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Abstract 
MITF (Microphthalmia-associated transcription factor) is a lineage specific transcription 
factor that plays a critical role in melanocyte homeostasis and whose deregulation has been 
shown to contribute to melanoma disease. A germline mutation in MITF, impairing 
SUMOylation and predisposing to cutaneous malignant melanoma, was recently identified. 
Interestingly, an association of the MITF mutation with coexisting melanoma and renal cell 
carcinoma was also shown. Collectively, these data suggest that MITF has an important 
oncogenic function in tumorigenesis of multiple tissues/melanocytes and kidney cells. 
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Introduction 

Cancer initiation begins when epigenetic and genetic alterations result in the production of 

abnormal levels of a critical protein, the production of an aberrant protein, or the complete 

absence of a protein that upset the normal cell function. Cancer progression can be driven by 

additional genetic alterations and/or environmental and lifestyle factors (Hanahan and 

Weinberg, 2011).  

Cutaneous malignant melanoma (CMM), which derives from melanocyte transformation, 

represents the most deadly form of skin cancer. Its incidence has increased dramatically in 

white populations worldwide during the past several decades. If CMM is detected at early 

stages (<1 mm) and treated by surgical excision, individuals have better than 80% five-year 

survival. However, as CMM progress, they become increasingly more devastating. Indeed, 

CMM are characterized by a strong propensity to invade and metastasize. Thus, if the lesion is 

diagnosed at late stages, individuals will display an increased risk to develop lymph node and 

visceral metastases. Metastatic melanoma cannot be completely removed by surgery and 

melanoma metastases display extreme resistance to all types of treatment (Soengas and Lowe, 

2003). Patients with metastatic melanomas have a median survival rate that typically ranges 

from six to ten months.  

Thus, identification of cancer driver genes would help to better predict which patients might 

benefit from increased surveillance and earlier detection of potential dangerous lesions. 

CMM is hereditary in 10 % of cases. Major risk factors include a personal and familial history 

of melanoma, a high number of naevi/dysplasic naevi, sun exposure and reactions to sun 

exposure according to the phototype and mutations of CDKN2A and CDK4 (Hussussian et al., 

1994; Zuo et al., 1996). Besides the rare deleterious mutations in CDKN2A and CDK4 which 

confer a high CMM risk, common single nucleotide polymorphisms (SNPs), in pigmenting 

(for example in MC1R, ASIP, MATP) or in non-pigmenting (MTAP, TERT and CASP8 for 

example) genes represents low-risk susceptibility alleles (Bressac-de-Paillerets et al., 2002; 

Fargnoli et al., 2010) (Figure 1) and could acts as modifiers of high-risk genes (Bressac-de-

Paillerets et al., 2002; Fargnoli et al., 2010; Law et al., 2012).  

 

MITF 

Among other genes critical for melanocyte homeostasis and melanoma disease is the 

microphthalmia-associated transcription factor (MITF). MITF belongs to the Myc supergene 

family of basic-helix-loop-helix leucine zipper (b-HLH-LZ) transcription factor considered as 

the "master gene" of melanocyte homeostasis (Steingrimsson et al., 2004). MITF loss-of-
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function mutations are responsible for inherited disorders in neural crest cell development, the 

type 2a Waardenburg and Tietz syndromes characterized by melanocyte loss and pigmentary 

defects (Pingault et al., 2010). In adulthood, MITF is involved in the maintenance of 

melanocyte stem cells (Hou et al., 2000; Nishimura et al., 2004) and controls melanocyte 

differentiation (Bertolotto et al., 1998a; Bertolotto et al., 1996; Bertolotto et al., 1998b). 

