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Insulin activates hepatic Wnt/β-
catenin signaling through stearoyl-
CoA desaturase 1 and Porcupine
Régine Cabrae1,4, Céline Dubuquoy1,4, Michèle Caüzac1, Lucille Morzyglod1, Sandra Guilmeau1, 
Bénédicte Noblet1, Bruno Fève3, Catherine Postic1, Anne-Françoise Burnol1 & Marthe Moldes1,2*

The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt 
activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. 
Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), 
a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether 
nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase 
reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro 
in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target 
genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect 
was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin 
treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary 
hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation 
of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence 
of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-
catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as 
potential novel physiological inducers of hepatic Wnt/β-catenin pathway.

Liver plays a central role in the control of energy homeostasis as it contributes to the maintenance of glycemia 
upon varying nutritional conditions through the regulation of glucose and lipid metabolism1,2. During fasting, 
hepatic glucose production ensures a constant plasma glucose concentration and energy supply to peripheral 
tissues, whereas in the post-prandial period increased plasma insulin concentration favors liver glucose uptake 
restoring glycogen contents and stimulating lipid synthesis through de novo lipogenesis and fatty acid esterifi-
cation2. These opposite metabolic functions are finely regulated by hormonal, nutrient and molecular gradients 
existing along the liver acini3,4. Among these molecular gradients, the Wnt/β-catenin pathway participates to 
liver functional zonation, and to hepatic regeneration and proliferation5–7. Interestingly, this signaling pathway 
is also involved in hepatic metabolism since mutations in TCF7L2 or LRP6 genes, encoding a nuclear partner of 
β-catenin and a co-receptor of Wnt, respectively, were associated with an increased risk to develop diabetes and 
hyperlipidemia8–10.

The Wnt/β-catenin signaling cascade is initiated by Wnt morphogens binding to Frizzled (Fzd) receptors, 
which leads to β-catenin stabilization and translocation into the nucleus. In association with its nuclear part-
ner TCF/LEF (T-cell factor/lymphoid enhancing factor), β-catenin trans-activates Wnt target genes through 
TCF-responsive elements (TRE)6. Secretion of Wnt ligands and receptor binding are limiting steps in Wnt sig-
naling activity and are tightly regulated by series of Wnt post-translational modifications, such as acylation11,12. 
Addition of the fatty acid palmitoleate on a serine residue, which is conserved among the Wnt ligands, is an 
essential event in their intracellular trafficking from endoplasmic reticulum (ER) to Golgi and their consecutive 
secretion13. This reaction is catalyzed by the acyltransferase Porcupine, a member of the MBOAT (Membrane‐
Bound‐O‐Acyl‐Transferase) family of proteins14–16. Palmitoleate is the product of the desaturation of palmitate 
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by the stearoyl-CoA-desaturase 1 (SCD1), while palmitate is synthetized by fatty acid synthase (FAS)17. Both 
enzymes were shown to participate to Wnt biogenesis18,19. Interestingly, FAS and SCD1 are enzymes of the de novo 
lipogenesis pathway, they are mainly up-regulated upon refeeding and more particularly by insulin and glucose20.

The aim of the current study was to investigate the effect of insulin on the Wnt/β-catenin signaling pathway in 
liver and hepatocytes in culture, a topic poorly documented so far in this major insulin target organ. We studied 
the regulation of hepatic Wnt/β-catenin pathway activity by nutritional conditions and demonstrated that under 
physiological conditions insulin induces the Wnt pathway by stimulating the PI3K/mTORC1 (target of rapamycin 
complex 1) signaling pathway and lipogenesis. Activated by insulin, the lipogenic enzyme SCD1 acts as a palmi-
toleate supplier for Porcupine, which then acylates Wnt ligand in hepatocytes. Altogether, our findings unravel 
the insulin-dependent de novo lipogenesis as a novel physiological inducer of the hepatic Wnt/β-catenin pathway.

