
HAL Id: inserm-02529935
https://inserm.hal.science/inserm-02529935v1

Submitted on 7 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pathways from senescence to melanoma: focus on MITF
sumoylation

J. Leclerc, R Ballotti, C. Bertolotto

To cite this version:
J. Leclerc, R Ballotti, C. Bertolotto. Pathways from senescence to melanoma: focus on MITF sumoy-
lation. Oncogene, 2017, 36 (48), pp.6659-6667. �10.1038/onc.2017.292�. �inserm-02529935�

https://inserm.hal.science/inserm-02529935v1
https://hal.archives-ouvertes.fr


1 

 

Pathways from senescence to melanoma: Focus on MITF sumoylation 

 

Justine Leclerc1,2, Robert Ballotti1,2 and Corine Bertolotto1,2,# 

 

1, INSERM, U1065 (équipe 1), Equipe labélisée ARC 2016, C3M, 06204, Nice, 

France 

2, Université Côte d’Azur, Inserm, C3M, Nice, France 

 

* Correspondence should be addressed to Corine Bertolotto: bertolot@unice.fr 

 

  



2 

Summary 

Cutaneous melanoma is a deadly skin cancer that originates from melanocytes. The 

development of cutaneous melanoma involves a complex interaction between 

environmental factors, mainly ultraviolet radiation from sunlight, and genetic 

alterations. Melanoma can also occur from a pre-existing nevus, a benign lesion 

formed from melanocytes harboring oncogenic mutations that trigger proliferative 

arrest and senescence entry. 

Senescence is a potent barrier against tumor progression. As such, the acquisition of 

mutations that suppress senescence and promote cell division is mandatory for 

cancer development. This topic appears central to melanoma development because, 

in humans, several somatic and germline mutations are related to the control of 

cellular senescence and proliferative activity. Consequently, primary melanoma can 

be viewed as a paradigm of senescence evasion. In support of this notion, a 

sumoylation-defective germline mutation in microphthalmia-associated transcription 

factor (MITF), a master regulator of melanocyte homeostasis, is associated with the 

development of melanoma. Interestingly, this MITF variant has also been recently 

reported to negatively impact the program of senescence. 	

This article reviews the genetic alterations that have been shown to be involved in 

melanoma and that alter the process of senescence to favor melanoma 

development. Then, the transcription factor MITF and its sumoylation defective 

mutant are described. How sumoylation misregulation can change MITF activity and 

impact the process of senescence is discussed. Finally, the contribution of such 

information to the development of anti-malignant melanoma strategies is evaluated. 
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Melanoma 

 

 Cutaneous melanoma is a deadly form of skin cancer that originates from 

melanocytes, the melanin-producing cells of the skin. Its incidence has dramatically 

increased in white populations over the past several decades to reach 230,000 new 

cases worldwide each year (World Health Organization). Early stage skin localized 

malignant melanoma can be cured with surgery. However, when it has spread, 

metastatic melanoma has a very poor prognosis. 

Cutaneous melanoma is a complex neoplasm that requires multiple environmental 

and genetic hits that work in concert to steer the acquisition of malignant properties.  

 In recent years, large-scale genomic studies of cutaneous melanoma 

established that the mutational signature of ultraviolet radiation (UVR) of sunlight 

accounts for 46% of driver mutations 1-5, thereby confirming the role of UVR in 

melanoma pathogenesis. Furthermore, these studies highlighted the recurrent 

somatic oncogenic mutations in the serine/threonine kinase BRAF (59-66% of the 

cases) 6, 7 and in the small GTPase NRAS (15-20% of the cases) as well as 

mutations in NF1 (14% of the cases, 55-75% of them predicted to be loss-of-function 

and putative driver mutations), which promotes the upregulation of RAS activity. 

These genetic alterations demonstrated the importance of the ERK signaling 

pathway in the disease and led to the classification of melanoma into 4 subtypes, 

including the triple wild-type 5.  