Recent findings indicate that MITF also plays a key role in the pathogenesis of CMM. Indeed, 

MITF is amplified in 10-20% of CMM cases and this amplification is associated with a 

decreased 5-year survival (Garraway et al., 2005). In addition, MITF triggers transformation 

of immortalized melanocytes in cooperation with BRAFV600E, an activating mutation 

commonly found in melanocytic lesions (Davies et al., 2002; Garraway et al., 2005). At the 

transcriptional level, MITF controls genes involved in cell survival (BCL2, HIF1A, 

BCL2A1), migration (DIAPH1, MET) and proliferation (CDK2, TBX2, CDKN1B) (Carreira 

et al., 2006; Cheli et al., 2010). Implication of MITF in these various biological processes 

might be linked to its level and activity ensuing post-transcriptional regulation as proposed by 

the group of C. Goding (Carreira et al., 2006). Consistent with the notion that MITF provides 

important signals for proliferation of melanoma cells, we have recently shown that sustained 

inhibition of MITF induces a G0/G1 growth arrest and their entry into senescence (Giuliano et 

al., 2010; Giuliano et al., 2011; Strub et al., 2011), a program associated with the cessation of 

the proliferation potential (Collado et al., 2007). 

 

The MITF p.E318K missense substitution in cancer 

- Melanoma 

By sequencing the entire coding sequence of MITF in a highly selected set of patients 

presenting either with a strong family history of CMM or multiple primary melanomas, we 

identified a recurrent germline missense substitution p.E318K (c.952G>A, NM_000248.3), 

occurring at a significantly higher frequency in the at-risk patients than in the control 

population (Bertolotto et al., 2011). Concomitantly to our study, whole genome sequencing of 

probands in a large melanoma-prone family identified the same recurrent inherited mutation 

(Yokoyama et al., 2011). The variant cosegregated with CMM in some but not all cases in the 

family, indicating a possible intermediate-risk variant. Consistent with this, the variant was 

found to double the risk of CMM for carriers in a large Australian population-based case-

control study (OR=2.33, 95% CI (1.21-4.70)) and a similar effect was seen in a case-control 

study in the United Kingdom (Yokoyama et al., 2011). The mutation is very rare in the 

general population (allele frequency of 0.003 in the French population; 0.0072 in the 



5 

Australian population, and 0.0085 in the UK population). Subsequently, the MITF E318K 

variant was found in a group of Italian melanoma patients (Ghiorzo et al., 2013) and in 

another Australian study (Sturm et al., 2013) with similar allele frequency (Figure 1). All 

these studies show that the MITF E318K variant is enriched in those with multiple primary 

melanomas or a family history of melanomas. We have also examined the prevalence of the 

MITF E318K mutation in 10 European populations by genotyping over 1,100 sporadic CMM 

cases (essentially with single primary melanoma) and 1,500 matched controls from the 

prospective cohorts EPIC (European Prospective Investigation into Cancer and Nutrition) 

(Riboli E. The European Prospective Investigation into Cancer and Nutrition (EPIC): plans 

and progress. J Nutr. 2001 Jan;131(1):170S-175S. Review) and E3N (Etude Epidémiologique 

auprès de femmes de la Mutuelle Générale de l'Education Nationale) (Nutrition, hormones et 

cancer: épidémiologie et prévention. ERI 20. L'étude E3N, website: http://www.e3n.fr/). 

Although the mutation frequency was lower than in the previous studies (<0.002), carriers 

were significantly over-represented in sporadic CMM cases (Pertesi, Lesueur et al. manuscript 

in preparation). 

 

- Kidney cancer 

Epidemiological studies show that patients with melanoma had an increased risk of 

developing secondary tumours including renal cancer (RCC) (Bradford et al., 2010; Schmid-

Wendtner et al., 2001; Wu et al., 2006). Additionally, a significant increased risk of 

developing melanoma has been pinpointed in patients affected by a kidney cancer (Beisland et 

al., 2006). Other lines of evidence are in favor of a genetic predisposition to the coexistence of 

melanoma and kidney cancer (Maubec et al., 2010). However, known risk factors for RCC are 

smoking, obesity and hypertension and no common genetic factors so far could explain this 

predisposition. Because of lack of specific symptoms at early stage, kidney cancer is often 

diagnosed late, thereby favoring more aggressive and therapy resistant tumors. Therefore, 

there is an urgent need to find diagnostic and prognostic markers for renal cancers. 