Results
High carbohydrate refeeding activates the Wnt/β-catenin pathway in mouse liver.  The activity 
of the Wnt/β-catenin pathway was monitored in mouse liver by in vivo imaging using an adenovirus containing 
TCF-responsive elements upstream a minimal promoter and a luciferase reporter gene (Adv-TRE-Luc). Fasted 
mice displayed low TRE-Luc activity, whereas upon refeeding with a high carbohydrate diet, leading to elevated 
glucose and insulin plasma concentrations, luciferase activity was induced by 5.5-fold (Fig. 1a,b). Accordingly, 
the protein content of the active form of β-catenin was enhanced during the nutritional challenge (Fig. 1c and 
quantification on Fig. 1d), although β-catenin mRNA or total protein levels remained unchanged (Supplementary 
Fig. 1). As a consequence, the expression of Wnt target genes GS (Glutamine Synthetase) and Lect2 (leukocyte 
cell-derived chemotaxin 2) was induced, as shown by RT-qPCR (Fig. 1e). Notably, upon refeeding the enhanced 
Wnt/β-catenin activity was concomitant with the sharp induction of lipogenic gene expression, Fasn (fatty acid 
synthase) and Scd1 (stearoyl-CoA desaturase) (Fig. 1c,f). Altogether, these results suggest that refeeding conditions 
activates Wnt/β-catenin pathway in mice liver.

Hepatic Wnt/β-catenin pathway is activated by insulin.  To investigate the contribution of insu-
lin and/or glucose on Wnt signaling activity, mouse primary cultured hepatocytes were infected with the 
Adv-TRE-Luc construct and incubated in low (5 mM) or in high (25 mM) glucose concentration either in the 
presence or the absence of insulin (100 nM). Of note, the viability of hepatocytes was not altered in the absence 
of insulin during culture time period (Supplementary Fig. 2). As shown in Fig. 2a, TRE-Luc activity was not 
modified by high glucose concentration, while insulin had a significant stimulatory effect. The expression of Wnt 
target genes Lect2 and GS was also enhanced in the presence of insulin and 25 mM glucose, similarly to lipogenic 
genes Fasn and Scd1 (Fig. 2b,c), suggesting that high concentrations of insulin and glucose can stimulate the 
Wnt/β-catenin pathway in hepatocytes. The contribution of insulin to the activation of liver Wnt/β-catenin path-
way was further established in vivo using a mouse model of inducible liver specific insulin receptor knock-out 
(iLIRKO)21 (Supplementary Fig. 3a). Two weeks after tamoxifen injection, mice displayed increased insulinemia, 
while glycemia was not significantly altered (Supplementary Fig. 3b). As expected, Fas and Scd1 mRNA and 
protein concentrations were dramatically reduced in refed iLIRKO mice compared to their control littermate, 
illustrating the drastic inhibition of liver insulin signaling in these mice (Fig. 2d right panel and Supplementary 
Fig. 3a). Importantly, GS and Lect2 expression was also significantly reduced in liver of iLIRKO mice (Fig. 2d left 
panel).

Liver insulin actions on metabolic pathway are mainly mediated by the activation of the PI3K-Akt-mTORC1 
signaling cascade22,23. To investigate the role of this pathway in Wnt/β-catenin activation, we used wortmannin, 
Akti or rapamycin to inhibit PI3K, Akt, and mTORC1, respectively. The efficiency of these inhibitors was vali-
dated on insulin signaling in mouse primary hepatocytes (Supplementary Fig. 3c). Interestingly, pre-incubation of 
cultured hepatocytes with these inhibitors blocked the induction by insulin of TRE-Luc activity (Supplementary 
Fig. 3d). To further investigate in vivo the role of PI3K-mTORC1 signaling on Wnt/β-catenin activation, mice 
infected with Adv-TRE-Luc were treated with wortmannin or rapamycin. As shown in Fig. 2f (right panel) liver 
Fasn and Scd1 gene expression was significantly decreased upon treatment with the PI3K-mTORC1 inhibitors. 
Under these conditions, TRE-Luc activity was strikingly inhibited and expression of Wnt target genes GS and 
Lect2 was decreased by 30–50% in mice liver (Fig. 2e,f left panel). Altogether, these data reveal that the insulin 
signaling pathway regulates hepatic Wnt/β-catenin activity. Notably, they also suggest an interesting correlation 
between Wnt canonical pathway activity and induction of the lipogenic transcriptional program upon insulin 
challenge.

