

tive, is necessary to the LPS-induced production of the precursor of the pro-inflammatory

cytokine IL-1β [6]; LPS also induces an increased glycolysis and succinate production, neces-

sary to the increase of IL-1β expression and also driving the production of ROS [7, 8]; finally,

the TLR4 agonist MPLA induces mouse resistance to systemic infection with Staphylococcus
aureus and Candida albicans by reprogramming macrophage metabolism, with increased gly-

colysis and oxidative phosphorylation and rewiring of malate/NADH shuttling [9]. Therefore,

the understanding of macrophage metabolic reprogramming has become a key focus in fields

such as infection [10], inflammation [11], cancer [12] and immune disorders [13]. With

respect to lung pathogenesis, macrophages also play a role in infections and inflammatory dis-

eases such as asthma and chronic obstructive pulmonary disease (COPD), where they can

undergo a phenotypic differentiation [14–17]. In these cases, TLRs are of prime importance

for their role in the recognition of pathogens during infections and in microbe-induced acute

exacerbations of asthma and COPD [18, 19]. However, the only reports of macrophage meta-

bolic reprograming in lung diseases until now were in a mouse model of fibrosis [20], in alveo-

lar macrophages from LPS treated mice [21] and in smoker’s or/and Mycobacterium
tuberculosis-infected alveolar macrophages [22]. Since metabolic changes associated with the

stimulation of TLRs in human lung macrophages were not yet described, the objective of the

present study was to perform an extensive intra- and extracellular metabolomic characteriza-

tion of LPS-induced alterations in human lung macrophages using a combined untargeted liq-

uid chromatography high-resolution mass spectrometry and gas chromatography mass

spectrometry approach [23].

Materials and methods

Patient population

The use of resected lung tissue was approved by the regional investigational review board

(Comité de Protection des Personnes Ile de France VIII, Boulogne-Billancourt, France) and

the patients undergoing surgical lung resection gave their written informed consent. Lung tis-

sue was obtained from 10 patients with the following demographic characteristics: (median
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[25th-75th percentiles]) age: 67.5 years [56.75–75.5]; 7 males, 3 females; body mass index: 24

kg/m2 [18.75–26.25]; current tobacco smokers/ex-tobacco smokers/pipe smoker: 4/6/1; pack-

years: 30 [15–80]; and % FEV1 predicted: 109% [81–121]. One patient was suffering from

COPD (as defined by a post-bronchodilator FEV1/FVC ratio <0.7; GOLD 2 stage) and none

had undergone chemotherapy or radiotherapy prior to surgical lung resection.

Reagents

Penicillin, streptomycin, L-glutamine, LPS from Escherichia coli (serotype K12), fatty acid

methyl esters (FAMEs), LC-MS-grade ammonium formate and formic acid (98%) were pur-

chased from Sigma Aldrich (Saint Quentin Fallavier, France). RPMI 1640 medium, phos-

phate-buffered saline, and fetal calf serum (FCS) were obtained from Eurobio Biotechnology

(Les Ulis, France). LC-MS-grade methanol, acetonitrile, chloroform, isopropanol and water

were from Fisher Scientific (Illkirch, France). All cell culture plastics were purchased from

CML (Nemours, France).

Cell culture

Human lung macrophages were isolated and cultured as previously described [1]. 2 million

cells were cultured for 24 hrs in medium alone or with 10 ng.mL-1 LPS. Supernatants were col-

lected and centrifuged at 2000 rpm for 5 min at 4˚C, then frozen at -80˚C. Adherent macro-

phages were washed twice with sterile cold PBS. For LC-MS analysis, the macrophages were

collected with 500 μL of methanol/water (1:1); for GC-MS analysis 1 mL of acetonitrile/isopro-

panol/water (3:3:2) was used. The plates were left at -80˚C for 20 min then scraped with a

pipette tip to recover the cells and samples were kept at -80˚C until analysis.