The dissection of the molecular mechanisms involved in cutaneous melanoma also 

showed a frequent activation of the PI3K/AKT signaling pathway, mainly as a 

consequence of constitutive NRAS activation, AKT activation 8 or the inactivation of 

the phosphatase and tensin homologue (PTEN) (20 to 30% of the cases) 9. 
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Mutations of β-catenin (7% in the TCGA cohort), which operates downstream of AKT, 

were also found in melanoma cells 10, 11.	 The mutations described above are the most 

common and are considered important drivers for melanoma, affecting the process of 

cellular senescence and proliferation (Figure 1), which will be discussed later in this 

review. The PI3K effector RAC1, a member of the small GTPase Rho-family that 

influences cell migration and cell cycle progression, is also mutated (4-7% of the 

cases) and is considered a driver in melanomagenesis 2, 4, 12-14. Mutations in 

equivalent residues in the related Rho family GTPases RAC2 and RHOT1 have also 

been discovered 2, as well as an activating mutation in CDC42 that was shown to be 

a driver in melanoma 2. Of note, oncogenic RAC1 was shown to reduce levels of p53 

15. Furthermore, mutations in other genes, including the transmembrane receptor 

tyrosine kinase KIT (5-8% of cases), the subunit of the PBAF chromatin-remodeling 

complex ARID2 (7%), the serine/threonine phosphatase PPP6C (12%), the Ras 

GTPase activating protein 1 RASA2 (5%) and the mitogen-activated protein kinase 

kinase MAP2K1 and 2 (8%), the TERT promoter (75% of metastases), the guanine 

nucleotide-binding protein G(q) subunit alpha (GNAQ/11, 5%), the phospholipase C 

beta 4 (PLCB4, 21% to 28%), and a large repertoire of other, less frequently mutated 

genes (not detailed here), have also been identified 1, 2, 4, 16-19. 

 

Nevus and Senescence 

Remarkably, the main driver mutations on their own do not necessarily translate into 

melanoma induction. Indeed, in humans, the BRAFV600E oncogenic mutation is 

frequently expressed in common acquired nevi (80% of the cases) 20, and 

NRASQ61K/R is frequently found (80% of the cases) in congenital melanocytic nevi 

(present at birth) 21. Spitz nevi, a variant of common acquired nevi, show amplified or 
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mutated HRASG12V (30% of the cases) 22. Thus, these oncogenic mutations represent 

an early event in the development of pigmented neoplasias, but appear to be 

insufficient by themselves to result in malignant transformation.  

 Nevi are benign melanocytic lesions that originate from an initial localized 

stimulation of melanocyte proliferation followed by a near-complete arrest of their 

proliferative activity due to senescence. Human nevi can remain growth arrested for 

decades, and as such, they have been posited as one of the best examples of in vivo 

senescence. Cellular senescence can be replicative due to telomere shortening 

every time a cell divides or can be premature due to oncogenic activities or stress 

stimuli. Both are morphologically indistinguishable and display similar characteristics 

23. Nevi express numerous senescence markers, including b-galactosidase activity, 

the DNA damage markers 53BP1 and gH2AX, an increase in nuclear size, and a lack 

of proliferative activity and p16INK4A expression 24-27.  

 The causal role of oncogenic BRAF or NRAS in senescence induction and 

nevus formation has been demonstrated in cultured cells and/or genetically modified 

animal models. In cultured human melanocytes, the forced expression of BRAFV600E 

28, NRASQ61R 29 and HRASG12V 30 or NF1 loss 31 induces senescence. This process is 

known as oncogene-induced senescence (OIS). BRAF activation in melanocytes 

results in an increased expression of the cell cycle inhibitors p16INK4A 28, 32, 33 and 

p15INK4B, another member of the INK4 gene family, which halts proliferation 34. The 

pRb pathway appears to be the dominant effector of oncogenic N-RAS-induced 

senescence in human melanocytes, and the loss of p16INK4a weakens senescence 32. 

Likewise, the loss of its homologue p15INK4B promotes the transition from a benign 

melanocytic nevus that harbors oncogenic BRAF to melanoma 34. However, other 

studies demonstrated that the p16INK4A role is redundant in senescence mediated by 
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oncogenic BRAF or NRAS 29, 30, 33. A panel of seventeen genes was also identified as 

being essential for BRAFV600E-induced senescence in human fibroblasts and 

melanocytes 35, including insulin-like growth factor binding protein 7 (IGFBP7) 35. 

Still, the role of IGFBP7 in the senescence induction of melanocytes by oncogenic 

BRAF has been questioned and remains to be formally determined 36.	Other secreted 

factors, such as the cytokines interleukin-6 (IL6) and IL8, also contribute to the 

senescence of melanocytes caused by BRAFV600E 37, 38.  