Palmitoleate production through SCD1 is implicated in insulin-induced hepatic Wnt/β-catenin 
pathway activity.  Wnt secretion and activity are tightly regulated by palmitoylation and SCD112,18. 
Palmitoleate is produced by the lipogenic enzyme SCD1 through palmitate desaturation24. In the hepatic context, 
we investigated whether palmitoleate could be a mediator connecting insulin-induced hepatic lipogenesis to 
enhance Wnt canonical pathway. Primary hepatocytes infected with Adv-TRE-Luc were incubated in the pres-
ence of either palmitoleate (200 μM) or palmitate (250 or 500 μM). The addition of palmitoleate significantly 
stimulated Wnt/β-catenin activity by 3-fold, whereas palmitate decreased TRE-Luc activity (Fig. 3a). Importantly, 
when SCD1 was overexpressed, the addition of palmitate to the media enhanced Wnt/β-catenin activity (Fig. 3b). 
These data suggest that palmitoleate, either added exogenously or produced by SCD1-mediated desaturation of 
palmitate, stimulates Wnt/β-catenin pathway activity in mouse hepatocytes. The contribution of SCD1 to Wnt 
signaling activation was then investigated using an adenoviral strategy to downregulate or increase SCD1 expres-
sion. SCD1 content was validated by Western blot and RT-qPCR analysis (Fig. 3c lower panel and Fig. 3d). SCD1 
silencing abolished the insulin-mediated activation of Wnt signaling, while SCD1 overexpression enhanced the 
effect of insulin on TRE-Luc activity (Fig. 3c upper panel). Accordingly, expression of the Wnt target genes GS 
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and Lect2 was repressed after SCD1 knockdown and Lect2 was induced upon SCD1 overexpression (Fig. 3d). 
Taken together these results suggest that in hepatocytes, insulin-induced Wnt pathway activity may require SCD1 
activity and the associated palmitoleate production.

Porcupine contributes to the insulin-induced Wnt/β-catenin pathway in hepatocytes.  The acyl-
transferase Porcupine (PORCN) was reported to catalyze Wnt palmitoylation in mouse fibroblasts or chick neural 
tube12,14,25,26. We thus investigated the role of Porcupine on the induction of Wnt signaling in insulin-sensitive 
primary mouse hepatocytes. Porcupine was efficiently knocked-down by an adenoviral shRNA targeting Porcn 
(PORCNi) (Fig. 4d and Supplementary Fig. 4a). Inhibition of Porcn expression abolished the stimulatory effect 
of palmitoleate on TRE-Luc activity (Fig. 4a), and decreased by 50% SCD1-induced Wnt/β-catenin activ-
ity in hepatocytes cultured in the presence of high insulin and glucose concentrations (Fig. 4b). Furthermore, 
insulin-induced TRE-Luc activity and expression of GS and Lect2 were significantly reduced upon downregu-
lation of PORCN in lipogenic conditions (Fig. 4c,d). Similar results were observed with the pharmacological 
inhibitor of PORCN, IWP1 (inhibitor of Wnt processing and secretion) (Supplementary Fig. 4b), confirming the 
role of Porcupine in insulin-induced Wnt/β-catenin activation. Of note, Porcn expression was enhanced in the 
presence of high concentrations of insulin and glucose (Fig. 4d). Altogether, our data provide evidence that in 
mouse hepatocytes insulin can activate Wnt/β-catenin pathway through the induction of palmitoleate synthesis 
and Porcupine.

Figure 1.  Wnt/β-catenin pathway activity is activated by refeeding in mouse liver. (a) Mice infected with Adv-TRE-
Luc and Adv-RSV-β-gal were studied 4 days later in fasted or refed state as described in “Methods”. In vivo imaging 
of hepatic TRE-Luciferase activity (left panel) and quantification of luciferase activity (right panel) were performed. 
Results are expressed as percent of the ratio firefly luciferase/β-galactosidase. (b) Plasma insulin and blood glucose 
concentrations were measured in fasted and refed conditions. (c,d) Western blot analysis of liver protein expression in 
lysates from fasted and refed mice (c) and quantification of active-to-total β-catenin in liver of fasted and refed mice. 
(d) β-Actin antibody was used as a loading control (n = 7/group). (e,f) RT-qPCR analysis of Wnt target genes (GS and 
Lect2) (e) and of lipogenic gene (Fasn and Scd1) (f) expression in liver of fasted and refed mice. Results are the mean 
± SEM (n = 5–7/group). **p < 0.01, ***p < 0.001 for refed vs fasted mice.
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Discussion
In the present study, we revealed a novel mechanism for the regulation of the Wnt/β-catenin pathway in hepato-
cytes, involving insulin signaling and lipid metabolism. We showed that the activity of the Wnt canonical pathway 
is controlled by nutritional conditions, and more particularly by insulin, as schematized in Fig. 5. Insulin stimu-
lates de novo lipogenesis through PI3K/mTORC1 signaling, leading to the expression of the fatty acid desaturase 
SCD1 which acts as a supplier of palmitoleate and the acyltransferase Porcupine to activate the Wnt signaling 
pathway. These data suggest that during refeeding, insulin is an upstream regulator of SCD1, which in concert 
with Porcupine may stimulate hepatic Wnt/β-catenin activity.

