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Abstract

Following a stimulus, the neural response typically strongly varies in time and across neu-

rons before settling to a steady-state. While classical population coding theory disregards

the temporal dimension, recent works have argued that trajectories of transient activity can

be particularly informative about stimulus identity and may form the basis of computations

through dynamics. Yet the dynamical mechanisms needed to generate a population code

based on transient trajectories have not been fully elucidated. Here we examine transient

coding in a broad class of high-dimensional linear networks of recurrently connected units.

We start by reviewing a well-known result that leads to a distinction between two classes of

networks: networks in which all inputs lead to weak, decaying transients, and networks in

which specific inputs elicit amplified transient responses and are mapped onto output states

during the dynamics. Theses two classes are simply distinguished based on the spectrum

of the symmetric part of the connectivity matrix. For the second class of networks, which is a

sub-class of non-normal networks, we provide a procedure to identify transiently amplified

inputs and the corresponding readouts. We first apply these results to standard randomly-

connected and two-population networks. We then build minimal, low-rank networks that

robustly implement trajectories mapping a specific input onto a specific orthogonal output

state. Finally, we demonstrate that the capacity of the obtained networks increases propor-

tionally with their size.

Author summary

Classical theories of sensory coding consider the neural activity following a stimulus as

constant in time. Recent works have however suggested that the temporal variations fol-

lowing the appearance and disappearance of a stimulus are strongly informative. Yet their

dynamical origin remains little understood. Here we show that strong temporal variations

in response to a stimulus can be generated by collective interactions within a network of

neurons if the connectivity between neurons satisfies a simple mathematical criterion. We

moreover determine the relationship between connectivity and the stimuli that are repre-

sented in the most informative manner by the variations of activity, and estimate the
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number of different stimuli a given network can encode using temporal variations of neu-

ral activity.

Introduction

The brain represents sensory stimuli in terms of the collective activity of thousands of neurons.

Classical population coding theory describes the relation between stimuli and neural firing in

terms of tuning curves, which assign a single number to each neuron in response to a stimulus

[1–3]. The activity of a neuron following a stimulus presentation typically strongly varies in

time and explores a range of values, but classical population coding typically leaves out such

dynamics by considering either time-averaged or steady-state firing.

In contrast to this static picture, a number of recent works have argued that the temporal

dynamics of population activity may play a key role in neural coding and computations [4–

14]. As the temporal response to a stimulus is different for each neuron, an influential

approach has been to represent population dynamics in terms of temporal trajectories in the

neural state space, where each axis corresponds to the activity of one neuron [15–18]. Coding

in this high-dimensional space is typically examined by combining linear decoding and

dimensionality-reduction techniques [19–21], and the underlying network is often conceptu-

alised in terms of a dynamical system [18, 22–30]. Such approaches have revealed that the dis-

crimination between stimuli based on neural activity can be higher during the transient phases

than at steady state [16], arguing for a coding scheme in terms of neural trajectories. A full the-

ory of coding with transient trajectories is however currently lacking.

To produce useful transient coding, the trajectories of neural activity need to satisfy at least

three requirements [4]. They need to be (i) stimulus-specific, (ii) robust to noise and (iii) non-

monotonic, in the sense that the responses to different stimuli differ more during the transient

dynamics than at steady-state. This third condition is crucial as otherwise coding with tran-

sients can be reduced to classical, steady-state population coding. Recent works have shown

that recurrent networks with so-called non-normal connectivity can lead to amplified tran-

sients [28, 31–35], but general sufficient conditions for such amplification were not given. We

start by reviewing a well-known result linking the norm of the transient activity to the spec-

trum of the symmetric part of the connectivity matrix. This results leads to a simple distinction

between two classes of networks: networks in which all inputs lead to weak, decaying tran-

sients, and networks in which specific inputs elicit transiently amplified responses. We then

characterize inputs that lead to non-monotonic trajectories, and show that they induce tran-

sient dynamics that map inputs onto orthogonal output directions. We first apply these analy-

ses to standard two-population and randomly-connected networks. We then specifically

exploit these results to build low-rank connectivity matrices that implement specific trajecto-

ries to transiently encode specified stimuli, and examine the noise-robustness and capacity of

this setup.

Results

We study linear networks of N randomly and recurrently coupled rate units with dynamics

given by:

_ri ¼ � ri þ
XN

j¼1

Jijrj þ IðtÞr0;i: ð1Þ
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Such networks can be interpreted as describing the linearized dynamics of a system around an

equilibrium state. In this picture, the quantity ri represents the deviation of the activity of the

unit i from its equilibrium value. For simplicity, in the following we refer to the quantity ri as

the firing rate of unit i. Here Jij denotes the effective strength of the connection from neuron j
to neuron i. Unless otherwise specified, we consider an arbitrary connectivity matrix J. Along

with the recurrent input, each unit i receives an external drive I(t)r0,i in which the temporal

component I(t) is equal for all neurons, and the vector r0 (normalized to unity) represents the

relative amount of input to each neuron.

Monotonic vs. amplified transient trajectories

We focus on the transient autonomous dynamics in the network following a brief input

in time (I(t) = δ(t)) along the external input direction r0, which is equivalent to setting

the initial condition to r0. The temporal activity of the network in response to this input

can be represented as a trajectory r(t) in the high-dimensional space in which the i-th

component is the firing rate of neuron i at time t. We assume the network is stable, so that

the trajectory asymptotically decays to the equilibrium state that corresponds to ri = 0.

At intermediate times, depending on the connectivity matrix J and on the initial condition

r0, the trajectory can however exhibit two qualitatively different types of behavior: it can

either monotonically decay towards the asymptotic state or transiently move away from

it (Fig 1A and 1B). We call these two types of trajectories respectively monotonic and

amplified.

The two types of transient trajectories can be distinguished by looking at the Euclidean dis-

tance between the activity at time point t and the asymptotic equilibrium state, given by the

activity norm krðtÞk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1ðtÞ
2
þ r2ðtÞ

2
þ . . .þ rNðtÞ

2

q

. Focusing on the norm allows us to

deal with a single scalar quantity instead of N firing rates. Monotonic and amplified transient

trajectories respectively correspond to monotonically decaying and transiently increasing

kr(t)k (Fig 1C). Note that a transiently increasing kr(t)k necessarily implies that the firing

rate of at least one neuron shows a transient increase in its absolute value before decaying to

zero.

One approach to understanding how the connectivity matrix J determines the transient tra-

jectory is to project the dynamics on the basis formed by the right-eigenvectors {vk} of J [36].

The component ~rkðtÞ along the k—th eigenmode decays exponentially and the activity norm

can be expressed as:

krðtÞ k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

~rkðtÞ
2
þ 2

X

k>j

~rkðtÞ~rjðtÞðvk � vjÞ

v
u
u
t : ð2Þ

If all the eigenvectors vk are mutually orthogonal, then the squared activity norm is a sum of

squares of decaying exponentials, and therefore a monotonically decaying function. Connec-

tivity matrices J with all orthogonal eigenvectors are called normal matrices, and they thus

generate only monotonic transients. In particular, any symmetric matrix is normal. On the

other hand, connectivity matrices for which some eigenvectors are not mutually orthogonal

are called non-normal [37]. For such matrices, the second term under the square root in Eq (2)

can have positive or negative sign, so that the norm cannot in general be written as the sum of

decaying exponentials. It is well known that non-normal matrices can lead to non-monotonic

transient trajectories [28, 31–35, 38].

Nonetheless, a non-normal connectivity matrix J is just a necessary, but not a sufficient

condition for the existence of transiently amplified trajectories. As will be illustrated below,
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having non-orthogonal eigenvectors does not guarantee the existence of transiently amplified

inputs. This raises the question of identifying the sufficient conditions on the connectivity

matrix J and input r0 for the transient trajectory to be amplified. In the following, we point out

a simple criterion on the connectivity matrix J for the existence of amplified trajectories, and

show that it is possible to identify the input subspace giving rise to amplified trajectories and

estimate its dimensionality.

Two classes of non-normal connectivity

To distinguish between monotonic and amplified trajectories, we focus on the rate of change

dkr(t)k/dt of the activity norm. For a monotonic trajectory, this rate of change is negative at all

Fig 1. Monotonically decaying vs. amplified transient dynamics. Dynamics of a linear recurrent network in

response to a short external perturbation along a given input direction r0. The left and right examples correspond to

two different connectivity matrices, where the connection strengths are independently drawn from a Gaussian

distribution with zero mean and variance equal to g2/N (left: g = 0.5; right: g = 0.9). A. Firing rate dynamics of 10

individual units. B. Projections of the population activity onto the first two principal components of the dynamics.

Yellow and red color correspond respectively to g = 0.5 and g = 0.9. C. Temporal dynamics of the activity norm kr(t)k.
Left: in the case of weakly non-normal connectivity the activity norm displays monotonic decaying behaviour for any

external input perturbation. Right: for strongly non-normal connectivity, specific stimuli generate a transient increase

of the activity norm.N = 200 in simulations.

https://doi.org/10.1371/journal.pcbi.1007655.g001
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times, while for amplified trajectories it transiently takes positive values before becoming nega-

tive as the activity decays to the equilibrium value. Using this criterion, we can determine the

conditions under which a network generates an amplified trajectory for at at least one input r0.

Indeed, the rate of change of the activity norm satisfies (see [38, 39])

1

krk
d krk
dt
¼

rTðJS � IÞr
krk2

; JS ¼
Jþ JT

2
ð3Þ

Here the matrix JS denotes the symmetric part of the connectivity matrix J. The right hand

side of Eq (3) is a Rayleigh quotient [40]. It reaches its maximum value when r(t) is aligned

with the eigenvector of JS associated with its largest eigenvalue, λmax(JS), and the correspond-

ing maximal rate of change of the activity norm is therefore λmax(JS) − 1.

Eq (3) directly implies that a necessary and sufficient condition for the existence of tran-

siently amplified trajectories is that the largest eigenvalue of the symmetric part JS be larger

than unity, λmax(JS)> 1 [38]. If that is the case, choosing the initial condition along the eigen-

vector associated with λmax(JS) leads to a positive rate of change of the activity norm at time

t = 0, and therefore generates a transient increase of the norm corresponding to an amplified

trajectory, which shows the sufficiency of the criterion. Conversely, if a given input produces

an amplified trajectory, at least one eigenvalue of JS is necessarily larger than one. If that were

not the case, the right hand side of the equation for the norm would take negative values for all

vectors r(t), implying a monotonic decay of the norm. This demonstrates the necessity of the

criterion.

The criterion based on the symmetric part of the connectivity matrix allows us to distin-

guish two classes of connectivity matrices: if λmax(JS)< 1 all external inputs r0 lead to mono-

tonically decaying trajectories (non-amplifying connectivity); if λmax(JS)< 1 specific input

directions lead to a non-monotonic amplified activity norm (amplifying connectivity). The

key point here is that for a non-normal connectivity matrix J, the symmetric part JS is in gen-

eral different from J. The condition for the stability of the system (RelmaxðJÞ < 1) and the con-

dition for transient amplification (λmax(JS)> 1) are therefore not mutually exclusive. This is

instead the case for normal networks, which include symmetric, anti-symmetric, orthogonal

connectivity matrices and trivial one-dimensional dynamics.