Transgenic mouse 39 or zebrafish 40 models that express BRafV600E demonstrate in 

vivo the role of oncogenic mutation in nevus development. Likewise, mouse models 

that express BRafV600E from its own promoter confirmed these observations in a more 

physiological setting 41, 42. The BRafV600E nevus-like lesions found in vivo stained 

positive for SA-β-galactosidase activity, and demonstrated low levels of proliferation 

39, 42. Furthermore, transgenic mice that express NRasQ61K display a phenotype 

reminiscent of congenital melanocytic nevus 43.  

 The finding that the forced expression of oncogenic BRAF or NRAS in normal 

human melanocytes elicited senescence in few weeks and the observation that 

significant telomere attrition was not observed in nevus cells 28 led to the notion that 

nevi undergo premature senescence due to oncogenic stimuli and replicational stress 

as described in other cell systems, rather than replicative senescence due to 

telomere shortening 44-46. However, because a single eroded telomere can induce 

senescence, telomere shortening might have a role in nevus formation 47. In support 

of this idea, nevus size and number have been associated with telomere length 48, 

and telomere dysfunction-induced DNA damage foci have been detected in nevi 49. 

Collectively, these observations suggest that both premature and replicative 

dependent senescence might have occurred in nevi (reviewed in 50, 51). Interestingly, 
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both types of senescence are associated with stimulation of the DNA Damage 

Response (DDR) signaling pathway, which converges towards the activation of 

retinoblastoma protein. Thus, one might hypothesize that both senescence programs 

have independent abilities to ensure robustness in tumor suppression and may 

prevent further nevi growth and transformation when a tumor suppressor is 

inactivated.  

 

Senescence bypass and melanoma 

 Melanoma originates from a pre-existing nevus in 25% of cases, inferred from 

a melanoma contiguous to an adjacent nevus remnant; however, melanoma can 

obliterate an associated nevus 33, 52. An increased number of nevi/atypical nevi 

represents a major melanoma risk factor. 

 The dogma is that senescence bypass represents a prerequisite for malignant 

transformation. Accordingly, p16INK4A or p53, which are major determinants of cellular 

senescence, are inactivated in most human cancers 53 and telomerase or an 

alternative mechanism called ALT (Alternative Telomere Lengthening) is re-

expressed 54.   

 Once formed, the nevus-like lesions can remain static and do not progress to 

malignancy unless they are coupled with other alterations, such as a loss of p16Ink4a 

39, 41, 43, 55-57, p53 40, 58 or Pten 33, 41. The receptor tyrosine kinase TYRO3 has also 

been shown to mediate BRAFV600E-induced senescence bypass in primary 

melanocytes, inducing the transformation of non-tumorigenic cell lines 59. Likewise, 

the proto-oncogene C-MYC, the expression of which is enhanced in melanoma cells 

compared to melanocytes, suppresses OIS 29. This process involves the loss of the 

B56α subunit of the PP2A tumor suppressor complex (PP2A-B56α), an MYC 
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degradation complex, which leads to an increase in C-MYC expression 60. 

Accordingly, the depletion of PP2A-B56α in normal human melanocytes upregulated 

C-MYC protein levels and suppressed BRAFV600E- and, less efficiently, NRASQ61R-

induced senescence 60. 

 Of note, melanoma is thought to originate de novo in 75% of cases. In this 

context, senescence might not be efficiently established due to dysfunction in 

senescence programs and thus might lead immediately to the malignant conversion 

of melanocytes. This may be the consequence of pre-existing mutations or 

epigenetic alterations that impair senescence and proliferation arrest. However, even 

in this case melanoma can originate from senescent melanocytes that are too few to 

form a visible nevus. 

 

 Melanoma susceptibility genes and their role in senescence bypass 

(Figure 1) 

 Melanoma occurs in a familial context in approximately 10% of cases. Gene 

mutations that contribute to an inherited susceptibility for melanoma, which increase 

the risk to the carrier, have been highlighted. These include mutations in rare but 

clearly highly penetrant melanoma predisposition genes and more common lower 

penetrant genes.  

Even though there is still no disease process, the identification of a melanoma 

susceptibility allele would help to better predict which patients might benefit from 

increased surveillance and earlier detection of potentially dangerous lesions. 