In a physiological context, the regulation by insulin of the Wnt/β-catenin pathway may be linked to its cru-
cial role in hepatic structural and metabolic homeostasis. Liver is a complex organ structurally organized in 
functional units called acini or hepatic lobules. Acini are differentially supplied with hormones and nutrients 
through the blood flow along the porto-central axis of the liver lobule. As a consequence, metabolic functions are 
spatially compartmentalized in liver acini with periportal (PP) hepatocytes involved in gluconeogenesis whereas 
perivenous (PV) hepatocytes favor glucose uptake and lipogenesis3,4. This metabolic zonation is also under the 
control of the Wnt/β-catenin pathway, which is activated in PV hepatocytes and blocked in PP hepatocytes by 
its inhibitor Apc (Adenomatous polyposis coli)5. Hepatocyte-specific β-catenin transgenic and knockout mice 
models revealed that Wnt/β-catenin dependent metabolic zonation is critical for liver response to metabolic stress 
such as starvation or chronic excess of energy intake27. Altogether, this suggests that Wnt signaling activation by 
insulin-promoted de novo lipogenesis can contribute to hepatic metabolic flexibility and favor integrated meta-
bolic responses in liver according to nutritional changes.

Figure 2.  Insulin stimulates hepatic Wnt signaling activity in vitro and in vivo. (a) Primary mouse hepatocytes 
infected with Adv-TRE-Luc and Adv-RSV-β-gal were cultured with either 5 mM (G5) or 25 mM glucose (G25) 
in the presence or the absence of insulin (ins, 100 nM) for 24 hours. Quantification of luciferase activity is 
expressed as percent of the ratio firefly luciferase/β-galactosidase. (b,c) RT-qPCR analysis of Wnt target genes 
(GS and Lect2) (b) and lipogenic genes (Fasn and Scd1) (c) expression in primary mouse hepatocytes incubated 
in 5 mM or 25 mM glucose in the presence or the absence of insulin. Results for a-c are the mean ± SEM 
(n = 3–5). ***p < 0.001 vs G5; ##p < 0.01, ###p < 0.001 vs G25. (d) RT-qPCR analysis of Wnt target genes (GS and 
Lect2, left panel) and lipogenic genes (Fasn and Scd1, right panel) expression in liver from iLIRKO and control 
mice. Results are the means ± SEM (n = 9–10/group). *p < 0.05, ***p < 0.001, iLIRKO vs control mice. (e,f) 
Mice infected with Adv-TRE-Luc and Adv-Rsv-β-gal were treated with either DMSO, wortmannin (Wort) or 
rapamycin (Rapa) and sacrificed in the refed state. (e) Quantification of TRE-Luciferase activity after in vivo 
imaging of infected mice. (f) RT-qPCR analysis of Wnt target genes (GS and Lect2) (left panel) and lipogenic 
genes (Fasn and Scd1)(right panel) expression in liver from treated mice. Results are the mean ± SEM (n = 8–9/
group). *p < 0.05, **p < 0.01, ***p < 0.001 for inhibitor-treated mice compared to DMSO control mice.
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Cross-talks between intermediates of the insulin signaling and Wnt/β-catenin pathway have previously been 
pointed out. In response to insulin stimulation, the adaptors IRS1/2 interact with Dishevelled2 (Dvl2), favoring 
Dvl2 stabilization and promoting canonical Wnt signaling28. In addition, insulin stimulates GSK3β (a common 
effector of both insulin and Wnt/β-catenin pathways) phosphorylation and inactivation through Akt, thereby 
altering its ability to inhibit glycogen metabolism and to promote β-catenin protein degradation29–31. Insulin 
signaling can thus control Wnt/β-catenin pathway activity through various step points, including the activation 
of signaling effectors, palmitoleate production through activation of lipogenesis, and Porcupine expression and/
or activity.