Metabolomic analysis

Liquid chromatography-high resolution mass spectrometry. Sample preparation was

adapted from the method described by Bligh and Dyer [24]. For supernatants, 500 μL of meth-

anol/water (1:1) were added to 100 μL of culture medium. Then, for both supernatants and

cells, 500 μL of chloroform were added. The mixture was sonicated for 10 min, stir for 10 min

and centrifuged at 10000 rpm for 5 mins to achieve a biphasic separation with the upper phase

containing polar compounds and the lower fraction nonpolar compounds. 2x200 μL of each

phase were collected in Eppendorf tubes and dried under vacuum. One of each 4 dried extracts

was reconstituted with 75 μL of each of the following mixtures: formate/acetonitrile (20:80 v/v)

and carbonate/acetonitrile (20:80 v/v) for extracts from the upper phase subsequently analysed

with hydrophilic interaction liquid chromatography (HILIC); formate/acetonitrile (80:20 v/v)

and carbonate/acetonitrile (80:20 v/v) for extracts from the lower phase subsequently analysed

with reverse phase (RP) chromatography. Quality control samples were prepared by pooling

5 μL of each extracted sample.

LC-HRMS analysis was adapted from a previously described method [23] and each sample

was injected four times, with HILIC and RP chromatrography, both in the negative and posi-

tive ionization modes. Chromatography was performed with an UltiMate 3000 Quaternary

Rapid Separation Pump (Thermo Scientific Dionex, Les Ulis, France) and the separation was

performed under gradient elution using 4 different mobile phase systems consisting of mix-

tures of acetonitrile with either solvent A (10 mM pH 3.8 ammonium formate) for the positive

ionization mode or solvent B (20 mM pH 9.2 ammonium carbonate) for th e negative ioniza-

tion mode.

A SeQuant 4.6 mm x 150 mm, 5 μm i.d. ZIC-pHILIC column (AIT France, Houilles,

France) was used for HILIC chromatography. For the positive ionization mode, gradient

PLOS ONE LPS-induced lung macrophage metabolomic reprograming

PLOS ONE | https://doi.org/10.1371/journal.pone.0230813 April 8, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0230813


started with 5% solvent A until 3 min, then increased to reach 95% at 25 min and maintained

for 5 more mins, then back to 5% and equilibrated for 10 mins. For the negative ionization

mode, gradient started with 8% solvent B until 3 min, then increased to reach 92% at 25 min

and maintained for 5 more mins, then back to 8% and equilibrated for 10 mins. Flow rate was

0.3 mL/min, curve gradient parameter set at 5, oven temperature 40˚C and total run time 40

mins.

A Hypersil Gold C18 column 2.1 mm x 100 mm, 1.9 μm i.d. (Thermo Scientific Dionex)

was used for RP chromatography. For the positive ionization mode, gradient started with 90%

solvent A until 3 min, then decreased to reach 5% at 25 min and maintained for 8 more mins,

then returning to 90% A for 5 mins. For the negative ionization mode, gradient started with

90% solvent B until 3 min, then decreased to reach 5% at 25 min and maintained for 8 more

mins, then returning to 90% B for 5 mins. Flow rate was 0.3 mL/min, oven temperature 40˚C

and total run time 40 mins.

Mass spectrometry was performed with an hybrid quadrupole–orbitrap Q-Exactive mass

spectrometer (Thermofisher) equipped with an heated electrospray ionization (ESI) source

operating in positive (ESI+) or negative (ESI-) ionization modes. The ESI and acquisition

parameters for the different modes are shown in S1 Table. Auxiliary gas heater temperature

was set at 100˚C, resolution at 70,000 and AGC target at 106. The acquisition scan-range was

split into 3 segments as previously described [23]: m/z 60–300; 300–600; 600–900. Xcalibur

software (Thermofisher) was used for system controlling and data acquisition.

Gas chromatography-mass spectrometry. Samples were prepared according to the

method described by Fiehn [25]. For supernatants, 1 mL of acetonitrile/isopropanol/water

(3:3:2) was added to 30 μL of medium. The supernant and cell samples were then vortexed for

10 s, shaken for 5 mins, centrifuged at 14 000 rpm for 2 mins. 450 μL were recovered and dried

under vacuum. The residue was reconstituted with 450 μL of acetonitrile/water 50:50 (1:1)

degassed with nitrogen and centrifuged for 2 mins at 14 000 rpm. The residue was reconsti-

tuted with 10 μL of methoxyamine (MEOX) (20 mg/mL in pyridine), vortexed for 30 s, and

kept at 30˚C for 90 mins. Finally, 75 μL of N-methyl-N-trimethylsilyl-trifluoroacetamide

(MSTFA) spiked with a mixture of FAME internal standards (10 μL of FAMEs for 1 mL of

MSTFA) were added and the extract kept at 37˚C for 30 mins. After derivation the samples

were immediately transferred into injection vials.