The simplest illustration of this result is a two-population network. In that case the relation-

ship between the eigenvalues of J and JS is straightforward. The eigenvalues of J and JS are

given by

l
�
ðJÞ ¼

TrðJÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr2ðJÞ � 4DetðJÞ

p

2
; l

�
ðJSÞ ¼

TrðJÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr2ðJÞ � 4DetðJÞ þ 4D
2

q

2
; ð4Þ

where Tr(J) and Det(J) are the trace and determinant of the full connectivity matrix J, and 2Δ
is the difference between the off-diagonal elements of J. Assuming for simplicity that the eigen-

values of J are real, Eq (4) show that the maximal eigenvalue of JS is in general larger than the

maximal eigenvalue of J, and the difference between the two is controlled by the parameter Δ
which quantifies how non-symmetric the matrix J is. If Δ is large enough, JS will have an unsta-

ble eigenvalue, even if both eigenvalues of J are stable (Fig 2A). The value of Δ therefore allows

to distinguish between non-amplifying and amplifying connectivity. Furthermore, for amplify-

ing connectivity, the parameter Δ directly controls the amount of amplification in the network

(Fig 2B), defined as the maximum value of the norm kr(t)k over time and initial conditions r0

(see Methods). A specific example is a network consisting of an excitatory and an inhibitory

population [32]. In that case our criterion states that the excitatory feedback needs to be
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(approximately) larger than unity in order to achieve transient amplification, when k is larger

than but close to one (Fig 2C and S6 Text).

A second illustrative example is a network of N randomly connected neurons, where each

connection strength is independently drawn from a Gaussian distribution with zero mean and

variance equal to g2/N. For such a network, the eigenvalues of J and JS are random, but their

distributions are known. The eigenvalues of J are uniformly distributed in the complex plane

on a circle of radius g [41], so that the system is stable for g< 1 (Fig 3A). On the other hand,

the eigenvalues of the symmetric part JS are real and distributed according to the semicircle

law with spectral radius
ffiffiffi
2
p
g [42, 43] (Fig 3B). The fact that the spectral radius of JS is larger by

a factor
ffiffiffi
2
p

than the spectral radius of J implies that if g is in the interval 1=
ffiffiffi
2
p

< g < 1 the

network is stable but exhibits amplified transient activity (Fig 3C). Note that the connectivity

is non-normal for any value of g, but the additional condition g > 1=
ffiffiffi
2
p

is needed for the exis-

tence of amplified trajectories. This in particular implies that for random connectivity tran-

sient amplification requires the network to be close to instability, so that the dynamics are

slowed down as pointed out in [34].

Coding with amplified transients

For a connectivity matrix satisfying the amplification condition λmax(JS)> 1, only specific

external inputs r0 are amplified by the recurrent circuitry, while others lead to monotonically

decaying trajectories (Fig 4B). Which and how many orthogonal inputs are amplified? What is

the resulting state of the network at the time of maximal amplification, and how can the inputs

be decoded from that state?

Fig 2. Dynamical regimes for a network of two interacting populations. A. Relation between the eigenvalues of the connectivity

matrix J (blue dots) and the eigenvalues of its symmetric part, JS (red dots). Both pairs of eigenvalues are symmetrically centered around

Tr(J)/2, but the eigenvalues of JS lie further apart (Eq 4), and the maximal eigenvalue of JS can cross unity if the difference 2Δ between

the off-diagonal elements of the connectivity matrix is sufficiently large (bottom panel). B. Value of the maximum amplification of the

system (quantified by the maximal singular value σ1(Pt�) of the propagator, see Methods) as a function of the non-normal parameter Δ.

Here we fix the two eigenvalues of J, the largest of which effectively determines the largest timescale of the dynamics, and vary Δ.

Colored traces correspond to different values of the largest timescale of the system t ¼ 1=ð1 � RelmaxðJÞÞ. For small values of Δ the

maximum amplification is equal to one, and it increases approximately linearly when Δ is larger than the critical value. Each colored

trace corresponds to a different choice of Tr(J) and Det(J). From top to bottom traces: Tr(J) = 0, −0.5, −2, −4 and Det(J) = Tr2(J)/4 (for

convenience), corresponding respectively to τ = 1, 0.8, 0.5, 0.33. The trace for τ = 1 corresponds toRelmaxðJÞ ¼ 0. C. Dynamical regimes

for an excitatory-inhibitory two population model, as in [32]. Here w represents the weights of the excitatory connections (JEE = JIE = w)

and −kw the weights of the inhibitory ones (JEI = JII = −kw). The inhibition-dominated regime corresponds to k> 1. The color code

corresponds to the maximum amplification, as quantified by the maximal singular value σ1(Pt�). The grey trace corresponds to the

boundary between the monotonic and the amplified parameter regions. The red trace represents the stability boundary, with the

unstable region hatched in red. In order to achieve transient amplification the excitatory weight w has to be approximately larger than

unity, when k is larger than but close to one. Note that amplification can be obtained also for 0< k< 1, in a parameter region limited by

the stability boundary.

https://doi.org/10.1371/journal.pcbi.1007655.g002
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One approach to these questions is to examine the mapping from inputs to states at a given

time t during the dynamics. Since we consider linear networks, the state reached at time t from

the initial condition r0 is given by the linear mapping r(t) = Pt r0, where for any time t> 0,

Pt = exp(t(J − I)) is an N × Nmatrix called the propagator of the network. At a given time t,
the singular value decomposition (SVD) of Pt defines a set of singular values fs

ðtÞ
k g, and two

sets of orthonormal vectors fRðtÞk g and fLðtÞk g, such that Pt maps RðtÞk onto s
ðtÞ
k L

ðtÞ
k . In other

words, taking RðtÞk as the initial condition leads the network to the state s
ðtÞ
k L

ðtÞ
k at time t:

rðtÞ ¼ PtR
ðtÞ
k ¼ s

ðtÞ
k L

ðtÞ
k : ð5Þ

If s
ðtÞ
k > 1, the norm of the activity at time t is larger than unity, so that the initial condition

RðtÞk is amplified. In fact, the largest singular value of Pt determines the maximal possible

amplification at time t (see Methods). Note that for a normal matrix, the left and right singular

vectors RðtÞk and LðtÞk are identical, and the singular values are equal to the modulus of the eigen-

values, so that the stability of the dynamics imply an absence of amplification. Conversely, sta-

ble amplification implies that RðtÞk and LðtÞk are not identical, so that an amplified trajectory

explores at least two dimensions corresponding to the plane spanned by RðtÞk and LðtÞk .

Since the propagator Pt depends on time, the singular vectors RðtÞk and LðtÞk , and the singular

values s
ðtÞ
k depend on time. One can therefore look at the temporal trajectories s

ðtÞ
k , which by

definition all start at one at t = 0 (Fig 4A). If the connectivity satisfies the condition for tran-

sient amplification, at least one singular value increases above unity, and reaches a maximum

before asymptotically decreasing to zero. The number of singular values that simultaneously

take values above unity (Fig 4A) defines the number of orthogonal initial conditions amplified

by the dynamics. Choosing a time t� at which Ns of the singular value trajectories lie above

Fig 3. Dynamical regimes of a N-dimensional network model with random Gaussian connectivity structure. Each

entry of J is independently drawn from a Gaussian distribution with zero mean and variance g2/N. A. The eigenvalues of J

are complex, and, in the limit of largeN, distributed uniformly within a circle of radius R(J) = g in the complex plane

(Girko’s law, [41]). The system is stable if g< 1. Left: g = 0.5. Right: g = 0.9. B. The eigenvalues of the symmetric part JS
are real-valued, and are distributed in the largeN limit according to the semicircle law, with the largest eigenvalue of JS

given by the spectral radius RðJSÞ ¼
ffiffiffi
2
p
g [42, 43]. Since the spectral radius of JS is larger than the spectral radius of J, for

sufficiently large values of g some eigenvalues of JS can be larger than unity (in red), while the network dynamics are

stable (g< 1). C. Spectral radii of J and JS as a function of the random strength g. The interval of values of g for which

the system displays strong transient dynamics in response to specific inputs is given by 1=
ffiffiffi
2
p

< g < 1. N = 200 in

simulations.

https://doi.org/10.1371/journal.pcbi.1007655.g003
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unity, we can indeed identify a set of Ns orthogonal, amplified inputs corresponding to the

right singular vectors Rðt
�Þ

k of the propagator at time t�. According to Eq (5), each of these

inputs is mapped in an amplified fashion to the corresponding left singular vector Lðt
�Þ

k at time

t�, which also form an orthogonal set. Each amplified input can therefore be decoded by

Fig 4. Coding multiple stimuli with amplified transient trajectories. Example corresponding to a N-dimensional

Gaussian connectivity matrix with g = 0.9. A. Singular values of the propagator, s
ðtÞ
i , as a function of time (SV

trajectories). Dark blue traces show the amplified singular values, defined as having positive slope at time t = 0; The

dominant singular value s
ðtÞ
1 corresponds to the dashed line. Light blue traces correspond to the non-amplified singular

values, having negative slope at t = 0. B. Norm of the activity elicited by the first two amplified inputs, i.e. R�
1
, R�

2
, (right

singular vectors corresponding to singular values s
ðt�Þ
1 and s

ðt�Þ
2 at time t� indicated by the dashed vertical line in panel

A; purple and red traces), and by one non-amplified input (chosen as R�
100

, corresponding to s
ðtÞ
100; orange trace). C.

Illustration of the dynamics elicited by the three inputs, R1, R2 and R100 (shown in different rows), as in B. Left:
Activity of 10 individual units. Center: Projections of the evoked trajectories onto the plane defined by the stimulus R�i
and the corresponding readout vector L�i (in analogy with the amplified case, we chose the readout of the non-

amplified dynamics to be the state of the system at time t�, i.e. L�
100

). Right: population responses to the three stimuli

projected on the readout vectors L�
1
, L�

2
and L�

100
.N = 1000 in simulations.

https://doi.org/10.1371/journal.pcbi.1007655.g004
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projecting the network activity on the corresponding left singular vector Lðt
�Þ

k (Fig 4C). Since

fLðtÞk g are mutually orthogonal, the different initial conditions lead to independent encoding

channels. Again, as the dynamics are non-normal, the inputs Rk and the outputs Lk are not

identical, so that the dynamics for each amplified input are at least two-dimensional (Fig 4C).

How many independent, orthogonal inputs can a network encode with amplified tran-

sients? To estimate this number, a central observation is that the slopes of the different singular

value trajectories at t = 0 are given by the eigenvalues of the symmetric part of the connectivity

JS. This follows from the fact that the singular values of the propagator Pt are the square root of

the eigenvalues of PTt Pt, and at short times δt we have PT
dtPdt ’ Iþ 2ðJS � IÞdt. This implies

that the number of singular values with positive slope at the initial time is equal to the number

of eigenvalues of the symmetric part JS larger than unity. To eliminate the trajectories with

small initial slopes, one can further constrain the slopes to be larger than a margin �, in which

case the number of amplified trajectories NS(�) is given by the number of eigenvalues of JS

larger than 1 + �. Note that NS(�) provides only a lower bound on the number of amplified

inputs, as singular values with initial slope smaller than zero can increase at later times. It is

straightforward to compute NS(�) when the connectivity matrix J is a random matrix with

independent and identically distributed elements. In this case the probability distribution of

the eigenvalues of its symmetric part JS follows the semicircle law (Fig 3), and when the num-

ber of neurons N is large, the number Ns of amplified inputs scales linearly with N.