However, these susceptibility alleles, such as p16INK4A, which was discussed earlier, 

can act as modifiers of somatic mutations to dramatically influence the onset of the 

disease 61, 62. Importantly, the early detection of potentially dangerous lesions 
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remains the best strategy to reduce the tumor burden of advance disease and for the 

optimal clinical outcome of patients suffering from melanoma.  

 

 Rare highly penetrant melanoma-causing variants include cyclin-dependent 

kinase Inhibitor 2A (CDKN2A), cyclin-dependent kinase 4 (CDK4) and retinoblastoma 

protein 1 (RB1) (for review 63). CDKN2A encodes for p16INK4A and p14ARF from an 

alternate reading frame. Mutations in this gene mainly affect both p16INK4A and 

p14ARF or p16INK4A only, but in few cases, they can also specifically inactivate p14ARF 

64, 65. p16INK4A inhibits the cyclin-dependent kinases 4/6 and cyclin D complexes 57, 66. 

p14ARF inhibits human double minute 2 (HDM2), which triggers p53 stabilization, 

leading to the increased expression of the cyclin-dependent kinase inhibitor p21Cip1 

(CDKN1A)	 67. Activating CDK4 mutations prevent the binding and inhibition of CDK4 

by p16INK4A	 68. The relevance of p16INK4A or p14ARF varies among species and cell 

types. Human melanocyte senescence showed a higher dependency on the p16INK4A 

pathway compared to the p14ARF pathway 69, 70. Moreover, the role of p53 with regard 

to senescence is different in human melanocytes compared to fibroblasts 69, 71. Both 

the p16INK4A and the p14ARF/p53/p21CIP1 axis operate to maintain the retinoblastoma 

protein (RB) in an inactive state. 

Because RB has a critical role in the induction and maintenance of senescence 53, all 

the above-described alterations in the RB pathway favor senescence bypass and 

proliferation, which is a mandatory step toward melanoma progression 72. 

 Accordingly, human melanocytes isolated from individuals with a biallelic 

inactivation of p16INK4A 69 or with p16INK4A-knockdown 73, both of which have 

functional p14ARF, have greater lifespans in culture. Furthermore, mouse 

melanocytes with a heterozygous inactivation of p16INK4A show defective senescence 
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70. Likewise, individuals that carry a monoallelic inactivation of CDKN2A show 

multiple large nevi suggestive of extended proliferation before senescence 64. These 

observations strengthen the critical role of p16INK4A in human melanocyte 

senescence in vitro and in vivo. However, p16INK4A-deficient human melanocytes still 

stop proliferating, which indicates that additional factors, such as p53, may impose a 

p16INK4A-independent checkpoint to affect growth arrest 69, 74. Although p14ARF, which 

controls the p53 level, had no clear reported role in human melanocyte senescence 

70, 71, it has been recently reported to control radical oxygen species (ROS) 

production 75 through a short acidic motif often targeted by familial melanoma 

mutations in CDKN2A 76. ROS are involved in the maintenance of melanocyte 

senescence 77, 78. 

 

 Other high-risk melanoma susceptibility genes include the BRCA-1 associated 

protein (BAP1) and the telomere maintenance genes POT1, ACD, TERF2IP and 

TERT (reviewed in 63). BAP1 regulates genome stability during cell replication by 

controlling cellular recovery from DNA damage 79. The telomere controlling genes 

protect chromosome extremities from cellular DDR and genomic instability 80. DDR 

transiently stops cell-cycle progression until damage is removed, but persistent DDR 

triggers cellular senescence. 

Mutations in the CDKN2A, RB1, BAP1 and TERT also occur at a somatic level 5.  

Collectively, the high-risk melanoma susceptibility genes converge to overcome the 

RB-dependent growth arrest, which mediates senescence bypass, and to render 

cells genomically instable, both of which favor melanoma development. 

 

  Low- to moderate-risk genes have a weaker impact on melanoma 
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susceptibility. Low melanoma risk genes are primarily associated with pigmentation 

that plays a key role in the prevention of sunburns, a risk factor for melanoma. 

Nevertheless, some are linked to cell survival or metabolism 63.  