Gas chromatography was performed on a Trace 1300 system (Thermofisher) with an Upti-

bond 5 Premium column 30 m x 0.25 mm x 0.25 mm (Interchim, Montluçon, France) and

helium as a carrier gas at a flow rate of 1 mL/min. The injection volume was 1 μL. The temper-

ature ramp was as follows: 60˚C for 1 min, then an increase up to 325˚C at 10˚C/min. This

temperature was maintained for 10 mins and total acquisition time was 37.5 mins. The detec-

tion was performed with a TSQ8000 mass spectrometer (Thermofisher). The electron impact

(EI) ion source was held at 230˚C and an energy of 70 eV was used. Acquisition was performed

in the full scan mode (m/z 50–600) with an acquisition rate of 20 spectrum/s. Xcalibur software

(Thermofisher) was used for system controlling and data acquisition.

Data processing. LC-MS raw files were first converted to mzML and centroidized with

msConvert [26], then processed using IPO [27] and XCMS (v1.50.1) [28] packages running

under R. The CentWave algorithm [29] was used for automatic peak picking, with parameters

optimized with IPO. For GC-MS, the raw files were converted to CDF format. The data were

analyzed with Workflow4Metabolomics using the metaMS, XCMS and CAMERA packages

[28, 30, 31] that extract the peaks, align them, correct the analytical drift and perform annota-

tion of adducts and isotopes.

Features detected in biological samples with a mean intensity less than 3-fold the intensity

observed in blank samples, or features detected in blank samples only were filtered out to limit

PLOS ONE LPS-induced lung macrophage metabolomic reprograming

PLOS ONE | https://doi.org/10.1371/journal.pone.0230813 April 8, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0230813


the number of false positive peaks. Features with a CV greater than 30% in the quality control

samples were also filtered out. Batch correction, quality control checks and statistics were per-

formed with Workflow4Metabolomics [32, 33]. Statistical analysis was also performed with

Workflow4Metabolomics and MetaboAnalyst 4.0 using uni- or multivariate analysis and path-

way analysis based on Mummichog [34]. Levels of metabolite annotation were defined as fol-

lows: level 0, which is the strongest level of annotation and includes stereochemistry

discrimination; level 1 that requires the use of a chemical standard and at least two orthogonal

techniques (e.g., accurate mass and retention time); level 2 is confirmation by a class-specific

standard; level 3 by one parameter (e.g., accurate mass); level 4 is the feature-level without

annotation [35]. HMDB, The Golm Metabolome Database and NIST [36, 37] were used for

database queries.

Results

Untargeted metabolomic analysis

For the intracellular metabolome, the combination of the different LC-MS and GC-MS meth-

ods allowed the detection of 42,573 features in control and LPS-treated samples (Table 1).

HILIC was the most contributive, followed with RP chromatography and GC-MS and a total

of 8,741 features were remaining after the filtering steps.

For the extracellular metabolome, 45,258 features were first detected, with 4,356 remaining

after filtering (Table 2). RP chromatography allowed the detection of the highest number of

features, followed with HILIC and GC-MS.

Multivariate analysis

Models were built with Partial Least-Squares—Discriminant Analysis (PLS-DA) for each con-

dition and are shown in Fig 1A and 1B for the intracellular and extracellular metabolomes,

respectively. The models for the intracellular metabolome allowed the distinction between

control and treated cells with taking into account 2 components for the four analytical condi-

tions. Each of these 2 components explained between 7.1 and 26.1% of the variability. On the

other hand, with respect to the extracellular metabolome, 2 components were enough to dis-

criminate control and treated cells for HILIC in the positive ionization mode, but 3

Table 1. Features detected in the intracellular metabolome analysis.

Analysis Chromatography Polarity Initial number of features After Filtering

LC-MS HILIC + 16,588 2,935

- 11,613 4,592

RP + 9,772 867

- 4,407 154

GC-MS GC NA - 193

https://doi.org/10.1371/journal.pone.0230813.t001

Table 2. Features detected in the extracellular metabolome analysis.