To summarize, the amplified inputs and the corresponding encoding at peak amplification

can be determined directly from the singular value decomposition of the propagator, given by

the exponential of the connectivity matrix. For an arbitrary N × Nmatrix J, characterizing ana-

lytically the SVD of its exponential is in general a complex and to our knowledge open mathe-

matical problem. For specific classes of matrices, the propagator and its SVD can however be

explicitly computed, and in the following we will exploit this approach.

Implementing specific transient trajectories

The approach outlined above holds for any arbitrary connectivity matrix, and allows us to

identify the external inputs which are strongly amplified by the recurrent structure, along with

the modes that get most activated during the elicited transients, and therefore encode the

inputs. We now turn to the converse question: how to choose the network connectivity J such

that it generates a pre-determined transient trajectory. Specifically, we focus on low-rank net-

works, a type of model ubiqitous in neuroscience [44, 45], and set out to determine the mini-

mal-rank connectivity that transiently transforms a fixed, arbitrary input r0 into a fixed,

arbitrary output w at the time of peak amplification, through two-dimensional dynamics.

To address this question, we consider a connectivity structure given by a unit-rank matrix

J = ΔuvT [45]. Here u and v are two vectors with unitary norm and correlation ρ (hu, vi = ρ),

and Δ is an overall scaling parameter. We applied to this connectivity the general analysis out-

lined above (see Methods). The only non-zero eigenvalue of J is Δρ, and the corresponding

linear system is stable for Δρ< 1. The largest eigenvalue of the symmetric part of the connec-

tivity JS is given by Δ(ρ + 1)/2, so that the network displays amplified transients if and only if

Δ(ρ + 1)/2> 1 (while Δρ< 1). Keeping the eigenvalue Δρ constant and increasing Δ will there-

fore lead to a transition from monotonically decaying to amplified transients (Fig 5A). If ρ = 0,

the vectors u and v are orthogonal, and the condition for amplification is simply Δ> 2. Note

that in this situation, amplification is obtained without slowing down the dynamics, in contrast

to randomly coupled networks [34].

For this unit rank connectivity matrix, the full propagator Pt = exp(t(J − I)) of the dynamics

can be explicitly computed (see Methods). The non-trivial dynamics are two-dimensional, and
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lie in the plane spanned by the structure vectors u and v (Fig 5D), while all components

orthogonal to this plane decay exponentially to zero. Determining the singular value decompo-

sition of the propagator allows us to compute the amount of amplification of the system, as the

value of σ1(Pt) at the time of its maximum t�. In the amplified regime (for Δ(ρ + 1)/2> 1), the

amount of amplification increases monotonically with Δ (Fig 5B). Since only one eigenvalue of

Fig 5. Low-dimensional amplified dynamics in random networks with unit-rank structure. A. Dynamical regimes as a function of

the structure vector correlation ρ = u � v and the scaling parameter of the connectivity matrix, Δ. Grey shaded areas correspond to

parameter regions where the network activity is monotonic for all inputs; blue shaded areas indicate parameter regions where the

network activity is amplified for specific inputs; for parameter values in the white area, activity is unstable. Samples of dynamics are

shown in the bottom panels, for parameter values indicated by the colored dot in the phase diagram: Δ = 4 and ρ = 0. Dashed colored

traces correspond to the parameter regions explored in panels B. and C., defined by the equation λ = Δρ. B. Maximum amplification of

the system, quantified by σ1(Pt�), the first singular value of the propagator, as a function of the scaling parameter Δ. Here we fix the

eigenvalue of the connectivity matrix λ = Δρ associated with the eigenvector u, and vary Δ. Colored traces correspond to different

choices of the eigenvalue of the connectivity λ. C. Correlation between the optimally amplified input direction R�
1

and the structure

vector v as a function of the parameter Δ. Increasing the non-normal parameter Δ aligns the optimally amplified input with the structure

vector v. In B. and C. mean and standard deviation over 50 realizations of the connectivity matrix are shown for each trace. The

elements of the structure vectors are drawn from a Gaussian distribution, so that they have on average unit norm and correlation ρ (see

Methods). D. Low-dimensional dynamics in the case of two stored patterns. Input v(1) (resp. v(2)) elicits a two-dimensional trajectory

which brings the activity along the other structure vector u(1) (resp. u(2)), mapping stimulus v(1) (resp. v(2)) into its transient readout u(1)

(resp. u(2)). Blue and red colors correspond to the two stored patterns. E. Firing rates of 10 individual units. F. Temporal evolution of the

activity norm. G. Projection of the network response evoked by the input along v(1) (resp. v(2)) on the corresponding readout u(1) (resp.

u(2)). The case of unit rank connectivity (one stored pattern) reduces to the first row of panels D. −G. (where the activity on u(2) is

equivalent to the activity on a readout orthogonal to u(1)). N = 3000 in simulations.

https://doi.org/10.1371/journal.pcbi.1007655.g005
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JS is larger than unity, only one input perturbation is able to generate amplified dynamics. For

large values of Δ, this optimal input direction is strongly correlated with the structure vector v.

Perturbing along the vector v elicits a two-dimensional trajectory which at its peak amplifica-

tion is strongly correlated with the other structure vector u (Fig 5C). Choosing v = r0 and u =

w, the unit-rank connectivity therefore directly implements a trajectory that maps the input r0

into the output w, identified as the transient readout vector for stimulus r0.

Several, orthogonal trajectories can be implemented by adding orthogonal unit-rank com-

ponents. For instance, taking J = Δu(1)v(1)T + Δu(2)v(2)T, where the planes defined by the struc-

ture vectors in each term are mutually orthogonal, the input v(1) evokes a trajectory which is

confined to the plane defined by u(1) and v(1), and which maps the input v(1) into the output

u(1) at the time of peak amplification (Fig 5D–5G). Similarly, the input v(2) is mapped into the

output u(2) during the evoked transient dynamics. Therefore, the rank-2 connectivity J imple-

ments two transient patterns, encoding the stimuli v(1) and v(2) into the readouts u(1) and u(2).

A natural question is how robust the scheme is and how many patterns can be implemented in

a network of fixed size N.

Robustness and capacity

To investigate the robustness of the transient coding scheme implemented with unit-rank

terms, we first examined the effect of additional random components in the connectivity. Add-

ing to each connection a random term of variance g2/N introduces fluctuations of order

gD2
=
ffiffiffiffi
N
p

to the component of the activity on the plane defined by u and v (see Methods). Con-

sequently, the projection of the trajectory on the readout w = u has fluctuations of the same

order (Fig 6A–6C). A supplementary effect of random connectivity is to add to the dynamics a

component orthogonal to u and v, proportional to Δ (see S8 Text), which however does not

contribute to the readout along w. Thus, for large N, the randomness in the synaptic connec-

tivity does not impair the decoding of the stimulus r0 from the activity along the correspond-

ing readout w.

The robustness of the readouts to random connectivity implies in particular that the unit-

rank coding scheme is robust when an extensive number P of orthogonal transient trajectories

are implemented by the connectivity J. To show this, we generalize the unit-rank approach

and consider a rank-P connectivity matrix, given by the sum of P unit-rank matrices,

J ¼ D
PP

p¼1
uðpÞvðpÞT , where each term specifies an input-output pair. We focus on the case

where the elements of all the vectors u(p) and v(p) are independently drawn from a random dis-

tribution (see Methods), implying that all input-output pairs are mutually orthogonal, i.e.

uncorrelated, in the limit of large N. In this situation, the interaction between the dynamics

evoked by one arbitrary input v(p) and the additional P − 1 patterns is effectively described by a

system with connectivity J = Δu(p)v(p)T corrupted by a random component with zero mean

and variance equal to Δ2 P/N2 (see Methods). From the previous results, it follows that the fluc-

tuations of the activity of the readout u(p) are of order D
3
ffiffiffi
P
p

=N (Fig 6D–6F). Thus, in high

dimension, the readout activity is robust to the interactions between multiple encoded trajec-

tories. When the number of encoded trajectories is extensive (P = O(N)), each stimulus v(p),

can therefore still be decoded from the projection of the activity on the corresponding

readout u(p).

A natural upper bound on the number of trajectories that can be implemented by the con-

nectivity J is derived from the stability constraints of the linear system. Indeed, the largest

eigenvalues of J is given by D
ffiffiffiffiffiffiffiffiffi
P=N

p
and it needs to be smaller than one for stability. Thus,

the maximum number of trajectories that can be encoded in the connectivity J is given by

Pmax = N/Δ2 and defines the capacity of the network. Crucially, the capacity scales linearly with
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the size of the network N. The capacity also decreases for highly amplified systems, resulting in

a trade-off between the separability of the neural activity evoked by different stimuli (quantified

by Δ) and the number of stimuli that can be encoded in the connectivity (quantified by Pmax).

Discussion

We examined the conditions under which linear recurrent networks can implement an encod-

ing of stimuli in terms of amplified transient trajectories. The fundamental mechanism under-

lying amplified transients relies on the non-normal properties of the connectivity matrix, i.e.

the fact that the left- and right-eigenvectors of the connectivity matrix are not identical [37]. A

number of recent studies in theoretical neuroscience have pointed out the interesting dynam-

ical properties of networks with non-normal connectivity [28, 31–35, 46, 47]. Several of these

works [28, 32, 34, 35] have examined the amplification of the norm of the activity vector, as we

do here. However, it was not pointed out that the presence of amplification can be diagnosed

by considering the eigenvalues of the symmetric part JS of the connectivity matrix (rather than

Fig 6. Robustness of the transient coding scheme and capacity of the network. (A-B-C) Robustness of the readout activity for a single

stored pattern u-v in presence of randomness in the connectivity with variance g2/N. A. Projection of the population activity elicited by

input v along the readout u (red trace) and along a readout orthogonal to u (blue trace) for g = 0.5. The elements of the orthogonal

readout are drawn from a random distribution with mean zero and variance 1/N and are fixed over trials. The projection of the activity

on u is also shown for the zero noise case (g = 0; black dashed line). B. Value of the activity along u (red dots) and along the orthogonal

readout (blue dots) at the peak amplification (t = t�), as a function of g. In A and B,N = 200; error bars correspond to the standard

deviation over 100 realizations of the random connectivity. C. Standard deviation of the readout activity at the peak amplification as a

function of the network sizeN for two values of g. The fluctuations are inversely proportional to the network size and scale as gD2
=
ffiffiffiffi
N
p

.