 Moderate-risk genes include microphthalmia-associated transcription factor 

(MITF) 81-84 and its upstream regulator melanocortin 1 receptor (MC1R). In addition to 

controlling pigmentation 85, 86, both MC1R and MITF could also exert pro-melanoma 

effects and regulate cellular senescence. Indeed, MC1R signaling induces the 

phosphorylation of DNA repair proteins to mediate the repair of UVR-induced DNA 

damage 87, 88. Melanocytes that express loss of function MC1R variants display 

compromised DDR activation and genomic stability 88, which predisposes the cell to 

malignant transformation. Furthermore, MC1R has been shown to interact with PTEN 

and to stabilize its expression 89. Some MC1R variants, in contrast to the wild-type 

form, do not interact with PTEN 89 and therefore might favor the sustained activation 

of the PI3K pathway that facilitates senescence.  

  Microphthalmia-associated transcription factor (MITF) is the conductor 

of melanocyte lineage development 90 and function 85, 91 (reviewed in 92). 

Furthermore, MITF may act, per se, as a bona fide melanoma oncogene 93, 94. It has 

also been recently associated with intrinsic and acquired resistance to targeted 

therapies 94-97 and it has a negative impact on immunotherapy efficiency 98, 99. To 

explain the different functions of MITF in the melanocyte lineage, a rheostat model 

has been established that stipulates that the expression level, post-translational 

modification and co-factors create a bar code-like situation, which channels MITF 

towards a specific subset of target genes and determines either pro- or anti-

oncogenic MITF activity 100. 

The recurrent germline mutation in MITF that changes glutamate 318 into a lysine 
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(MITFE318K) predisposes carriers to certain cancers, including melanoma 81-84, 101. 

Furthermore, the MITFE318K variant has been associated with multiple primary 

melanoma and nodular melanoma and thus could play a role in the fast-growing and 

aggressive form of the disease 82, 84, 101. Mechanistically, MITFE318K has recently been 

shown to weaken the process of cellular senescence in melanocytes 102. The way in 

which the MITF E318K mutation impacts MITF activity and the process of 

senescence is the focus of the following section. 

 

 MITF and sumoylation 

 MITF can be sumoylated 81, 84, 103, 104. Sumoylation is a highly dynamic and 

reversible ubiquitination-like post-translational modification that triggers the covalent 

attachment of a small peptide (SUMO) to a target protein 105. Sumoylation events 

usually occur at a consensus motif site (YKXE) and are critically dependent on the 

acidic residue at +2 (E) of the acceptor lysine (K). Sumoylation is a multistep process 

that involves the consecutive actions of E1 (SAE1/SAE2), E2 (UBC9) and E3 (PIAS) 

enzymes that catalyze the attachment of SUMO to target proteins, while 

deconjugation is promoted by SUMO-specific proteases 106. The ligase involved in 

the SUMO modification of MITF has not been pinpointed. However, MITF has been 

previously demonstrated to bind PIAS3 107, 108, which functions as a SUMO ligase for 

MITF. Thus, PIAS3 might act as an E3 sumo ligase for MITF. 

 Sumoylation dysregulation has been reported at the global level by affecting 

the activity of the enzymes of the conjugation/deconjugation machinery or at the level 

of individual proteins by modifying the accessibility of the targeted lysines.  

Although a number of individual proteins exhibit changes in sumoylation, only a few 

examples of mutations exist, such as in lamin-A, that directly impact a SUMO-
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consensus site 109. The clear establishment of the relevance of sumoylation 

alterations in these diseases is difficult. The hyposumoylated MITFE318K variant is 

another example. Indeed, the codon 318 in MITF is located in a sumoylation 

consensus site (YKXE), and accordingly, MITFE318K severely impaired the 

sumoylation of MITF both in vitro 81, 84 and in situ 102.  

   

To better understand how MITFE318K mediates pro-tumoral effects, a combination of 

immortalized human melanocytes, human melanocytes isolated from healthy or 

MITFE318K patients and mouse models was used 102. 

MITFE318K appears nevogenic in mice, in agreement with what has been reported in 

humans 83, 84, 101. However, an increased number of nevi due to the presence of 

MITFE318K was only observed in the oncogenic BRafV600E setting 102. Compared to 

humans, mice grow in a relatively homogenous environment with less variation in diet 

and environmental exposures and have much longer telomeres that restrain 

chromosomal abnormalities, thereby preventing the acquisition of other potential 

alterations required for nevus development 110. Moreover, non-follicular melanocytes 

are scarce in normal mouse skin and are mainly located in the hair follicle, which may 

have implications for the incidence of nevi.  