Analysis Chromatography Polarity Initial number of features After Filtering

LC-MS HILIC + 11,411 840

- 17,821 1,055

RP + 14,426 2,160

- 1,326 27

GC-MS GC NA - 274

https://doi.org/10.1371/journal.pone.0230813.t002
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components were suggested by cross-validation to discriminate samples categories in the other

analytical conditions. Although all models well fitted the data (R2Y> 0.9), their prediction

capacity was poor with Q2Y < 0.3, except for the analysis of the extracellular content with

HILIC in the positive ionization mode (Q2Y = 0.5). The features contributing the most to each

model (assessed with Variable Importance in Projection (VIP) score) were then used for hier-

archical clustering and for pathway analysis. Hierarchical clustering for the intracellular and

extracellular metabolomes is depicted in Fig 2A and 2B, showing that an excellent categoriza-

tion was achieved between control and LPS-treated macrophages for the majority of the differ-

ent analytical conditions. Two categories of features, i.e. up- or down-regulated in control or

LPS groups, are clearly distinguishable for the analysis of the intracellular content with HILIC

in the positive and negative ionization mode.

Pathway analysis

Pathway analysis for the LC-MS analysis of the intracellular content revealed differential

expression of arachidonic acid metabolites in LPS-treated macrophages (Fig 3). Furthermore,

GC-MS analysis suggested modulations in metabolites from tryptophan metabolism and

Krebs cycle. Metabolites identified by the statistical analysis to be the most contributing to the

Fig 1. Partial Least Squares—Discriminant Analysis (PLS-DA). PLS-DA was performed for the intracellular (A) and extracellular (B) HILIC, RP and GC-MS analysis

of the human macrophage metabolome (n = 10) in cells cultured for 24 hrs with (green) or without (red) LPS (10 ng.mL-1). HILIC: hydrophilic interaction liquid

chromatography; RP: reverse phase; GC: gas chromatography.

https://doi.org/10.1371/journal.pone.0230813.g001
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different models are shown in Table 3, with most features corresponding to arachidonic acid

metabolites. Since the production of arachidonic acid derivatives after stimulation of lung

macrophages with LPS is already well documented [38–42], we then focused on the explora-

tion of tryptophan metabolism and Krebs cycle pathway.

Targeted metabolic profiling

Specific targeted LC-MS methods were developed for the quantitative analysis of selected com-

pounds from tryptophan metabolism and Krebs cycle and the results are depicted in Fig 4. For

tryptophan metabolism, a LPS-induced decrease in the tryptophan concentration and an

increase in concentrations of coumpounds from the kynurenine pathway (kynurenine and

quinolinic acid) were observed in both the intracellular and extracellular compartments (qui-

nolinic acid increase was statistically significant in the extracellular content only). Accordingly,

the concentration of hydroxytryptophan, a metabolite of the other tryptophan degradation

pathway leading to serotonin synthesis, was also increased in the intracellular content. For

Krebs cycle metabolites, an increase in the concentration of malate was observed (statistically

significant for the intracellular content only), whereas succinate and fumarate were found

unaltered. In a similar model with murine bone-marrow derived macrophages [43], the

increased malate production was explained by the induction of the arginosuccinate shunt,

involving arginosuccinate, fumarate and malate. In line with this, intracellular arginosuccinate

was measured in human lung macrophages and a 336% increase in the production was

observed (S1 Fig).

Fig 2. Hierarchical clustering analysis. The top 50 differentially expressed metabolites for the intracellular (A) and extracellular (B) HILIC, RP and GC-MS analysis of

the human macrophage metabolome (n = 10) in cells cultured for 24 hrs with (green) or without (red) LPS (10 ng.mL-1) were used for hierarchical clustering.