Although MITF’s role in kidney physiopathology remains to be determined, MITF stimulates 

the transcription, among others, of hypoxia inducible factor HIF1A (HIF1A), which is 

targeted by all known kidney cancer predisposing genes, (namely, the tumor suppressor genes 

VHL, FLCN, FH, SDHB, TSC1 and TSC2 and the oncogene MET) (Busca et al., 2005; 

Linehan et al., 2010). MITF also controls transcription of MET directly (Beuret et al., 2011). 

We therefore sequenced MITF in patients with kidney cancers. The germline p.E318K 

mutation was also detected, in at-risk patients having developed RCC or both CMM and 
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RCC, at a significantly higher frequency, than in the control population. Data from these 

studies indicate that the missense variant p.E318K is more often observed in patients affected 

by multiple primary cancers, such as melanoma+RCC (Bertolotto et al., 2011; Ghiorzo et al., 

2013) or by multiple primary melanomas (Bertolotto et al., 2011; Ghiorzo et al., 2013; 

Yokoyama et al., 2011) and associated ORs ranged from 4.22, 95%CI (1.52,10.91) 

[Australian study], 7.79, 95%CI (3.12, 20.04) [French study] and 6.40, 95%CI (1.43, 28.58) 

[Italian study] for multiple melanomas to 14.46, 95%CI (3.74, 48.04) [French study] for 

melanoma+RCC. An association of this variant with kidney cancer has also been found in the 

Italian study (Ghiorzo et al., 2013). 

Collectively, MITF might be the missing link between melanoma and kidney cancer and as 

the first common inherited factor between these two cancers (Bertolotto et al., 2011).  

 

MITF family and renal cancer 

MITF belongs to a subfamily of bHLH-LZ transcription factor, called the MiT family, which 

also includes TFE3 and TFEB. These two transcription factors shares sequence homology in 

their DNA-contacting basic domains and the transactivation domains and recognized similar 

DNA sequences, indicating potential overlap in their target gene repertoire. Additionally, 

these factors can heterodimerize with each other (Steingrimsson et al., 2002). 

Up to date, reports from the literature indicate that TFE3 and TFEB play predominant roles in 

renal cell carcinoma and MITF in melanoma pathogenesis, although functional redundancy 

has been reported (Davis et al., 2006). TFE3 fusions with the PRCC, NonO, SFP or ASPL 

genes have been identified in 30 to 50 % of paediatric renal carcinomas (Argani et al., 2003; 

Davis and Fisher, 2007; Tsuda et al., 2007; Weterman et al., 2000) and TFEB translocation 

leading to promoter exchange with that of the alpha gene has been reported in a subset of 

pediatric renal neoplasms (Davis et al., 2003). As mentioned above, MITF is amplified in 10 

to 20% of melanomas and this amplification has been associated with a poor prognostic 

(Garraway et al., 2005). Somatic MITF mutations, which biological consequences remain to 

be determined, have been reported in melanoma samples (Cronin et al., 2009). The 

association of the MITF E318K mutation with melanoma and kidney cancer provide the first 

demonstration of MITF implication in kidney cancer. Altogether, MITF is the third member 

of the MiT family that might play a critical role in kidney cancer. 

Patients affected with melanoma or renal cell carcinoma (RCC) show an excess of second 

primary malignancies, including RCC for melanoma patients and melanoma for RCC patients 

(Beisland et al., 2006; Schmid-Wendtner et al., 2001). Because genetic and functional data 
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demonstrate that MITF p.E318K is a rare oncogenic germline substitution and an inherited 

factor predisposing to both cancer, such association may represent a new inherited tumour 

syndrome.  

 

MITF, SUMOylation and cancer 

Two sumoylation sites, one in the N-terminal region and the other in the C-terminal region, 

have been identified in the MITF sequence and shown to regulate MITF sumoylation and 

transcriptional activity (Miller et al., 2005; Murakami and Arnheiter, 2005). The non-

synonymous c.952G>A substitution changes the glutamic acid at codon 318 into a lysine. 