These additional (epi)genetic alterations mediated by environmental factors likely co-

exist in human MITFE318K nevi. Of note, MITFE318K melanocytes have a shorter 

doubling time compared to wild-type MITF. Thus, melanocytes that constitutively 

express MITFE318K could have an altered ability to enter senescence upon the 

induction of oncogenic BRAFV600E, leading to an increased nevus number in vivo. 

Accordingly, cultured MITFE318K melanocytes displayed delayed BRAFV600E-induced 

senescence and reduced expression of p16INK4A; how MITFE318K inhibits p16INK4A 
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expression remains to be elucidated. In agreement with this finding, patients with a 

biallelic inactivation of the cell cycle inhibitor CDKN2A exhibit an increased number of 

nevi 69. Furthermore, MitfE318K facilitates melanomagenesis on the oncogenic 

BRafV600E and Pten-deficient background; these two mutations are frequently 

identified in human melanomas, thereby recapitulating the genetic events found in a 

subset of human melanomas 111.  

A comparison of Mitf wild-type or MitfE318K tumors revealed that MitfE318K reduces the 

levels of the cell cycle inhibitors CDKN2B and CDKN2A, which, as discussed earlier, 

are critically required to prevent the melanocyte to melanoma progression. 

Remarkably, CDKN2B is a kidney cancer predisposition gene 112, the incidence of 

which is also increased in MITFE318K carriers 81, 113. Consistently, b-catenin, which 

regulates MITF expression 114, has also been shown in vivo to promote senescence 

evasion via the inhibition of p16INK4A expression 56 and to facilitate melanomagenesis 

in the oncogenic BRafV600E and Pten-deficient background 115. Collectively, these 

observations strengthen the idea that MITFE318K impairs the implementation of the 

senescence program and favors melanoma progression.  

Sumoylation impacts protein localization, stability or activity 116. It has been shown to 

modulate the activity of a large number of proteins, mostly transcription factors, and 

to be involved in many biologically important functions, including DNA damage repair, 

the response to stress, and cellular senescence 116, 117. Perturbations of such 

modifications are therefore likely to contribute to human diseases such as cancer 118. 

Accordingly, in humans, environmental stresses that influence melanoma 

progression, such as UVR 119 and hypoxia 120, trigger the production of reactive 

oxygen species (ROS). These stimuli alter the process of sumoylation 121 and 

senescence 122.  
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 One evident answer to why MITFE318K favors melanomagenesis is that the 

mutation reduces the sumoylation of MITF. The inhibition of MITF sumoylation does 

not appear to affect MITF cellular localization or stability 81, 103, 104; sumoylation 

changes the transcriptional activity 81, 84 and target sequences of MITF, which could 

explain the pro-tumoral effects. Indeed, compared to wild-type MITF, MITFE318K is 

redistributed over the genome on a larger repertoire of low affinity genomic sequence 

81. Actually, the E318K mutation modulates MITF DNA binding due to its preference 

for an extended palindromic E box 5’-TCACGTGA (versus 5’-CACGTGAC/T for wild-

type MITF), thereby altering MITF’s target gene specificity (Figure 2). Briefly, strong 

MITFE318K binding requires an extended 8-base pair palindrome or an M-box 123. 

Sites with a 6-base pair E-box are bound with lower affinity, and the diminished 

specificity allows MITFE318K to bind with lower affinity to more degenerate E-boxes, 

thus accounting for the larger number of weakly bound sites that were found with this 

mutant. In contrast, few sites with the extended 8-base pair palindrome are among 

the top 500 bound by wild-type MITF, which indicates that the full palindrome is not 

required for the strong binding of wild-type MITF. Nevertheless, an understanding of 

the precise mechanisms of changes in site-selection will require further studies. 

Additionally, we cannot rule out the possibility that the E318K mutation exerts a 

sumoylation independent effect by altering other post-translation modifications such 

as acetylation or ubiquitination of the new lysine, or more generally, the MITF 

conformation.  