Error bars correspond to the standard deviation of the mean over 100 realization of the connectivity noise. (D-E-F) Robustness of the

transient coding scheme in presence of multiple stored patterns. D. Projection of the population activity elicited by one arbitrary

amplified input v(k) along the corresponding readout u(k) (red trace) and along a different arbitrary readout u(k0) (blue trace) for

P/N = 0.02. The readout u(k0) was changed for every trial. The projection of the activity on u(k) is also shown when only the pattern

u(k)-v(k) is encoded (P = 1; black dashed line). E. Value of the activity along u(k) (red dots) and along the readout u(k0) (blue dots) at the

peak amplification (t = t�), as a function of P/N. In D and EN = 200; error bars correspond to the standard deviation over 100

realizations of the connectivity matrix. F. Standard deviation of the readout activity (along u(k)) at the peak amplification as a function of

the network sizeN for two values of P/N. The fluctuations are inversely proportional to the network size and scale as D
3
ffiffiffi
P
p

=N. Error

bars correspond to the standard deviation of the mean over 100 realizations of the connectivity noise.

https://doi.org/10.1371/journal.pcbi.1007655.g006
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examining properties of the eigenvectors of the connectivity matrix J), leading to the distinc-

tion of two classes of recurrent networks. This general criterion appears to be well-known in

the theory of linear systems (Theorem 17.1 in [37]). Here we applied it to standard models of

recurrent networks used in computational neuroscience, and in particular to low-rank net-

works [45].

We have shown that the largest eigenvalue of the symmetric part of the connectivity defines

the amplification properties of the system asymptotically at small times t. Yet, it does not pro-

vide a direct measure of the maximum amplification of the norm kr(t)k over all times t (see

Maximum amplification of the system). The maximum amplification can be derived using the

singular value decomposition (SVD) of the propagator Pt, which however can be computed

analytically only for simple connectivity matrices. To quantify the maximum amplification

other measures have been developed that rely on the so-called pseudospectra [37] of the con-

nectivity matrix, a generalization of the eigenvalue spectra useful for the study of non-normal

dynamics. While the spectrum of the symmetric part of the connectivity controls the amplifi-

cation of the system at small times and the eigenvalue spectrum determines its large time

dynamics, the transient dynamics at intermediate times is largely determined by the properties

of the pseudospectra of the connectivity J (Chapter 4 of [37]). Notably, the result known as the

Kreiss Matrix Theorem (Eq. 14.8 and 14.12 in [37]) provides a lower and upper bound for the

maximum amplification of kr(t)k based on the pseudospectrum of the connectivity J.

Applying the criterion for transient amplification to classical randomly connected net-

works, we found that amplification occurs only in a narrow parameter region close to the

instability, where the dynamics substantially slow down as previously shown [34]. To circum-

vent this issue, and produce strong transient amplification away from the instability, [28]

introduced stability-optimized circuits (SOCs) in which inhibition is fine-tuned to closely bal-

ance excitation, and demonstrated that such dynamics can account for the experimental data

recorded in the motor cortex [24]. We showed here that low-rank networks can achieve the

same purpose, and exhibit strong, fast amplification in a large parameter region away from the

instability. One difference with SOCs is that low-rank networks explicitly implement low-

dimensional dynamics that transform a specified initial state into a specified, orthogonal out-

put state. Several low-rank channels could be combined to reproduce higher-dimensional

dynamics similar to those observed during the generation of complex movements [24].

In our framework we modeled the external stimulus as the initial condition of the network,

and the amplified dynamics is autonomously generated by the recurrent interactions.

Although this might appear as an oversimplifying assumption, it has nevertheless been proven

useful to describe the transient population activity in motor and sensory areas. In motor and

pre-motor cortex, the initial condition of the population dynamics during the execution of the

movement may be set by the phase of preparatory neural activity that precedes the movement,

and may determine to a large extent the time course of the movement-related dynamics [22–

24]. A similar mechanism has been recently proposed to underlie the generation and popula-

tion coding properties of strong sensory responses following stimulus offsets in auditory cor-

tex. Here different auditory stimuli result in largely orthogonal initial conditions at the

stimulus offset, thus generating orthogonal population offset responses across stimuli [48].

The assumption of autonomous dynamics does not hold when naturalistic (e.g. temporally

structured) stimuli are considered [49]. Understanding how more complex external inputs are

transformed by the non-normal amplified network dynamics constitutes a major direction of

future work.

The study by Murphy and Miller [32] reported that the excitatory-inhibitory (EI) structure

of cortical networks induces non-normal amplification between so-called sum and difference

E-I modes. Interestingly, the specific networks they considered are of the low-rank type, with
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sum and difference modes corresponding to left- and right- vectors of the individual unit-rank

terms [35]. This connectivity structure is therefore a particular instance of the low-rank imple-

mentation of amplified trajectories that we described here. Moreover, Murphy and Miller spe-

cifically focused on the inhibition-dominated regime [50], which as we show approximately

corresponds to the class of unit-rank E-I networks that exhibit strong transient amplification

(Fig 2 and Supp Info; note that these networks can exhibit amplification also for 0< k� 1, in

a parameter region limited by the stability boundary). In the present study, we have not

enforced a separation between excitatory and inhibitory neurons, but this can be done in a

straightforward way by adding a unit-rank term in which all excitatory (resp. inhibitory) con-

nections have the same weight, and these weights are chosen strong enough to make all excit-

atory (resp. inhibitory) synapses positive (resp. negative). This additional component would

induce one more amplified channel that would correspond to the global E-I difference mode

of Murphy and Miller.

Here our aim was to produce amplified, but not necessarily long-lasting transients. The

timescale of the transients generated using the unit-rank implementation is in fact determined

by the effective timescale of the network, set by the dominant eigenvalue of the connectivity

matrix. As shown in previous studies that focused on implementing transient memory traces

[31, 33, 46], longer transients can be obtained either by increasing recurrent feedback (i.e. the

overlap between vectors in the unit-rank implementation), or by creating longer hidden feed-

forward chains. For instance, an effective feed-forward chain of length k can be obtained from

a rank k connectivity term of the type J = Δv(k+1)v(k)T +. . .+ Δv(3)v(2)T + Δv(2)v(1)T, i.e. in which

each term feeds into the next one [51]. This leads in general to a k + 1-dimensional transient

with a timescale extended by a factor k [33]. Implementing this kind of higher-dimensional

transients naturally comes at the cost of reducing the corresponding capacity of the network.

The implementation of transient channels proposed here clearly bears a strong analogy

with Hopfield networks [44]. The aim of Hopfield networks is to store patterns of activity in

memory as fixed points of the dynamics, and this is achieved by adding to the connectivity

matrix a unit-rank term ξξT for each pattern ξ. One key difference with the present network is

that Hopfield networks rely on symmetric connectivity [52], while amplified transients are

obtained by using strongly asymmetric terms in which the left- and right-vectors are possibly

orthogonal. Another difference is that Hopfield networks rely on a non-linearity to generate

fixed points for each pattern, while here we considered instead linear dynamics in the vicinity

of a single fixed-point. The non-linearity of Hopfield networks endows them with error-cor-

recting properties, in the sense that a noisy initial condition will always lead to the activation

of a single memorized pattern. A weaker form of error-correction is also present in our linear,

transient encoding, since any component along non-amplified directions will decay faster than

the amplified pattern. However, if two amplified patterns are simultaneously activated, they

will lead to the activation of both corresponding outputs. This absence of competition may not

be undesirable, as it can allow for the simultaneous encoding, and possibly binding, of several

complementary stimulus features.

The amplified dynamics map specific external inputs onto orthogonal patterns of activity

with larger values of the norm kr(t)k. These dynamics however, along with amplifying the

amplitude of the signal, also amplify the external noise that is injected in the network. This

external noise is maximally amplified along the readout dimensions corresponding to the

amplified inputs (Eq (83)), implying that the signal-to-noise ratio at the peak amplification is

comparable to the SNR at the initial state. Therefore, transient amplification may not favor

stimulus decoding during the transient state with respect to the initial state in presence of

noisy input, but may nonetheless be needed to keep a stable value of the SNR across the tran-

sient dynamics (see Robustness of the readout activity). Instead, the amplification of the norm
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constitutes an advantage when the synaptic connections to the readout neurons are themselves

corrupted by noise. As the noise in the readout weights, or observational noise, is not directly

fed into the network, it does not get amplified by the recurrent interactions. As a result, the

detrimental effects of observational noise are overcome by amplifying the signal r(t) above the

noise level, which can be directly implemented by the transient coding scheme illustrated here.

Transient amplification of external inputs may therefore result in an increased ability to

robustly decode the external input in presence of noisy readout synapses.

While we focused here on linear dynamics in the vicinity of a fixed point, strong non-line-

arities can give rise to different transient phenomena [12]. In particular, one prominent pro-

posal is that robust transient coding can be implemented using stable heteroclinic channels,

i.e. sequences of saddle points that feed into each other [4]. This mechanism has been exploited

in specific models based on clustered networks [5]. A general theory for this type of transient

coding is to our knowledge currently lacking, and constitutes an interesting avenue for future

work.

Methods

The network model

We study a recurrent network of N randomly coupled rate units. Each unit i is described by

the time-dependent variable ri(t), representing its firing rate at time t. The transfer function of

the individual units is linear, so that the equation governing the temporal dynamics of the net-

work reads:

t _ri ¼ � ri þ
XN

j¼1

Jijrj þ IðtÞr0;i; ð6Þ

where τ represents the membrane time constant (fixed to unity), and Jij is the effective synaptic

strength from neuron j to neuron i. In absence of external input, the system has only one fixed

point corresponding to ri = 0 for all i. To have stable dynamics, we require that the eigenvalues

of the connectivity matrix J be smaller than unity, i.e.RelmaxðJÞ < 1. We write the external

input as the product between a common time-varying component I(t), and a term r0,i which

corresponds to the relative activation of each unit. The terms r0,i can be arranged in a N-

dimensional vector r0, which we call the external input direction. Here we focus on very short

external input durations (I(t) = δ(t)) and on input directions of unit norm (kr0k = 1). This type

of input is equivalent to setting the initial condition to r(0) = r0. Since we study a linear system,

varying the norm of the input direction would result in a linear scaling of the dynamics.

Dynamics of the network

We first outline the standard approach to the dynamics of the linear network defined by Eq (6)

(see e.g. [36, 53]). The solution of the differential equation given by Eq (6) can be obtained by

diagonalizing the linear system, i.e. by using a change of basis r ¼ V~r such that the connectiv-

ity matrix in the new basis Λ = V−1 JV is diagonal. The matrix V contains the eigenvectors

v1, v2, . . ., vN of the connectivity J as columns, while Λ has the corresponding eigenvalues λi on

the diagonal. Therefore the variables ~r represent the components of the rate vector on the basis

of eigenvectors of J. In this new basis the system of coupled equations in Eq (6) reduces to the

set of uncoupled equations

_~ri ¼ � ~ri þ li~ri þ dðtÞ~r0;i: ð7Þ

The dynamics of the linear network given by Eq (6) can thus be written in terms of its
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components on the eigenvectors vi as

rðtÞ ¼
XN

i¼1

~riðtÞvi; ~riðtÞ ¼ e
tðli � 1Þ= ~r0;i: ð8Þ

Equivalently, the solution of the linear system can be expressed as the product between a lin-

ear, time-dependent operator Pt and the initial condition r0 [54]:

rðtÞ ¼ Pt r0: ð9Þ

The linear operator Pt is called the propagator of the system and it is defined as the

matrix exponential of the connectivity matrix J, i.e. Pt = exp(t(J − I)/τ). By using the defini-

tion of matrix exponential in terms of power series, we can express the propagator as

Pt ¼ V diagðetðl1 � 1Þ; . . . ; etðlN � 1ÞÞV� 1. From Eq (9) we note that the propagator Pt at time t
defines a mapping from the state of the system at time t = 0, i.e. the external input direction

r0, to the state r(t).