In the present paper, we showed that palmitoleate is sufficient to trigger Wnt signaling activity in primary 
cultured hepatocytes. The effect of palmitoleate can be reproduced by the addition of palmitate in the pres-
ence of SCD1 or can be inhibited by the downregulation of the acyl-transferase Porcupine, suggesting that it 
is indeed the presence of palmitoleate, as a precursor of acylation, that is required for triggering Wnt signaling. 
Post-translational modification of Wnt is known to regulate β-catenin activity, and more particularly it is now 
well established that Wnt acylation, through the addition of a palmitoleate residue by Porcupine, is required 
for Wnt processing and action12,32. Palmitoleate has been described to act as an insulin sensitizing lipokine33,34, 
and amount of circulating ‘free’ palmitoleate in plasma has been positively associated with insulin sensitivity in 
humans. Furthermore, induction of SCD1 and production of palmitoleate can rescue insulin sensitivity in murine 

Figure 3.  SCD1-mediated palmitoleate production enhances insulin-induced Wnt pathway activity in 
hepatocytes. Primary mouse hepatocytes were infected with Adv-TRE-Luc and Adv-RSV-β-gal and incubated 
in different conditions as indicated. Luciferase assays were performed and results are expressed as percent of 
the ratio firefly luciferase/β-galactosidase. (a) Adv-TRE-Luc-infected primary hepatocytes were incubated 
with palmitate, palmitoleate or control 0.6% BSA for 24 h as indicated. **p < 0.01, ***p < 0.001 vs BSA. (b) 
TRE-Luc-expressing primary hepatocytes were infected with either SCD1 or control GFP adenoviruses and 
incubated in the presence of palmitate (250 μM) or BSA for 24 h. Results are the mean ± SEM (n = 3). *p < 0.05, 
**p < 0.01 vs BSA; #p < 0.05 vs palmitate. (c) TRE-Luc-expressing primary hepatocytes were infected with 
GFP/USi, SCD1i or SCD1 adenoviruses and incubated in 25 mM glucose (G25) in the presence of the absence 
of insulin (ins) for 24 h. Results are the mean ± SEM (n = 3). ***p < 0.001 vs G25; #p < 0.05, ###p < 0.001 vs 
G25 + ins. The Western blot shows SCD1 protein content in hepatocyte lysates from the different conditions. 
β-Actin antibody was used as a loading control. (d) RT-qPCR analysis of Scd1 and of Wnt target genes (GS and 
Lect2) expression in primary hepatocytes infected with the indicated adenoviruses and incubated in 25 mM 
glucose in the presence of the absence of insulin (ins) for 24 h. Results are the mean ± SEM (n = 3). **p < 0.01, 
***p < 0.001 vs G25; #p < 0.05, ##p < 0.01, ###p < 0.001 vs G25 + ins.
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models of obesity and insulin resistance35. However, it has also been documented that excess lipogenesis is asso-
ciated with fatty liver and insulin resistance, and that decreasing the lipogenic pathway through SCD1 inhibition 
can restore insulin sensitivity36–38. The role of palmitoleate, as a potentially metabolically toxic lipid or as a pro-
tective lipokine, may depend on the tissue where it is produced and on the physiological or pathophysiological 
context. Further studies are needed to clarify its role.