Metabolites in red are upregulated, those in blue downregulated.

https://doi.org/10.1371/journal.pone.0230813.g002
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Discussion

This study reports for the first time the metabolomic analysis of human primary lung macro-

phages, to assess the effect of LPS, the archetypal TLR agonist, on the cell metabolome. The

methodological approach combined high-resolution LC-MS, with a split scan-range acquisi-

tion method providing improved feature detection when compared to classical methods [23],

and GC-MS to provide the most extensive metabolome coverage. Metabolomics studies were

previously performed with macrophages to assess the effects of drugs, plasticizers, pollutants

and nanomaterials in mouse macrophage cell lines [44–47], to study the interactome in IFN-γ
or/and LPS-primed murine macrophages [48] or the cellular metabolism in HIV-infected

human monocyte-derived macrophages [49]. Since the availability of human primary lung

macrophages is limited and prolonged culture cannot be readily performed, alternative cellular

models are commonly used as surrogate to study macrophage biology. Most frequently used

surrogates consist in blood monocytes, monocyte-derived macrophages or phorbol ester-dif-

ferentiated cell lines (e.g. U937, THP-1, HL60). However, important phenotypic differences

were already reported between such surrogates and primary macrophages. For example, dis-

tinct patterns and expression levels of G-protein coupled receptors (including cytokine recep-

tors) and ion channels were found between monocytes, cell lines and human alveolar

macrophages [50]; peripheral blood monocytes exhibit no suppression by LPS of 5-lipoxygen-

ase metabolism and no induction of iNOS compared to alveolar macrophages [41], LPS-stimu-

lated human alveolar macrophages produce more PGE2 than do blood monocytes [42] and the

LPS-induced cytokine production is also higher in primary lung macrophages than in MDMs

Fig 3. Pathway network mapping for the untargeted metabolomic analysis of intracellular arachidonic acid metabolism in human lung macrophages. Nodes that

are significantly enriched in the pathway are fully colored and larger than non-enriched nodes. Pathway analysis was performed with MetaboAnalyst.

https://doi.org/10.1371/journal.pone.0230813.g003
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[51], highlighting the interest of confirming with primary cells the results obtained with avail-

able surrogates.

In addition to molecules from arachidonic acid metabolism, pathway analysis revealed a

role for the tryptophan metabolism and Krebs cycle during macrophage M1 polarisation. The

role of eicosanoids in the macrophage inflammatory regulation and its resolution is already

well established, with increased LPS-induced prostaglandin and leukotriene production [38–

40, 52], the inhibitory role of PGE2 and regulating role of 15-lipoxygenases in cytokine produc-

tion [2, 53–55]. Hydroxy-tryptophan, kynurenine and quinolinic acid are downstream metab-

olites of tryptophan metabolism and were quantified in the present study. Hydroxy-

tryptophan is the precursor of serotonin, whereas kynurenine and quinolinic acid belong to

the kynurenine pathway. Hence, the depletion of tryptophan is the consequence of both the

LPS-induced increase in indoleamine-2,3-dioxygenase (IDO), leading to the formation of

kynurenine metabolites, as described in human pulmonary macrophages [56] and to the

Table 3. Features differentially expressed between control and LPS samples in cell and supernatant samples.

Feature m/z RT Ionization Mode Method Log2(Fold Change) Proposed molecular formula Proposed annotation Level ID Δppm