Dynamics of the norm

To study the amplification properties of the network, we follow [39] and focus on the temporal

dynamics of the population activity norm kr(t)k [28]. The equation governing the dynamics of

the norm can be derived by writing krk¼
ffiffiffiffiffiffi
rTr
p

, so that the relative rate of change of the norm

is given by [39]

1

krk
d krk
dt

¼
1
ffiffiffiffiffiffi
rTr
p

d
ffiffiffiffiffiffi
rTr
p

dt

¼
1

2rTr
drT

dt
rþ rT

dr
dt

� �

:

ð10Þ

By using Eq (6) we can write the right hand side of the previous equation as

1

krk
d krk
dt

¼
rTððJT � IÞ þ ðJ � IÞÞr

2 krk2

¼
rTðJS � IÞr
krk2

;

ð11Þ

where we introduced JS = (J + JT)/2, the symmetric part of the connectivity matrix J.

Both the eigenvalues and the eigenvectors of JS provide information on the transient

dynamics of the system. On one hand, we show in the main text that the activity norm can

have non-monotonic behaviour if and only if at least one eigenvalue of the matrix JS is larger

than one. Therefore the eigenvalues of JS determine the type of transient regime of the system.

On the other hand, as JS is symmetric, its set of eigenvectors is orthogonal and provides a use-

ful orthonormal basis onto which we can project the dynamics. In this basis, the connectivity

matrix is given by J0 ¼ VT
S JVS, where VS contains the eigenvectors of JS as columns. The matrix

J can be uniquely decomposed as J = JS + JA, where JA = (J − JT)/2 is the anti-symmetric part of

J, so that

J0 ¼ diagðl1ðJSÞ; . . . ; lNðJSÞÞ þ VT
S JAVS: ð12Þ

The first term on the right hand side is a diagonal matrix, while the second term is an anti-

symmetric matrix. Since the latter has zero diagonal elements, the new connectivity matrix J0
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displays the eigenvalues of JS on the diagonal. The off-diagonal terms of J0 are given by the ele-

ments of VT
S JAVS and represent the strength of the couplings between the eigenvectors of JS. In

the amplified regime, some of the eigenvalues of JS are larger than one, so that without the cou-

pling between the modes of JS, the connectivity J0 would be unstable. However, in our case J

and J0 are stable matrices, meaning that the coupling terms ensure the stability of the overall

system. Moreover, varying the strengths of the coupling terms while keeping fixed the diagonal

terms affects in a non-trivial way the maximum amplification of the system. Therefore, the

decomposition in Eq (12) allows us to identify the set of key parameters that controls the maxi-

mum amplification of a specific system. In the following, we will systematically use this decom-

position to analyze specific classes of matrices.

Amplification

To identify which inputs are amplified, we examine the dynamics of the activity norm kr(t)k
for an arbitrary external input r0. The one-dimensional Eq (11) alone is not enough to deter-

mine the time course of kr(t)k, since the right hand side depends on the solution of the N—

dimensional system Eq (6). Therefore, for a specific input r0, we can use Eq (9) and write the

norm of the elicited trajectory as

krðtÞk¼kPtr0 k : ð13Þ

Input-output mapping between amplified inputs and readouts. The dynamics elicited

in response to an input along an arbitrary direction is in general complex. However, the singu-

lar value decomposition (SVD) of the propagator provides a useful way to understand the net-

work dynamics during the transient phase. Any matrix A can be written as

A ¼ LSRT; ð14Þ

where the matrix S contains the singular values σi(A) on the diagonal, while the columns of L

(resp. R) are the left (resp. right) singular vectors of A, i.e. the eigenvectors of AAT (resp. AT

A). The matrices R and L are unitary, meaning that they separately provide two orthogonal

sets of unitary vectors. Thus, we can write the SVD of the propagator as

Pt ¼ s
ðtÞ
1 LðtÞ1 RðtÞT1 þ s

ðtÞ
2 LðtÞ2 RðtÞT2 þ . . .þ s

ðtÞ
N L

ðtÞ
N R

ðtÞT
N : ð15Þ

From Eq (15) we see that, at a given time t, the propagator Pt maps each right singular vector

RðtÞk into the left singular vector LðtÞk , scaled by the singular value s
ðtÞ
k (see Eq (5)). Note that for

normal systems the singular value decomposition and the eigen-decomposition coincide. In

this case the matrices L and R both contain the eigenvectors of Pt as columns, so that LðtÞk and

RðtÞk lie on a single dimension. Instead, for a non-normal system the right and left singular vec-

tors do not align along one direction, and the dynamics of the system in response to an input

along RðtÞk spans at least the two dimensions defined by the two vectors RðtÞk and LðtÞk . The vectors

RðtÞk for which s
ðtÞ
k > 1 correspond to the amplified inputs at time t, while the outputs LðtÞk are

the corresponding readouts at time t.
Number of amplified inputs. The number of amplified inputs at time t is given by the

number of singular values s
ðtÞ
k larger than unity. To estimate this number, we examine the tem-

poral dynamics of the singular values s
ðtÞ
k in time (SV trajectories). We observe that, for a

system in the amplified regime (λmax(JS)> 1), at least one of the SV trajectories has non-

monotonic dynamics, starting from one at t = 0 and then increasing before decaying to zero.

In fact, the singular values of the propagator at small times t = δt are defined as the square
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roots of the eigenvalues of

PT
dtPdt ¼ Iþ 2ðJS � IÞdt þ Oðdt

2Þ: ð16Þ

From Eq (16) we can compute the singular values of Pδt as

skðPdtÞ ¼ 1þ ðlkðJSÞ � 1Þdt þ Oðdt2Þ; ð17Þ

so that the slope at time t = 0 of the k-th singular value of the propagator is

dsk
dt

�
�
�
�
t¼0

¼ lkðJSÞ � 1: ð18Þ

Eq (18) shows that the number of singular values larger than unity at small times is given by

the number of the eigenvalues of JS larger than unity, which we denote as NS.
Maximum amplification of the system. From Eq (15) we see that the maximum over

initial conditions of the amplification at time t corresponds to the dominant singular value of

the propagator, s
ðtÞ
1 . The associated amplified input and corresponding readout are respec-

tively RðtÞ1 and LðtÞ1 . To obtain the maximum amplification of the system over inputs and over

time, we need to compute the time t� at which s
ðtÞ
1 attains its maximum value. Therefore,

the value s
ðt�Þ
1 quantifies the maximum amplification over inputs and over time, while Rðt

�Þ

1

and Lðt
�Þ

1 correspond respectively to the most amplified input direction and the associated

readout.

Interestingly, it can be shown that the input Rðt
�Þ

1 � R�
1

satisfies the equation (see S1 Text)

R�T
1
ðJS � IÞR�

1
¼ 0; ð19Þ

which depends only on the symmetric part of the connectivity matrix JS. We will exploit this

equation to identify the amplified initial condition R�
1

in specific cases. Note that, except for

N = 2, Eq (19) does not fully specify the maximally amplified input.

Characterizing transient dynamics—Summary

Summarizing, our approach for characterizing its transient dynamics can be divided into three

main steps:

1. Compute JS, along with its eigenvalues and eigenvectors.

2. Compute the propagator of the system Pt.

3. Compute the Singular Value Decomposition (SVD) of the propagator.

These three steps can be in principle performed numerically for any connectivity matrix.

For particular classes of connectivity matrices, we show below that some or all three steps are

analytically tractable.

Random Gaussian network

Here we consider a non-normal random connectivity matrix with synaptic strength indepen-

dently drawn from a Gaussian distribution

Jij � N ð0; g2=NÞ: ð20Þ
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The eigenvalues of J are complex and uniformly distributed in a circle of radius g [41]:

PðlÞ ¼
1

pg2
; jlj � g

0; jlj > g

8
<

:
ð21Þ

For this class of matrices, we can analytically determine the condition for amplified tran-

sients, and estimate the number of amplified inputs. In the stable regime (g< 1), the symmet-

ric part of the connectivity JS can have unstable eigenvalues. In fact, the elements of the

symmetric part are distributed according to

JS;ij �
N ð0; g2=2NÞ; i 6¼ j

N ð0; g2=NÞ; i ¼ j

(

ð22Þ

From random matrix theory we know that the eigenvalues of the matrix given by Eq (22) are

real and distributed according to the semicircle law [42, 43]:

PðlÞ ¼

1

pg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2 � l
2

q

; jlj �
ffiffiffi
2
p
g

0; jlj >
ffiffiffi
2
p
g

8
><

>:
ð23Þ

In particular, the spectral radius of JS is
ffiffiffi
2
p
g, meaning that JS has unstable eigenvalues if

1=
ffiffiffi
2
p

< g < 1.

To estimate the number of amplified initial conditions, we compute the lower bound on

their number NS(�), i.e. the number of eigenvalues of JS larger than 1 + �:

NSð�; gÞ
N

¼

Z ffiffi
2
p
g

1þ�

PðlðJSÞÞ dlðJSÞ

¼
1

2
�

1

2pg2
ð1þ �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2 � ð1þ �Þ
2

q

�
1

p
arctan

1þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2 � ð1þ �Þ
2

q :

ð24Þ

The number of eigenvalues of JS is maximum when g is close to (but smaller than) unity. In

this case Eq (24) at the first order in � translates to

NSð�; 1Þ
N

¼
1

2
�

1

2p
�

1

p
arctanð1Þ

� �

�
1

2p
� ’ 0:09 � 0:16�: ð25Þ

Therefore, the maximal capacity of a randomly-connected network is therefore around 10%.

Computing the SVD of the exponential of a N-dimensional random matrix is to our knowl-

edge an open mathematical problem. Therefore, for an arbitrary random connectivity matrix,

the maximal amount of amplification and the amplified initial conditions are accessible only

by numerically computing the SVD of exp(t(J − I)).

Two-dimensional system

In this section we consider connectivity matrices describing networks composed of two inter-

acting units of the form

J ¼
a b

c d

 !

: ð26Þ
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The eigenvalues of J determine the stability of the network and can be expressed in terms of its

trace and determinant as follows:

l
�
¼

TrðJÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr2ðJÞ � 4DetðJÞ

p

2
: ð27Þ

For the dynamics to be stable, the largest eigenvalue of J needs to satisfyRelþ < 1, equivalent

to the requirement that Tr(J − I) < 0 and Det(J − I) > 0. Note that if the two eigenvalues λ±

are real, they are symmetrically centered around Tr(J)/2 on the real axis; if they are complex

conjugates they have real part equal to Tr(J)/2 and are symmetrically arranged on either side

of the real axis.