This substitution changes the SUMOylation consensus binding site IKQE in the C-terminal 

part of MITF for the IKQK sequence (Mi-E318K) and reduces MITF sumyolation (Bertolotto 

et al., 2011) (Figure 2).  

SUMOylation is an ubiquitination-like post-translational modification triggering covalent 

SUMO attachment to target proteins (Wilkinson and Henley, 2010). SUMO-proteins are 

essential for the function of eukaryotic cells, as deletion of the SUMO-1 homologue, smt3, in 

yeast causes loss of cell viability and mice knock out for UBC9 can die at early embryonic 

stages (Giaever et al., 2002; Nacerddine et al., 2005).  

SUMOylation has been reported to affect protein cellular localization, stability and 

transcriptional activity of proteins. In this regard, a relationship between dysregulation of the 

SUMO-pathway and human diseases, neurodegenerative and heart diseases, and cancers, has 

been pointed out. Mutations of proteins such as huntingtin, APP, a-synuclein, DJ-1, tau, 

Ataxin-1 in neurological disorders, or mutations of NKX2-5 in heart diseases displayed 

impaired SUMOylation (Kim et al., 2011; Sarge and Park-Sarge, 2011). However, mutations 

in these proteins have not been reported to affect SUMO-binding sites, rendering difficult to 

determine the etiologic role of SUMOylation in the diseases. Sumoylation has also likely 

roles in cancer. The level of SUMO enzymes, UBC9, PIAS3 and SUMO-E1 is enhanced in a 

number of human cancers and has been associated with bad outcomes (Mo et al., 2005; Wang 

et al., 2011). Altered expression of SUMO-proteases (SENP) is also observed in cancers 

(Bawa-Khalfe and Yeh, 2010). Relevant to these observations, SUMOylation targets several 

factors such as p53, pRb, BRCA1, which deregulated activities are critical for tumor 

progression (Morris et al., 2009). Once again, how SUMO-modification is involved in 

tumorigenesis remains to be clearly demonstrated. Up to date, only one study provided solid 

evidence that the SUMOylation status of a protein directly impacts on human health. Lamin-

A mutations in familial dilated-cardiomyopathies affect a SUMOylation consensus site 
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leading to change of the sequence MKEE into MKEG or MKEK. The glutamic acid position 

is critical for SUMOylation at the preceding lysine residue in the consensus sequence. In this 

regard, the two substitutions of lamin-A caused significant decrease in SUMOylation and an 

altered pattern of lamin-A localization and nuclear morphology associated with increased cell 

death (Zhang and Sarge, 2008).  

Therefore, our findings provide the first direct evidence of SUMO modification role in 

cancer.  

The molecular mechanisms by which MITF E318K mediates its effect remain to be 

fully elucidated. Analysis of genome wide occupancy reveals a global increase in MITF 

E318K-occupied loci coupled with the existence of sites exclusively bound by the mutant 

protein, indicating that SUMOylation-deficient MITF E318K protein may therefore result in 

the regulation of distinct sets of genes. Furthermore, transcriptomic analyses indicate that 

MITF E318K signature is related to cell growth, proliferation and inflammation. In line with 

these observations, MITF E318K enhances the migrative and invasive properties of 

melanoma and renal carcinoma cells and increases the ability to form colonies of 

immortalized melanocytes, hence demonstrating that MITF E318K displays pro-tumoral 

properties (Bertolotto et al., 2011).  

ln conclusion, the MITF E318K mutation represents a gain of function mutation. By 

showing that MITF E318K is endowed with pro-tumoral properties, our results reinforce the 

notion that MITF might act as an oncogene of the melanocyte lineage in some circumstances. 

Moreover, our findings highlight for the first time the role of MITF in kidney cancer, in 

which, three other MITF-related members have been already involved. 
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