Intracellular

1 221.0919 18.5 Pos HILIC 2.3 C11H12N2O3 Hydroxy-tryptophan 3 1

2 299.2003 7.3 Pos HILIC 4.0 C20H26O2 3,4-didehydro-retinoate 3 1

3 301.2163 7.6 Pos HILIC 5.4 C20H28O2 4-hydroxyretinal 3 0

4 305.0864 14.8 Pos HILIC 1.2 C12H17O9 - 3 1

5 317.2112 7.9 Pos HILIC 4.4 C20H28O3 15-deoxy-PGJ2 3 0

6 319.2270 7.7 Pos HILIC 5.3 C20H30O3 Leukotriene A4 3 1

7 344.2438 18.4 Pos HILIC 3.7 C18H34NO5 4 2

8 393.2260 7.4 Pos HILIC 5.7 C22H32O6 10-hydroperoxy-H4-neuroprostane 3 3

9 120.0449 4.9 Neg HILIC 4.0 C7H7NO - 3 4

10 164.0346 4.9 Neg HILIC 3.8 C8H7NO3 Pyridoxolactone 3 4

11 167.0171 17.7 Neg HILIC 2.2 C2H5N3O6 - 4 7

12 194.0451 3.8 Neg HILIC 6.7 C9H9NO4 Hydroxyhippuric acid 3 4

13 315.1952 7.2 Neg HILIC 4.9 C20H28O3 15-deoxy-PGJ2 3 4

14 333.2061 7.1 Neg HILIC 8.7 C20H30O4 Prostaglandin A2 3 3

15 334.2095 5.2 Neg HILIC 5.0 C15H30N2O6 - 4 4

16 351.2160 7.1 Neg HILIC 4.8 C20H32O5 Thromboxane A2 3 5

17 353.2325 9.7 Neg HILIC 2.7 C20H34O5 Prostaglandin E1 3 2

18 368.2432 10.4 Neg HILIC 5.1 C18H30NO5 - 4 1

19 381.2632 8.9 Neg HILIC 10.3 C22H32N4O4 - 3 4

20 383.2425 5.1 Neg HILIC 5.5 C21H35O6 4 3

21 385.2217 14.9 Neg HILIC 2.8 C20H34O7 Dihydro-trihydroxy-leukotriene B4 3 4

22 436.1933 7.0 Neg HILIC 5.4 C18H26N7O6 - 4 3

23 387.1448 18.7 Pos RP 9.5 C21H22O7 - 3 3

24 134.1 12.40 - GC 8.4 C4H6O5 Malic acid 1

25 167.0 15.19 - GC 1.3 C7H5NO4 Quinolinic acid 1

Extracellular

1 136.0398 14.56 Pos HILIC 8.3 C7H5NO2 - 3

2 405.2630 7.25 Pos HILIC 3.4 C24H36O5 - 3

3 757.4305 7.60 Pos HILIC 6.3 C39H64O14 - 3

4 334.2115 6.0 Neg HILIC 3.9 C15H30N2O6 5 2

5 351.2190 6.79 Neg HILIC 3.6 C20H32O5 Prostaglandin E2 3

https://doi.org/10.1371/journal.pone.0230813.t003
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increase in tryptophan hydroxylase (TPH) activity, also occurring in macrophages in inflam-

matory conditions [57]. The effectors of the kynurenine pathway, expressed in epithelial cells

and alveolar macrophages, were previously shown to be critical regulators of acute pulmonary

inflammation in a murine model of lung transplantation [58]. In infectious disease models,

IDO expression is increased by respiratory syncytial virus in human monocyte-derived den-

dritic cells and by IFN-γ and HIV in human monocyte-derived macrophages [59, 60] and qui-

nolinate is increased by HIV in monocyte-derived macrophages [49]. In the clinics, increased

IDO and TPH activities were strongly associated to 30-day death and or intensive care unit

admission and/or 18 month mortality in patients with COPD exacerbations [61]; an increase

in serum kynurenine and a decrease in tryptophan was observed in patients with pneumonia

with correlations between IDO activity / kynurenine levels and severity or mortality [62],

while kynurenine levels were associated with 28-day mortality in critically ill adult patients

[63]. Evidence showing the involvement of tryptophan in the regulation of macrophage polari-

zation is also available. For instance, the role of the kynurenine pathway in inducing changes

in macrophage phenotypes was previously investigated in the murine macrophage cell line

RAW 264.7 and the murine fibrosarcoma cell line MC57, showing a role for IDO in cell adhe-

sion, metalloproteinase expression and in the expression and activity of the cyclooxygenase

enzymes [64]. Culture of RAW264.7 macrophages in a tryptophan-deficient medium induced

a 54% reduction in cell proliferation as compared with cells cultured in RPMI, which was

restored by tryptophan supplementation. In these cells, tryptophan deficiency was also respon-

sible of an increase in cell death and apoptosis, which was also reversible by tryptophan supple-

mentation [65]. With respect to the production of signaling molecules, macrophages from

indoleamine 2,3-dioxygenase 2 knockout mice produced higher amounts of IL-1α, IL-6, IL-10,

MCP-1, MIP-1α, MIP-1β and RANTES after LPS stimulation than macrophages from wild-

type mice. In line with this, the preincubation of IFN-γ–primed induced pluripotent stem

cell–derived human macrophages with INCB024360, an IDO1 inhibitor significantly impaired

bacterial killing, which is a key feature of M1-polarized macrophages [66]. RAW264.7 macro-

phage cells and primary murine alveolar macrophages also showed increased IL-6, TNF-α,