 

Therapeutic options that target sumoylation and senescence  

Recent genomic studies permitted a better understanding of melanoma pathogenesis 

and have been instrumental in the development of newer therapies to target driver 
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mutations. An understanding of the molecular mechanisms also permitted the 

development of efficient immunotherapy strategies. Despite the success of recent 

treatments that utilized targeted therapies (BRAF, MEK) and immunotherapies (anti-

CTLA-4, anti-PD1) that substantially extended the median overall survival of patients 

suffering from metastatic melanoma 124, 125, the therapeutic options are far from 

perfect, as clinical responses are either transient or limited to restricted subsets of 

melanoma patients.  

Therefore, approaches that could represent therapeutic strategies to improve 

malignant melanoma treatment and/or to impair its progression are discussed below. 

 The SUMO pathway has been considered a potential target in cancer 

treatment. The loss of SAE1/2 enzymatic activity in human mammary epithelial cells 

drives synthetic lethality with cMYC 126. The RNAi depletion of UBC9 impairs the in 

vitro and in vivo growth of KRAS mutant colorectal cancer cells 127. Furthermore, the 

global inhibition of sumoylation with chemicals such as the E1 inhibitor anacardic 

acid has been shown to promote the death of acute myeloid leukemia cell lines in 

vitro and to reduce tumor growth in vivo 121. However, sumoylation inhibition might 

not be appropriate for melanoma as it is expected to reduce MITF sumoylation and to 

favor melanoma progression. In contrast, the global upregulation of sumoylation via 

the use of inhibitors of SENP activity that are currently under development 128 could 

represent a valid anti-melanoma strategy. 

 As discussed in this review, cancers develop via senescence suppression and 

the stimulation of cell proliferation. Given that p16INK4A is a barrier to senescence 

evasion and plays a key role in melanomagenesis, the restoration of genetic 

alterations and the epigenetic reactivation of CDKN2A may represent strategies for 

the prevention and therapy of cancer 129. Melanoma cells already have a powerful 



17 

pro-senescence signal that exists in dormancy via the activation of BRAF or NRAS 

that discerns the cancer cells from their normal counterparts. In support of this 

notion, the depletion of MITF 130-132 or cMYC 29 reactivated senescence in BRAFV600E 

or NRASQ61R expressing melanoma cells. As such, pro-senescence therapy already 

has a built-in specificity for melanoma cells that might be exploited to improve current 

melanoma treatment.  

Accordingly, senescence induction in human breast cancer and lung carcinoma 

following chemotherapy is correlated to a favorable outcome 133, 134. However, in vivo, 

effective tumor regression has been associated with the clearance of senescent cells 

by the immune system 135, 136. Therapy-induced senescence can enhance long-term 

outcomes, but tumors eventually reappear 137. 

 Actually, senescent cells are growth arrested but they remain viable and 

metabolically active, and this leaves a door open for growth reset. The inactivation of 

p53 was reported to reverse the replicative senescence of some cells, but it failed to 

overcome oncogene-induced senescence 138. Senescence reversibility might depend 

on the expression of cellular p16INK4A, which provides a dominant barrier against 

proliferation 138. Furthermore, senescence is associated with the chronic secretion of 

multiple bioactive factors, which is called senescence-associated secretory 

phenotype (SASP). SASP comprises pro-inflammatory cytokines or chemokines, 

extracellular matrix proteases and growth factors 139, 140 that influence the cellular 

microenvironment. Some of these secreted molecules may have autocrine effects 

that enforce cellular senescence 37, 141, whereas others may exert non-cell-

autonomous effects that favor tumorigenesis in nearby non-senescent cells 131, 142, 

143.  

Thus, cellular senescence can exert both beneficial and detrimental effects, 
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depending on the senescence signal, tissue context and secreted molecules. The 

challenge lies in the suppression of the activity of the anti-senescence factors and 

the enhancement of the activity of pro-senescence factors. 

Of note, SASP was not detected when cells were induced to senesce with the forced 

expression of p16INK4A, and it was suggested that p53 signaling was necessary 144. In 

melanocytes, compelling evidence shows the critical role of p16INK4A in the control of 

proliferative activity and the ability to senesce in vitro and in vivo 64, 69, 70. Thus, one 

might hypothesize that nevi do not produce a secretome. However, in atypical nevi, 

which are associated with an increased risk of developing melanoma, p16INK4A can 

be mutated and p53 can be reactivated. This finding suggests that some nevi can 

produce SASP factors and create a microenvironment that causes regrowth in the 

nevus.  