Metabolic diseases are characterized by a chronic insulin-resistant state, leading to hyperinsulinemia and 
potentially to dysglycemia. Interestingly, liver exhibits a “selective insulin resistance” characterized by a defect in 
the suppression of gluconeogenesis while insulin activation of lipogenesis is preserved. Kubota et al. proposed 
that differential distribution of insulin-receptor substrate proteins, IRS-1 and IRS-2 along liver acini contributes 
to this selective insulin resistance39. In the liver of mice submitted to a high-fat diet, insulin signaling is impaired 
in the PP zone, due to decreased IRS-2 expression. In the PV area, Wnt signaling stimulates the expression of its 
target gene IRS-1 therefore contributing to an active insulin signaling and maintaining de novo lipogenesis39. The 
activation of insulin and Wnt signaling pathways may finally worsen liver steatosis in a feed-forward loop in the 
pathological context of obesity and type 2 diabetes. Epidemiological studies suggest that obesity and diabetes are 
risk factors for hepatocellular carcinomas (HCC) development40,41. In this context, hyperinsulinemia could lead 
to the over-activation of the Wnt/β-catenin pathway, through the combined activity of SCD1 and Porcupine, 
and hence participate to tumor development. This is supported by the recent study of Lai et al. which described 
in hepatic stellate cells and hepatocellular carcinoma cells a positive-feedback loop where SCD enhances Wnt 
signaling through Lrp5 and Lrp6 stabilization and is itself regulated at the transcriptional level by Wnt signaling, 

Figure 4.  Porcupine is implicated in insulin-induced hepatic Wnt/β-catenin pathway activation. (a) TRE-Luc-
expressing primary hepatocytes were infected with PORCNi or USi adenoviruses and incubated with either 
BSA (0.6%), palmitoleate (200 μM) for 24 h. Luciferase assays were performed and results are expressed as 
percent of the ratio firefly luciferase/β-galactosidase. Results are the mean ± SEM (n = 3). *p < 0.05, **p < 0.01 
vs BSA; #p < 0.05 vs palmitoleate + USi. (b) TRE-Luc-expressing primary hepatocytes were infected with 
USi + GFP, SCD1 + USi or SCD1 + PORCNi adenoviruses and incubated with G25 or G25 plus insulin for 
24 h. Luciferase assays were performed and results are expressed as percent of the ratio of firefly luciferase/β-
galactosidase (n = 3). *p < 0.05 vs G25; ##p < 0.01 vs G25 + ins and $p < 0.05 vs SCD1 + USi. (c,d) TRE-Luc-
expressing primary hepatocytes were infected with PORCNi or USi and incubated in G25 or G25 + ins for 
24 h. (c) Luciferase assays and (d) RT-qPCR analysis of PORCN, GS and Lect2 gene expression were performed. 
Results in c and d are the mean ± SEM (n = 3–4). *p < 0.05, **p < 0.01, ***p < 0.001 vs G25; #p < 0.05, 
##p < 0.01, ###p < 0.001 vs G25 + ins.
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contributing to hepatic fibrosis and tumor growth42. In addition, SCD1 expression is positively associated with 
the prevalence of prostate, lung and breast cancers43–45, and its inhibition decreases tumor cell proliferation in 
vitro46–48. However, in a therapeutical context, inhibition of SCD1 will lead to an increase in saturated fatty acids 
intracellular concentration, favoring lipotoxicity49,50. Porcupine seems thus a more promising therapeutic target 
to block the proliferative effects of Wnt51, encouraging the development of pharmacological selective modulators 
to target and handle certain cancers without altering normal cells52–54.

We showed that insulin could regulate the Wnt signaling activity in hepatocytes. This action involves the 
induction of the SCD1 enzyme as a provider of palmitoleate and the acyltransferase Porcupine to acylate the 
Wnt ligand. These findings establish insulin and the downstream lipogenic pathway as potential new physiolog-
ical inducers of hepatic Wnt/β-catenin pathway. Moreover, the numerous points of inter-connection observed 
between the insulin and Wnt signaling pathways suggest that a tight regulation of these two pathways is required 
to maintain hepatic metabolic and structural homeostasis.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

Animals.  Eight- to ten-week-old male C57BL/6 J mice purchased from Harlan Laboratories (Indianapolis, IN, 
USA) were adapted to the environment for one week before the study. The inducible liver IR knockout (iLIRKO) 
mice were described previously21. Fifteen-week-old male mice were studied 2 weeks after 3 consecutive injec-
tions with tamoxifen (1.5 mg/mouse). All mice were housed in colony cages with a 12 h/12 h light/dark cycle 
in a temperature-controlled environment (lights off at 3:00 pm). Mice had free access to water and regular diet 
(65% carbohydrate, 11% fat and 24% protein). For “fasting” and “refed” conditions, mice were either fasted for 
24 h, or refed overnight on a regular diet with 20% glucose in tap water after 24 h fasting. For insulin signaling 
inhibitors experiments, mice were injected twice (18 hours and 2 hours) before sacrifice with wortmannin (2 mg/
kg, InVivoGen, CA, USA) or rapamycin (4.5 mg/kg, InVivoGen). Livers were frozen in liquid nitrogen and kept 
at −80 °C until use. Plasma samples were frozen and stored at −80 °C until use. All procedures were carried out 