Eigenvalues and eigenvectors of JS. The condition for transient amplification is deter-

mined by the two eigenvalues of JS, which read:

l
�

S ¼
TrðJÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr2ðJÞ � 4DetðJÞ þ 4D
2

q

2
; ð28Þ

where we introduced the parameter

D ¼
jb � cj

2
: ð29Þ

Δ represents the difference between the off-diagonal elements of J, and provides a measure of

how far from symmetric the connectivity matrix is (Δ = 0 meaning symmetric connectivity).

Note that the equation for the eigenvalues of JS (Eq 28) differs from the one for the eigenvalues

of J (Eq 27) by the additive term 4Δ2 under the square root. Under the assumption of a stable

connectivity J, there exists a critical value for Δ, given by:

Dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � TrðJÞ þ DetðJÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðJ � IÞ

p
ð30Þ

above which the rightmost eigenvalue of JS is larger than one, meaning that specific inputs are

transiently amplified. Note that for a stable J, we have Det(J − I)> 0, implying that Δc is real.

Thus, Δ is the crucial parameter which determines the dynamical regime of the system.

Decomposition on the modes of JS. To identify the parameters which determine the

maximum amplification of a system, we project the network dynamics onto the orthonormal

basis of eigenvectors of JS. In the new basis the connectivity matrix is given by Eq (12). Inter-

estingly, the non-normal parameter Δ directly appears in the expression of the anti-symmetric

part JA, so that we obtain

J0 ¼
l
þ

S ðDÞ D

� D l
�

S ðDÞ

0

@

1

A ð31Þ

up to a sign of the off-diagonal elements. From Eq (31) we see that the non-normal parameter

Δ, which determines the dynamical regime of the system, also represents the strength of the

coupling between the modes of JS. For Δ> Δc we have l
þ

S ðDÞ > 1. Thus, at small times, any

component of the dynamics on the first mode of JS is amplified by an amount proportional to

l
þ

S ðDÞ � 1. However, at later times, because of the recurrent feedback of strength Δ between

the modes of JS, the system reaches a finite amount of amplification and relaxes back to the

zero fixed point. In the following we examine how the value of Δ determines the amount of

amplification of the system.
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Propagator of the dynamics. To examine the dependence of the maximum amplification

of the system on the parameter Δ we compute the propagator Pt and its SVD. A convenient

method to compute the exponential of a matrix is provided in [55] (see S2 Text), which we

apply to J0 to obtain

expðtJ0Þ ¼ x0ðtÞIþ x1ðtÞJ
0; ð32Þ

where the time-dependent functions x0(t) and x1(t) are given by

x0ðtÞ ¼ �
l
�

l
þ
� l

� e
lþt þ

l
þ

l
þ
� l

� e
l� t ð33aÞ

x1ðtÞ ¼
1

l
þ
� l

� e
lþt �

1

l
þ
� l

� e
l� t: ð33bÞ

Here λ+ and λ− are the eigenvalues of J (Eq 27).

SVD of the propagator. In order to compute the maximum amplification of the system

we next compute the largest singular value of the propagator σ1(Pt) (see S3 Text):

s1ðPtÞ ¼ e
� t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðtÞ2 þHðtÞ2
q

þ e� t
ffiffiffiffiffiffiffiffiffiffi

FðtÞ2
q

; ð34Þ

where

EðtÞ ¼ x0ðtÞ þ x1ðtÞðl
þ

S þ l
�

S Þ=2

FðtÞ ¼ x1ðtÞðl
þ

S � l
�

S Þ=2

HðtÞ ¼ x1ðtÞD

8
><

>:
ð35Þ

Maximum amplification of the system. Here we compute the maximal amount of ampli-

fication by evaluating the maximum value in time of the amplification envelope σ1(Pt) (Eq 34),

and examine its dependence on the non-normal parameter Δ. In particular we find that, for

large values of Δ, this dependence is linear.

To derive this relationship, we note that the combination l
þ

S � l
�

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðJÞ2 � 4DetðJÞ þ 4D
2

q

depends on Δ, while l
þ

S þ l
�

S ¼ TrðJÞ does not. Therefore in

Eq (35) only the functions H(t) and F(t) depend on Δ. In the amplified regime Δ� Δc,
we have thatH(t)� E(t) for times t� 1/Δ (while for small times δ� 1/Δ we have

E(δt) = 1 + Tr(J)δt/2� Δδt =H(δt)). In addition, for large values of Δ, we can write

ðl
þ

S � l
�

S Þ=2 ¼ Dþ OðD� 1
Þ so that the singular value can be written as

s1ðPtÞ ’ e
� tðjHðtÞj þ jFðtÞjÞ ’ De� tx1ðtÞ; for t � 1=D; D� Dc: ð36Þ

To find the value of the maximum amplification we need to compute the time t� of occurrence

of the global maximum of σ1(Pt) and the value σ1(Pt�). The final result is given by

t� ¼ argmax
t

e� tx1ðtÞ ¼
1

l
þ
� l

� log
l
�
� 1

l
þ
� 1

� �

; ð37Þ

s1ðPt� Þ ¼
D

l
þ
� l

�

l
�
� 1

l
þ
� 1

� � lþ

lþ� l�

�
l
�
� 1

l
þ
� 1

� � l�

lþ� l�

" #

: ð38Þ
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The two-dimensional model given by Eq (26) has four free parameters, namely the

strengths of the four recurrent connections. In our analysis we fix the values of the trace Tr(J)

and determinant Det(J) of the connectivity matrix, so that the dynamics are stable, and vary

the parameter Δ. This implies fixing the eigenvalues λ± and the corresponding timescales

t� ¼ 1=ð1 � Re l�Þ. This approach allows us to explore how different degrees of symmetry in

the connectivity, as quantified by Δ, influence the dynamics while keeping the timescales con-

stant. Thus, we find that, for Δ� Δc, and for fixed λ±, the maximum amplification of the sys-

tem scales linearly with the non-normal parameter Δ.

Optimally amplified initial condition. Here we compute the optimal input direction R�
1

by solving Eq (19). We parametrize the optimal input by the angle θ� it forms with the first

mode of JS, i.e. R�
1
¼ ðcosy�; siny�ÞT . Thus, Eq (19) translates into

l
þ

S cos
2y
�
þ l

�

S sin
2y
�
� 1 ¼ 0 ð39Þ

which is satisfied by

y
�
¼ �arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
þ

S � 1

1 � l
�

S

s

: ð40Þ

Rank-1 connectivity

In this section we consider a unit-rank connectivity matrix defined by

J ¼ DuvT; ð41Þ

where the vectors u and v are two N-dimensional vectors generated as

u ¼ x1

v ¼ r x1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

x2;

where the vectors x1, x2 and y are N-dimensional vectors with components drawn from a

Gaussian distribution with mean zero and variance 1/N and ρ is a number between −1 and 1

[45]. The average norm and correlation are given by hu � ui = hv � vi = 1 and hu � vi = ρ, and Δ
is an overall scaling parameter. We consider only positive values of Δ, since a minus sign can

be absorbed in the correlation coefficient ρ. The matrix J has N − 1 eigenvalues equal to zero

and one eigenvalue given by λ = Δρ, associated with the eigenvector u. In the two-dimensional

plane spanned by u and v, the direction orthogonal to v specifies another eigenvector of J cor-

responding to one of the zero eigenvalues.

Eigenvalues and eigenvectors of JS. We first compute the eigenvalues and eigenvectors of

the symmetric part of the connectivity

JS ¼ D
uvT þ vuT

2
: ð42Þ

JS is a rank-2 matrix, meaning it has in general two non-zero eigenvalues given by

l
�

S ¼
TrJS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTrJSÞ
2
� 4Det0JS

q

2
: ð43Þ

Here Det0JS ¼ l
þ

S l
�

S denotes the determinant of JS restricted to the uv-plane, i.e. the determi-

nant of the 2 × 2 matrix [u, u?]T JS[u, u?], where u? is a vector perpendicular to u on the uv-

plane (the determinant of the full matrix JS is zero because of the zero eigenvalues of JS). We
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find that the two non-zero eigenvalues of the symmetric part JS are given by (see S4 Text)

l
�

S ¼
l� D

2
: ð44Þ

Note that the eigenvalues of JS are symmetrically centered around λ/2, and their displacement

is controlled by the scaling parameter Δ. The condition for the system to be in the regime of

transient amplification is therefore

lþ D

2
> 1: ð45Þ

To compute the eigenvectors x�S associated with the non-zero eigenvalues l
�

S we have to

solve the eigenvector equation

ðDuvT þ DvuT � 2l
�

S IÞx
�

S ¼ 0: ð46Þ

Since the two eigenvectors lie on the uv-plane, we can write them in the form xþS ¼ uþ av
and x�S ¼ uþ bv. Solving the eigenvector equation for α and β yields α = 1 and β = −1. The

two normalized eigenvectors of JS are thus given by

x�S ¼
u� v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p : ð47Þ

Decomposition on the modes of JS. We can project the dynamics of the system on the

basis of eigenvectors of JS. Let VS be the N-dimensional matrix containing the eigenvectors of

JS as columns:

VS ¼ ðx
þ

S ; x
�

S ; ξ1; . . . ; ξN� 2Þ; ð48Þ

where the ξi’s areN − 2 arbitrary vectors orthogonal to both u and v. The projection of the con-

nectivity matrix J onto the modes of JS yields the new connectivity J0:

J0 ¼ VT
Suv

TVS ¼
D

2

rþ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

r � 1

0

0 0

0

B
B
B
B
@

1

C
C
C
C
A
¼

l
þ

S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2
� l

2
p

=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2
� l

2
p

=2 l
�

S

0

0 0

0

B
B
B
B
@

1

C
C
C
C
A
: ð49Þ

From Eq (49) we see that the parameter Δ controls the strength of the coupling between the

modes of JS through the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2
� l

2
p

=2. Thus, in the following analysis, we examine the

amplification properties of the system as a function of the parameter Δ.

Propagator of the dynamics. We explicitly compute the expression of the propagator for

the unit-rank system. From the definition of matrix exponential in terms of infinite sum of

matrix powers we obtain

expðtDuvTÞ ¼
X1

k¼0

ðtDuvTÞk

k!
¼ Iþ

DuvT

l
ð1þ lt þ

1

2
l

2t2 þ . . . � 1Þ

¼ Iþ D
elt � 1

l
uvT:

ð50Þ
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Therefore the final expression for the propagator is given by

Pt ¼ expðtðDuvT � IÞÞ ¼ e� t þ De� taðt; lÞuvT; ð51Þ

where we introduced

aðt; lÞ ¼
elt � 1

l
: ð52Þ

Note that the non-trivial dynamics of the system are restricted to the plane spanned by u and

v. In fact any component of the initial condition orthogonal to this plane decays to zero as e−t,
as any component orthogonal to v in the uv-plane. From this it follows that non-monotonic

transients occur only if the initial condition of the system has a non-zero component on the

structure vector v.