In the context of aging, senescent cells accumulate in tissues. They might disrupt 

tissue structure and be causally implicated in the generation of age-related diseases, 

including cancers. As such, the clearance of senescent cells can prevent or postpone 

tissue dysfunction and extend the healthspan. Indeed, the selective removal of 

senescent cells by the BH3 mimetic ABT263 in sublethally irradiated or normally 

aged mice has health benefits in part through the rejuvenation of aged tissue stem 

cells 145. Furthermore, the elimination of p16Ink4a-positive senescent cells in progeroid 

mice, via the stimulation of apoptosis, delays the acquisition of age-related 

pathologies 146. Likewise, a FOXO4 peptide that perturbs the FOXO4 interaction with 

p53 has been shown to induce apoptosis in senescent cells 147. In vivo, FOXO4 

peptides neutralize doxorubicin-induced chemotoxicity and restore tissue function 147. 

Anti-senescence therapies that utilize senolytic drugs, which selectively kill 

senescent cells, are under development 148-150. These drugs may improve the healthy 
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lifespan, but they might also be useful in cancer treatment, as a prophylactic 

approach to eliminate benign pro-tumoral cells. This prophylactic approach could be 

exploited in patients at a high risk of developing melanoma. In addition, the BRAF 

inhibitor vemurafenib, which is approved for clinical use, or chemotherapeutic drugs 

have been shown to induce a senescence-like phenotype in melanoma cells 131, 142, 

151. Thus, pro-senescence therapies associated with senolytic drugs might also be 

used to kill malignant melanoma cells (Figure 3).  
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Figure legends 

Figure 1: Cell senescence pathways associated with genes commonly altered 

in melanoma. Partly adapted from a figure in Bennett et al. (2016). UVR from 

sunlight is the main environmental risk factor for melanoma development. UVR 

contributes to carcinogenesis through the induction of oxidative stress, DNA damage 

and mutations and triggers the activation of signaling cascades, including the 

BRAF/NRAS/ERK and PI3K/AKT(PTEN)/RAC1 pathways that are critically required 

for melanoma cell survival, proliferation and differentiation. The mutations in effectors 

of these pathways (green) are considered important drivers for melanoma and affect 

the process of DNA damage, cellular senescence, proliferation and survival. 

Melanoma susceptibility alleles can act as modifiers of somatic mutations to influence 

the onset of the disease. High (CDKN2A, CDK4, RB1, POT1, ACD, TERF2IP) and 

moderate (MC1R, MITF) melanoma susceptibility genes are indicated (red).  

This schema illustrates how the cooperation of germline variants with oncogenic 

activities can alter key biologic pathways to favor senescence bypass and contribute 

to melanoma progression. 

 

Figure 2: MITFE318K displays modified DNA binding activity. The MEME program 

was used to analyze the top 500 wild-type MITF binding sites in the ChIP-seq dataset 

from Bertolotto et al. 81. This analysis revealed that highly occupied MITF sites are 

composed of the CACGTG or CATGTG core motif flanked by a highly represented A 

and a C/T (List 1, upper panel). In contrast, an analogous analysis of 500 sites only 

bound by wild-type MITF (List 2, middle panel), mainly sites that exhibit low 

occupancy, indicates the presence of non-canonical Ebox motifs. A subset of sites in 

this list are also bound by MITFE318K, although these sites are not necessarily among 
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the top 500 bound by the mutant. An analysis of the top 500 sites bound selectively 

by MITFE318K (List 3, lower panel) revealed the presence of an extended palindromic 

E box, in which the CACGTG or CATGTG core motifs are flanked by A and T. In 

each panel, the numbers of motifs with each consensus sequence are shown along 

with the relevant P and E values. 

 

Figure 3: Model of melanocyte to melanoma transformation and therapeutic 

strategies. Melanoma can develop de novo from a melanocyte or from a pre-existing 

nevus. A nevus is a benign proliferation of melanocytes. The growth arrest of nevus 

melanocytes results from senescence induced by oncogenes such as BRAFV600E. 

Once formed, a nevus can remain growth arrested for decades. However, a nevus 

can reverse “oncogene-induced senescence” and undergo malignant conversion. 

The development of prophylactic treatments to prevent the switch from benign nevi to 

melanoma by allowing the clearance of senescent cells by senolytic drugs or the 

development of curative treatments that use pro-senescence therapy associated with 

senolytic drugs could represent therapeutic strategies (in blue).  
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