Fig 4. Targeted analysis. Quantification of selected intracellular (A) and extracellular (B) metabolites from tryptophan metabolism and Krebs cycle in human lung

macrophages cultured for 24 hrs with or without (control) LPS (10 ng.mL-1). Data are expressed in pg per 106 cells. ND: not detected.

https://doi.org/10.1371/journal.pone.0230813.g004
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IFN-β, and/or IL-1β production in the presence of 1-methyltryptophan another IDO pharma-

cological competitive inhibitor, following influenza infection [67]. On the other hand, overex-

pression of IDO enzyme in the murine macrophage cell line RAW264.7 suppressed IL-6,

G-CSF, MCP-1, and MIP-1β production [68] while treatment of these cells with the metabo-

lites indole-3-acetate and tryptamine significantly attenuates the expression of TNF-α, IL-1β,

and MCP-1 [69]. The production of molecules involved in microbes killing was also affected

since LPS and IFN-γ stimulated RAW264.7 cells cultured in tryptophan-deficient medium

demonstrated a significant reduction in iNOS expression in comparison to control cells, while

cells cultured in the presence of tryptophan expressed significantly higher amounts of iNOS,

leading to marked released amounts of NO [65]. Our results also strongly support a major role

for tryptophan metabolism in lung macrophages during inflammation, suggesting the interest

of a pharmacological approach to modulate this pathway in inflammatory lung diseases.

Then, a large increase in the production of malate, one metabolite from the Krebs cycle,

was observed in response to LPS, as previously reported in bone-marrow derived mouse mac-

rophages [43, 48], whereas succinate and fumarate levels were unchanged. Other groups

reported either very modest or larger increases in succinate after stimulation with LPS of

murine bone-marrow derived macrophages, with key roles for succinate in the induction of

IL-1β through HIF-1α [7, 43]. In their M1 polarisation model of murine bone-marrow derived

macrophages, Jha and colleagues reported that malate accumulation was related to the induc-

tion of the arginosuccinate shunt, a pathway connecting the Krebs cycle with the urea cycle,

involving aspartate, arginosuccinate, malate and fumarate. In their model, inhibiting this path-

way with aminooxyacetic acid induced a concentration-dependant inhibition of the produc-

tion of nitric oxide and IL-6, important effectors of antimicrobial activity and inflammatory

reaction [43]. In line with these findings, we observed a 336% increase in the production of

arginosuccinate in LPS-stimulated human lung macrophages, also suggesting a potential link

between metabolism and immune functions in primary human cells.

All the changes in metabolite concentrations measured during the targeted analysis were

consistent between the intracellular and extracellular compartments, suggesting that intracel-

lularly produced metabolites may play an autocrine/paracrine role by being released in the cell

environment in response to an inflammatory stimuli.

The main limit of the study is related to the patient population and sample size, which was

limited to assess the effect of covariates such as age, smoking status or COPD. These covariates

are known to affect the response of lung macrophages to TLR agonists; however, these changes

greatly vary from one study to another. For example, some studies report increases in the LPS-

induced cytokine production of alveolar macrophages from smoking or COPD patients [70,

71] whereas opposite findings were also reported by other groups [72, 73] and in other cases,

current smoking status had no effect on the production of cytokines in response to LPS [74,

75]. Altogether, these findings supports the concept whereby the LPS-induced production of

cytokines by lung macrophages obtained from COPD, smokers, and healthy adults are similar,

although this cannot be directly extrapolated to metabolomic analysis.

In conclusion, we described the use of an extensive combined GC- and LC-MS strategy for

the metabolomic profiling of the LPS-induced M1 human lung macrophage polarization. The

non-targeted analysis revealed the involvement of the arachidonic pathway, tryptophan

metabolism and Krebs cycle during the M1 polarisation. Targeted analysis of selected com-

pounds confirmed these findings and allowed the quantification of the identified metabolites

and allowed to precise a role for the aspartate-arginosuccinate shunt. Knowing the role of mac-

rophages in inflammatory lung diseases, a further detailed investigation of alterations occur-

ring in these pathways in cells from patients with asthma or COPD should be of particular

interest.
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