SVD of the propagator. To study how the maximum amplification depends on Δ we

compute the amplification envelope σ1(Pt). The singular values of the propagator Pt are given

by the square roots of the eigenvalues of the matrix PTt Pt . From Eq (51) we can write

e2t PTt Pt ¼ ðIþ Daðt; lÞvu
TÞðIþ Daðt; lÞuvTÞ

¼ Iþ 2Daðt; lÞJS þ D
2
a2ðt; lÞvvT:

ð53Þ

We obtain the expression for the singular values of the propagator σ1,2(Pt) as a function of Δ
and λ (see S5 Text):

2e2ts2

1;2
ðPtÞ ¼ 2þ 2laðt; lÞ þ a2ðt; lÞD2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
4
a4ðt; lÞ þ

1

D
2

4la3ðt; lÞ þ 4a2ðt; lÞð Þ

� �s

:ð54Þ

The other N − 2 singular values of Pt are equal to e−t.
Choice of the free parameters. For the unit-rank system, two parameters out of Δ, λ and

ρ can vary independently. Since we set Δ as a free parameter, we need to fix the second inde-

pendent parameter. We explore three scenarios, which imply different scalings of λ or ρ with

the parameter Δ:

1. keep the eigenvalue λ constant, so as to fix the timescale τ = 1/(1 − λ), and vary Δ. In this

case the correlation ρ between the u and v scales according to ρ = λ/Δ, meaning that increas-

ing Δ makes the structure vectors more orthogonal to each other.

2. Fix the correlation between the structure vectors, ρ, to a positive value and vary Δ. Increas-

ing Δ has the effect to increase the timescale of the system τ = 1/(1 − Δρ), until a point

where the system becomes unstable, i.e. for λ> 1, or equivalently Δ> 1/ρ.

3. Keep ρ fixed to a negative value. In this case Δ can be increased without bounds and higher

values of Δ decrease the timescale τ.

Maximum amplification of the system. The singular values of the propagator given by

Eq (54) depend in a complex manner on Δ and λ. To understand how the maximum amplifica-

tion of the system depends on Δ, we study the limit of very large Δ, defined as

D� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lðDÞ

p
; ð55Þ

which we call the strong amplification regime. Note that in general the eigenvalue λ depends on

Δ, according to λ(Δ) = Δρ. For fixed λ, Eq (55) is given by D� 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � l
p

, while for a fixed

value of ρ, Eq (55) translates into Δ� 2(1−ρ) (with the additional constraint Δ< 1/ρ ensuring
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stability, in case ρ> 0). If condition given by Eq (55) is met, we can approximate Eq (54) for

times t� 2/Δ as

2e2ts2

1
ðPtÞ ’ 2þ 2aðt; lÞlþ 2a2ðt; lÞD2

; t � 2=D: ð56Þ

For large Δ we can neglect the first two terms on the right hand side and write the largest sin-

gular value as

s1ðPtÞ ’ De� taðt; lÞ; t � 2=D: ð57Þ

The maximum amplification of the system corresponds to the maximum value in time of

σ1(Pt). In the strong amplification regime (Eq 55) the time t� at which the singular value attains

its maximum is independent of Δ and reads:

t� ¼ argmax
t

e� taðt; lÞ ¼
1

l
log

1

1 � l
: ð58Þ

Thus, the maximum amplification increases monotonically with Δ:

s1ðPt� Þ ¼ g l Dð Þð ÞD; gðlÞ ¼ ð1 � lÞ
1
l
� 1
; ð59Þ

where g(λ) is a multiplicative factor which depends on the eigenvalue λ. Different choices of

the free parameters imply different growths of the maximum amplification with Δ:

1. for λ fixed and ρ = λ/Δ, the maximum amplification increases linearly with Δ.

2. For ρ> 0 fixed and λ = Δρ, the maximum amplification increases monotonically with Δ,

until it reaches a value equal to Δ for Δ = 1/ρ (or λ = 1).

3. For ρ< 0 fixed and λ = Δρ, the amplification increases monotonically with Δ, but it satu-

rates at a value given by 1/|ρ|. This follows from the fact that

lim
D!þ1

gðDrÞ ¼
1

Djrj
: ð60Þ

In the case ρ = 0 the maximum amplification grows linearly as Δ/e, since

lim
r!0

gðDrÞ ¼
1

e
: ð61Þ

The general observation that the largest eigenvalue of the symmetric part of J does not pro-

vide direct information about the maximum amount of amplification that the system can

reach (maximum value of kr(t)k over time) is illustrated by the third case. Here ρ< 0 and the

largest eigenvalue of the symmetric part of the connectivity is given by λmax(J) = Δ(1 + ρ)/2.

Therefore, while λmax(J) can grow indefinitely by increasing the value of Δ, the maximum

amplification saturates at a positive level given by 1/|ρ|. This indicates that the value of the larg-

est eigenvalue of JS is in general inadequate to characterize the maximum amplification of the

system, for which other measures may be considered (see Discussion).

Optimally amplified initial condition and optimal readout. Using the result we found

for the two dimensional case, Eqs (40) and (44), we can determine the angles y
�

R � yðR
�

1
Þ and

y
�

L � yðL
�

1
Þ of the optimal initial condition and optimal readout with respect to the first mode
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of JS as

tan y�L;R ¼ � arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
þ

S � 1

1 � l
�

S

s

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ D � 2

2 � lþ D

r

; ð62Þ

where the + and − signs correspond respectively to y
�

L ans y
�

R. The optimally amplified initial

condition and optimal readout are thus given by

R�
1
¼ cos y�Rx

þ
S þ sin y�Rx

�
S

L�
1
¼ cos y�Lx

þ
S þ sin y�Lx

�
S :

(

ð63Þ

Here we examine R�
1

and L�
1

in the strong amplification regime (Eq 55). We summarize our

results as follows.

1. For fixed λ and ρ = λ/Δ, we have

tan y�R ’ � 1þ
2 � l

D
ð64Þ

up to the first order in Δ−1. In the strong amplification regime the second term on the right

hand side is much smaller than unity, so that we can compute R�
1

and L�
1

at the first order in

Δ−1. Denoting by v? ¼ ðu � rvÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

and u? ¼ ðruÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

respectively the vectors

orthogonal to v and u in the uv-plane, we can write

R�
1
/ v þ

1

2

2 � l

D
v?

L�
1
/ uþ

1

2

2 � l

D
u?:

8
>><

>>:

ð65Þ

In the strong amplification regime the optimal initial condition is thus strongly aligned

with v and the optimal readout with the vector u.

2. For fixed ρ> 0 and λ = Δρ, we compute the value of tanθ� for the largest value Δ can take

before the system becomes unstable, i.e. Δ = 1/ρ. For this value we have

tan y�R ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
1 � r

1þ r

s

’ � 1þ r; for 0 < r� 1: ð66Þ

Thus we have

R�
1
/ v þ

r

2
v?

L�
1
/ uþ

r

2
u?:

8
><

>:
ð67Þ

3. For fixed ρ< 0 and λ = Δρ, we can write

tan y�R ’ � 1þ
2

D
� r

� �

; ð68Þ
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so that

R�
1
/ v þ

1

2

2

D
� r

� �

v?

L�
1
/ uþ

1

2

2

D
� r

� �

u?:

8
>>><

>>>:

ð69Þ

In conclusion we find that, in the strong amplification regime, the optimal input has a

strong component on the structure vector v, while the optimal readout is strongly aligned with

u. In cases (2) and (3), however, this requires the additional condition that ρ be small.

Robustness of the readout to noise in the connectivity

In this section we study the dynamics of the system in presence of noise in the synaptic con-

nectivity. We consider the connectivity matrix given by Eq (41), which implements a single

transient pattern, and we add uncorrelated noise of standard deviation g=
ffiffiffiffi
N
p

to each weight

Δui vj. The resulting connectivity matrix can be written as the sum of a structured unit-rank

part and a Gaussian random matrix of the form [35]

J ¼ DuvT þ gχ: ð70Þ

The elements of χ are independently drawn from a Gaussian distribution with zero mean and

variance 1/N and are uncorrelated with the structured part. In the limit of large N, the matrix J

has one eigenvalue equal to the eigenvalue of the unit-rank part, λ = Δρ, while the other N − 1

eigenvalues are uniformly distributed in a circle of radius g. This holds under the condition

that the operator norm of the unit-rank part maxxkΔuvT xk is O(1) [56]. Since the structure

vectors u and v have unit norm, the operator norm of the unit-rank part is equal to Δ. There-

fore, if Δ is O(1), the condition for the stability of the system is max{λ, g}< 1.

Eigenvalues of JS. To draw the phase diagram of the system, we compute the eigenvalues

of the symmetric part of J

JS ¼ D
uvT þ vuT

2
þ gχS; χS ¼

χþ χT

2
; ð71Þ

where χS denotes the symmetric part of χ. The entries of χS are distributed according to

χS;ij �
N ð0; 1=2NÞ; i 6¼ j

N ð0; 1=NÞ; i ¼ j:

(

ð72Þ

We can express the eigenvalues of JS as a function of g and of the eigenvalues of the symmetric

part of the unit-rank matrix (see Eq 44) [57, 58]. In particular, the rightmost eigenvalue of JS is

given by

lmaxðJSÞ ¼
lþ D

2
þ

g2

lþ D
; lþ D >

ffiffiffi
2
p
g

ffiffiffi
2
p
g; otherwise;

8
><

>:
ð73Þ

where
ffiffiffi
2
p
g corresponds to the spectral radius of χS. We distinguish two cases:
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1. if
ffiffiffi
2
p
g < 1, lmaxðJSÞ is larger than one only if the two conditions

lþ D

2
þ

g2

lþ D
> 1

lþ D >
ffiffiffi
2
p
g

8
><

>:
ð74Þ

are satisfied. The first inequality is satisfied if lþ D < 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2g2

p
or

lþ D > 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2g2

p
. Since for

ffiffiffi
2
p
g < 1 we have

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2g2

p
<

ffiffiffi
2
p
g < 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2g2

p
, the condition for the amplified regime becomes

lþ D > 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2g2

p
: ð75Þ

2. If
ffiffiffi
2
p
g > 1, the inequality (λ + Δ)/2 + g2/(λ + Δ)> 1 is always satisfied for λ + Δ> 0, thus

holding also for lþ D >
ffiffiffi
2
p
g. From Eq (73) we conclude that, for

ffiffiffi
2
p
g > 1, λmax(JS) is

larger than one independently of the values of λ and Δ.

In the case
ffiffiffi
2
p
g < 1, adding noise in the connectivity has a small effect on the phase dia-

gram of the system. In fact, Eq (75) can be approximated as λ + Δ≳ 2 − g2, which leads to a

correction of order g2 to the condition for the amplified regime in absence of noise (see

S1 Fig).

Robustness of the readout activity. Here we examine the magnitude of the fluctuations

around the mean activity introduced by the random term in the connectivity given by Eq (70).