Figure 5.  Model for the molecular mechanism involving insulin-induced hepatic Wnt signaling activity 
through SCD1, palmitoleate and Porcupine. Insulin stimulates de novo lipogenesis through PI3K/mTORC1 
signaling, leading to the expression of the fatty acid desaturase SCD1. This lipogenic enzyme acts as a supplier 
of palmitoleate used as a substrate by the acyltransferase Porcupine to activate the Wnt signaling pathway. Thus, 
during refeeding, insulin is an upstream regulator of SCD1, which in concert with Porcupine may stimulate 
hepatic Wnt/β-catenin activity.
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according to the French guidelines for the care and use of experimental animals. All animal studies were approved 
by the “Direction départementale des services vétérinaires de Paris”.

Generation of the adenovirus.  The TRE-Luc adenoviral vector was generated from the Super8xTOP-Flash 
plasmid containing 8 TCF-responsive elements (M50 Super 8x TOPFlash was a gift from Randall Moon (Addgene 
plasmid # 12456; Addgene, MA, USA)55, and subcloned into the Shuttle adenoviral vector (pAd-easy)56. 
Recombinant TRE-Luc, RSV-β-gal and GFP adenoviruses were produced by the Laboratoire de Thérapie Génique 
(Nantes, France). Recombinant adenoviral constructs sh-scramble (USi) and sh-PORCN (PORCNi) were pur-
chased from VectorBiolabs (PA, USA) and produced by the Laboratoire de Thérapie Génique, respectively. SCD1 
and shSCD1 (SCD1i) adenoviruses were purchased at GeneCust (Dudelange, Luxembourg)35.

Injection of adenovirus and in vivo imaging.  Ten-week-old male C57BL/6J mice were anesthetized with 
isoflurane before the injection through the penis vein with a 150 μl final volume of sterile physiological serum 
containing TRE-Luc (5 × 108 pfu/mouse) and RSV-β-gal (108 pfu/mouse) adenoviruses. Mice were analyzed 4 
days after adenovirus delivery. For in vivo imaging, mice infected with indicated adenoviruses were anesthetized 
and injected (i.p.) with a dose of 30 mg/kg sterile firefly D-luciferin solution (Biosynth AG, Staad, Switzerland). 
After 3 min, mice were imaged on the Biospace Photon Imager (Biospace, Nesles-la-Vallée, France), and biolu-
minescence was analyzed with Biospace software. Luciferase activity was normalized to β-galactosidase activity 
used as an internal control for adenoviral infection.

β-galactosidase determination.  β-galactosidase assays for normalization of TRE-Luciferase activity 
were performed using hepatocyte or liver lysates, 2X buffer (1.33 mg/ml 2-nitrophenyl β-D-galactopyranoside, 
100 mM 2-mercaptoethanol, 2 mM magnesium chloride, 200 mM sodium phosphate, pH 7.5) (Sigma, St. Louis 
MO) in each well of a clear 96-well plate. After 30 min of incubation at 37 °C, absorbance at 405 nm was deter-
mined with a Biorad Lumimark Plus plate reader (Marnes-la-Coquette, France). Lysate samples were assayed 
in triplicate. Lysates from non-transfected cells were used as controls for background activity. β-galactosidase 
activity was expressed as units/mg of protein.

Analytical procedures.  Serum insulin concentrations were determined using an insulin ELISA Assay Kit 
(Crystal Chem, INC, IL, USA) and a mouse insulin standard. Blood glucose was determined using one-touch 
AccuCheck® glucometer (Roche-Diagnostics, Meylan, France).