In particular we assess the robustness of the readout projection of the response evoked by the

optimal stimulus of the noiseless system, i.e. g = 0 (for a discussion on the effects of the connec-

tivity noise on the activity orthogonal to the uv-plane see S8 Text). For simplicity, we assume

that the correlation between the structure vectors, ρ, is close to zero, and that the condition

for the strong amplification regime is satisfied (Eq (55)). Therefore, the optimal stimulus is

strongly aligned with v, while the corresponding readout is u. We consider the system

dri
dt
¼ � ri þ

XN

j¼1

ðDuivj þ gwijÞrj þ sZiðtÞ: ð76Þ

Each neuron receives independent noise with mean zero, variance σ2 and autocorrelation

function hηi(t)ηj(t0)i = δij δ(t − t0), where the angular brackets represent the average over the

noise in the input and in the connectivity. In the limit of large N, the equation for the mean

activity depends only on the structured part of the connectivity:

dhrii
dt
¼ � hrii þ

XN

j¼1

Duivjhrji: ð77Þ

Thus, the mean activity in response to an input along v is given by (see Eq 51)

hriðtÞi ¼ e
� tvi þ Dte

� tui ð78Þ

From Eq (77) we write the equation for the fluctuations of ri(t) around the mean activity,

δri(t) = ri(t) − hri(t)i, as

ddri
dt
¼ � dri þ

XN

j¼1

Duivjdrj þ
XN

j¼1

gwijhrjðtÞi þ sZiðtÞ; ð79Þ
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where in the third term on the right hand side we neglected the corrections to ri(t) due to the

random component of the connectivity and input noise, keeping only the 0-th order term in g,
i.e. hri(t)i. Using Eq (78) we can write the solution of Eq (79) as

driðtÞ ¼
XN

k¼1

Z t

0

eðt� sÞðDuvT � IÞ
h i

ik
g
XN

l¼1

wklhrlðsÞi

 !

þ sZkðsÞ

" #

ds: ð80Þ

The time-dependent correlation matrix C(t) = hδ r(t)δ r(t)Ti can be written as the sum of

two terms, corresponding to the contributions of the noise in the connectivity (with variance

proportional to g2) and the noise in the input (with variance σ2):

CijðtÞ ¼ C
g
ijðtÞ þ CsijðtÞ

¼
g2

N

X

k;l

Z t

0

Z t

0

ds1ds2½e
ðt� s1ÞðDuvT � IÞ�ik½e

ðt� s2ÞðDuvT � IÞ�jkhrlðs1Þihrlðs2Þi

þs2
XN

k¼1

Z t

0

ds½eðt� sÞðDuvT � IÞ�ik½e
ðt� sÞðDuvT � IÞ�jk;

ð81Þ

where in the first term in the right hand side we used hχkl χmni = δkm δln/N.

We start by computing the first term in Eq (81). Since the elements of the matrix propaga-

tor and the mean activity are known (see Eqs 51 and 78), we can compute CgijðtÞ for a given

realization of the structured part (see S7 Text). The variance of the activity along the direction

of the readout u due to the noise in the connectivity is computed by projecting the matrix

Cg onto u. In particular we compute the variance of δru and at the peak of the transient phase

(t� ’ 1, see Eq (58)). As a result, the fluctuations of the readout activity at t = t� due to the

noise in the connectivity read:

uTCgð1Þu ¼
g2

N
e� 2 D

4

36
þ
D

2

2
þ 1

� �

ð82Þ

and scale as gD2
=
ffiffiffiffi
N
p

(for large Δ).

Computing the variance of the activity along the readout u due to the input noise yields

(see S7 Text)

uTCsð1Þu ¼ s2 1

2
�
e� 2

2
þ D

2 1

4
�

5

4
e� 2

� �� �

: ð83Þ

From Eq (81), we can write the total amount of variability along the readout u at the peak

amplification as

uTCð1Þu ¼
g2

N
e� 2 D

4

36
þ
D

2

2
þ 1

� �

þ s2 1

2
�
e� 2

2
þ D

2 1

4
�

5

4
e� 2

� �� �

: ð84Þ

Note that the fluctuations along u due to the noise in the input do not depend on the size of

the network N. Therefore, in the limit of large N, only the input noise affects the readout activ-

ity significantly. By computing the signal-to-noise ratio (SNR) of the readout activity, we can

assess the reliability of the readout in presence of input noise. The signal of the readout is sim-

ply the amplification level at the peak of the transient phase. Since for orthogonal structure
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vectors (ρ’ 0) the amplification grows as Δ/e, we find

SNRðs;DÞ ¼
D

e s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�
e� 2

2
þ D

2 1

4
�

5

4
e� 2

� �� �s : ð85Þ

The readout is reliable if its signal-to-noise ratio is much larger than unity. Interestingly, for

large values of Δ (see Eq 55), the SNR is independent of Δ, so that increasing the amplification

does not improve the SNR significantly (see S2 Fig). In fact, for Δ� 2, we can approximate

Eq (85) as

SNRðs;D� 2Þ ¼
1

e s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

5

4
e� 2

r : ð86Þ

In this regime, the critical value of σ above which the SNR becomes smaller than unity is:

sc ¼
1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

5

4
e� 2

r ’ 1:17: ð87Þ

We observe that the signal-to-noise ratio along the initial state (the vector v) is simply given by

SNR0(σ) = 1/σ, so that the critical value of σ above which SNR0 becomes smaller than unity is

given by σc,0 = 1. As a result, the maximum gain in SNR that strongly amplified networks can

achieve is less than 20%. The signal-to-noise ratio along the transient readout u and along the

initial state v are therefore comparable. However, since SNR(σ;Δ)<SNR0 for non amplified

dynamics (Δ< 2), transient amplification is needed to keep a stable SNR across initial state

and transient readout.

Robustness to multiple stored patterns and capacity of the network

In this section we examine the robustness of the transient readouts when P transient trajecto-

ries are encoded in the connectivity J. We consider a connectivity matrix given by the sum of P
unit-rank matrices

J ¼ D
XP

p¼1

uðpÞvðpÞT; ð88Þ

where the elements of the vectors u(p) and v(p) are randomly and independently distributed

with zero mean and variance equal to 1/N. Therefore, for large N and for P� N/2, these

vectors are close to orthogonal to each other, meaning that the correlation between all

the pairs of structure vectors, ρ, is close to zero. For simplicity, we assume that the non-

normal parameter Δ is the same for all stored trajectories. We first study the case of two

stored transient trajectories (P = 2), then generalizing to an extensive number of patterns

P = O(N).

Two encoded transient trajectories. The connectivity matrix in this case is given by

J ¼ Duð1Þvð1ÞT þ Duð2Þvð2ÞT: ð89Þ

Since the four structure vectors in Eq (89) are uncorrelated with each other, in the limit of

large N, we can factorize the full propagator of the dynamics as the product of the propagators
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of the single unit-rank parts (see Eq (51)) and obtain (see S9 Text)

expðtðJ � IÞÞ ’ e� texpðtDuð1Þvð1ÞTÞexpðtDuð2Þvð2ÞTÞ

¼ e� tðIþ Daðt; 0Þuð1Þvð1ÞTÞðIþ Daðt; 0Þuð2Þvð2ÞTÞ;
ð90Þ

where α(t; λ = 0) = t (see Eq 52). From Eq (90) we see that, in high dimensionality, the two

transient patterns do not interact. In fact, any initial condition defined on the plane spanned

by u(1) and v(1) evokes a two-dimensional trajectory which remains confined on the same

plane. The same holds for the dynamics on the plane defined by u(2) and v(2).

Extensive number of encoded trajectories and capacity of the network. When the num-

ber of encoded trajectories P is of order N, we cannot factorize the propagator as in the case of

two stored patterns, due to the stronger correlations between the 2P structure vectors u(p) and

v(p). However, the results for the case of one stored pattern with connectivity noise can be

applied to this case if we write the connectivity matrix in Eq (88) as

J ¼ Duð1Þvð1ÞT þ D
XP

p¼2

uðpÞvðpÞT: ð91Þ

Here we isolate the first term of the sum but, since all the P patterns are statistically

equivalent, the choice of the first pattern is arbitrary. The vectors u(i) and v(i) are uncorre-

lated with each other, so that we can consider the second term on the right hand side

of Eq (91) effectively as noise in the connectivity J = Δu(1)v(1)T, with mean zero and variance

Δ2 P/N2. In fact, the mean and the variance of the effective noise are given respectively by

XP

p¼2

huðpÞi vðpÞj i ¼
XP

p¼2

huðpÞi ihv
ðpÞ
j i ¼ 0 ð92Þ

and

XP

p;q¼2

huðpÞi vðpÞj uðqÞi vðqÞj i ¼
XP

p;q¼2

huðpÞi uðqÞi ihv
ðpÞ
j vðqÞj i ¼

XP

p;q¼2

1

N2
dpq ’

P
N2
: ð93Þ

Applying the results from the previous sections with g ¼ D
ffiffiffiffiffiffiffiffiffi
P=N

p
, we can state that the

noise coming from the additional P−1 patterns adds fluctuations of the order D
3
ffiffiffi
P
p

=N to

the projection of the activity on the readout u(1) corresponding to the stimulus v(1). Since

the number of encoded patterns P is extensive, the readout fluctuations scale as 1=
ffiffiffiffi
N
p

.

However, when a number P of trajectories are encoded in J, we are not guaranteed that the

connectivity has stable eigenvalues. Indeed, the eigenvalues of the matrix D
PP

p¼2
uðpÞvðpÞT are

distributed in a circle of radius g ¼ D
ffiffiffiffiffiffiffiffiffi
P=N

p
(yet the spectral density is not uniform, since

Eq (88) can be written as the product of two rectangular Gaussian matrices) [59]. Thus, to

ensure overall stability we need g ¼ D
ffiffiffiffiffiffiffiffiffi
P=N

p
< 1, resulting in a maximal number of patterns

Pmax that can be stored in the connectivity before the system becomes unstable. This number

defines the capacity of the system and is given by

Pmax ¼
1

D
2
N: ð94Þ

If the vectors u(p) and v(p) are exactly orthogonal to each other for all p, therefore forming

an orthonormal basis in RN , Eq (94) reduces to Pmax = N/2. From Eq (94) we see that,
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for fixed Δ, the number of transient trajectories that we can encode in the connectivity

matrix scales linearly with the size of the system, N. The capacity of the system rapidly

drops when Δ is increased, meaning that more amplified systems can encode less number

of stimuli. When the structure vectors are orthogonal to each other as in our case (ρ ’ 0),

the system is amplified for Δ> 2 (see Eq 45). Therefore, Eq (94) evaluated at Δ = 2 provides

an upper bound on the capacity for an amplified system with uncorrelated structure vec-

tors:

Pmax < 0:25N: ð95Þ
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S1 Fig. Phase diagram for the unit-rank network with connectivity noise. A. g < 1=
ffiffiffi
2
p

.

The red line indicates the boundary between the monotonic and amplified parameter regions

for g = 0.5. The grey dashed line corresponds to the case g = 0. B. g > 1=
ffiffiffi
2
p

. The dynamics are

amplified regardless of the values of the parameters Δ and ρ.

(TIF)

S2 Fig. Signal-to-noise ratio of the readout in presence of external input noise. Signal-to-

noise ratio of the readout as a function of the standard deviation of the input noise σ for two

values of the non-normal parameter Δ. Non-amplified dynamics (Δ = 1) are less robust to

noise than amplified dynamics (Δ = 4). Dashed lines correspond to the theoretical values (Eq

85). In simulations, N = 1000. Errorbars represent the standard deviation of the mean over 200

realizations of the connectivity matrix.

(TIF)
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