Primary culture of hepatocytes and thransfection.  Hepatocytes were isolated from livers of 8- to 
10-week-old male C57BL/6 J mice by an in situ collagenase method as described previously57. Primary hepato-
cytes were cultured in M199 containing 5 (G5) or 25 mM glucose (G25) in the absence or the presence of 100 nM 
insulin for 24 h, an insulin concentration and time incubation time defined to provide maximal induction for the 
following experiments (Supplementary Fig. 5). For SCD1 overexpression/silencing experiments or Porcupine 
invalidation, hepatocytes were infected during 24 h with 3 pfu/cell of overexpressing-adenoviruses (GFP or 
SCD1), and/or sh-adenoviruses (SCD1i, PORCNi or unspecific inhibition USi,) and then cultured for additional 
24 h. For PORCN pharmacological inhibition, primary hepatocytes were treated or not during 24 h with the 
IWP1 (inhibitor of Wnt process, 1 μg/ml) or DMSO. For palmitoleate/palmitate experiments, cells were incubated 
with M199 containing 200 μM albumin-bound palmitoleate (C16:1n7; Sigma-Aldrich, Saint-Quentin-Fallavier, 
France) or 250–500 μM albumin-bound palmitate (C16:0; Sigma-Aldrich) at a fatty acid/albumin ratio of 4:1 with 
fatty acid–free bovine serum albumin (Sigma-Aldrich). For insulin signaling inhibition, hepatocytes were treated 
with either 10 μM of Akti (Akti VIII, InVivoGen), 1 μM of wortmannin or 1 μM of rapamycin (Sigma-Aldrich) or 
DMSO as control, prior to incubation for 24 h in G25 containing 100 nM insulin. For luciferase reporter assays, 
primary hepatocytes were infected with the TRE-Luc reporter gene adenovirus and β-galactosidase reporter 
(RSV-β-gal) as an internal control as described previously58. Luciferase activity was measured on cell lysates 48 h 
after reporter infection and values were normalized for infection efficiency using β-galactosidase activity.

Western blot analysis.  Cultured cells or mouse livers were solubilized as described previously21. The 
protein extracts were subjected to SDS-PAGE electrophoresis and immunoblotted with the following antibod-
ies: anti-pAkt (pS473, Cell Signaling #4060, Boston, MA, USA), anti-Akt (Cell Signaling #9272), anti-β-actin 
(Sigma-Aldrich #A5316), anti-β-catenin (BD Transduction Laboratories #610153, San Jose, CA, USA), 
anti-active-β-catenin (Merck-Millipore #05-665, NJ, USA), anti-Glutamine Synthetase (BD Transduction 
Laboratories #610517), anti-IRβ (Santa Cruz, SC-711, Heidelberg, Germany), anti-p-S6K (pThr 389, Cell 
Signaling #9234), anti-SCD1 (Cell Signaling #2794). The FAS antibody was a kind gift from Dr. I. Dugail 
(UMR-ICAN, Paris, France). The immunoreactive bands were revealed using the ECL detection kit (Pierce 
ECL Western Blotting substrate, Rockford, IL USA). Autoradiograms were quantified using an imageJ program 
(Chemi Genius2 scan, GeneSnap; Syngene, Cambridge, UK).

Isolation of total RNA and analysis of mRNA expression by RT-qPCR.  Total cellular RNAs from 
whole liver or from primary cultured hepatocytes were extracted using the SV Total RNA Isolation System 
(Promega, WI, USA). Total RNA (1 μg) was reverse-transcribed for 1 h at 42 °C in a reaction containing 50 mM 
Tris-HCl, 75 mM KCl, 3 mM MgCl2, 10 mM dithiotreitol, 250 mM random hexamers (Promega), 250 ng of 
oligo(dT) (Promega), 2 mM of each dNTPs, and 100 units of superscript II reverse transcriptase (Invitrogen, 
CA, USA). mRNA levels were measured by quantitative PCR using a Roche Light Cycler and the relative quan-
tification for a given gene was corrected to the Cyclophilin mRNA values. Primer sequences are available on 
Supplementary Table 1.
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Equipment and settings.  Blots from Figs. 1, 3 and Supplementary Figs. 2–4 were obtained by autoradiog-
raphy using GE Healthcare Amersham HyperfilmTM ECL. Western blots were scanned using Epson Perfection 
1670 Scanner. In vivo imaging (Figs. 1a and 2e) was performed using Biospace Photon Imager and analyzed with 
Biospace software (Biospace, Nesles-la-Vallée, France).

Statistical analysis.  Results are reported as means +/− SEM. Statistical analyses were performed with 
Prism software (GraphPad) using Mann-Whitney test or One-way ANOVA. Differences were considered statis-
tically significant at p < 0.05.
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