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Reliability and correlation of mixture cell 
correction in methylomic and transcriptomic 
blood data
Boris Chaumette1,2,3,4*  , Oussama Kebir2,3,4, Patrick A. Dion5, Guy A. Rouleau5 and Marie‑Odile Krebs2,3,4

Abstract 

Objectives:  The number of DNA methylome and RNA transcriptome studies is growing, but investigators have 
to consider the cell type composition of tissues used. In blood samples, the data reflect the picture of a mixture of 
different cells. Specialized algorithms can address the cell-type heterogeneity issue. We tested if these corrections are 
correlated between two heterogeneous datasets.

Results:  We used methylome and transcriptome datasets derived from a cohort of ten individuals whose blood was 
sampled at two different timepoints. We examined how the cell composition derived from these omics correlated 
with each other using “CIBERSORT” for the transcriptome and “estimateCellCounts function” in R for the methylome. 
The correlation coefficients between the two omic datasets ranged from 0.45 to 0.81 but correlations were minimal 
between two different timepoints. Our results suggest that a posteriori correction of a mixture of cells present in 
blood samples is reliable. Using an omic dataset to correct a second dataset for relative fractions of cells appears 
to be applicable, but only when the samples are simultaneously collected. This could be beneficial when there are 
difficulties to control the cell types in the second dataset, even when the sample size is limited.
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Introduction
Omics technologies are growing in many biomedical 
fields. In some of these fields, like psychiatry and 
neurology, access to tissues of interest is difficult 
while patients are alive and undergoing evaluation or 
treatment. Consequently, a number of studies came to 
rely on blood samples as an alternate source of accessible 
material from patients [5]. However, DNA methylation 
and gene expression profiles are relatively specific to 
a particular tissue and cell types, leading to frequent 
criticisms in regard to the reliability of results obtained 
from blood samples. Furthermore, one of the issues 
associated with the use of blood samples is that these 

comprised of various cell types. Consequently, the DNA 
methylation and RNA profiles that are derived from such 
samples are the results of a mixture of profiles. To detect 
statistically significant differences in methylation or 
gene expression data that are related to the experiment 
design, and not driven by the underlying variability and 
heterogeneity in cell-type composition, new algorithms 
have been developed to compute and address this 
issue. Yet, on occasion such correction cannot be 
applied because the cell counts composition can only 
be estimated from a whole-genome omic dataset (e.g. 
methylome and transcriptome) and not from a candidate 
gene study (e.g. Q-PCR or study of the methylation of one 
promoter). We want to test if the estimation of cell counts 
using one modality is reliable to correct the data obtained 
using a second modality. In a cohort of ten individuals, 
assessed at two different times (at baseline = T0 and 
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1-year after = T1), we tested for the correlation of two 
algorithms (EstimateCellCounts and CIBERSORT) when 
retrospectively estimating cell counts of methylomic and 
transcriptomic datasets obtained from the same blood 
samples. We also tested for the longitudinal stability of 
the cell counts in the same individuals.

Main text
The participants were recruited through the ICAAR 
cohort (PHRC, AOM-07-118, see [3] for a detailed 
description of the cohort). For the methylomic analysis, 
genomic DNA (500 ng) was extracted from whole blood, 
treated with sodium bisulfite using the EZ-96DNA 
Methylation KIT (Catalog No D5004, Zymo Research, 
USA) following the manufacturer’s standard protocol. 
Then the DNA methylation was studied using the 
Illumina Infinium HumanMethylation450 BeadChip 
(Illumina, San Diego, CA, USA) which contains 485,000 
probes across the genome. The Illumina GenomeStudio 
software (Illumina, San Diego, CA, USA) was used 
to assess the signal intensities of each probe. The R 
Minfi package [2] enabled data quality checks and 
normalization. This omic dataset was previously 
described in [8]. We used the EstimateCellCounts 
algorithm [6], which is implemented in Minfi package, 
to assess the abundances of various cell types in the 
methylomic dataset: B cells, CD4 T lymphocytes, CD8 T 
lymphocytes, eosinophils, granulocytes, monocytes and 
natural killer cells. We decide to not consider eosinophils 
as their estimates are effectively all zero (Additional file 1: 
Table S1).

For the transcriptomic analysis, total RNA was 
extracted from blood samples (PAXgene tubes) following 
the manufacturer protocol and using  the  PAXgene 
Blood RNA kit (QIAGEN) and a QIAcube robot. Then 
the omic dataset was obtained from the sequencing of 
TruSeq libraries. The methods for RNA sequencing are 
detailed in Chaumette et al. [4]. Briefly, blood total RNA 
was processed using the mRNA-Seq Sample Prep Kit 
(Illumina) before poly(A) RNA was isolated, fragmented 
and purified by ethanol precipitation. The libraries were 
prepared using the TruSeq Stranded mRNA kit. Paired-
end 75-bp sequencing runs were performed on an 
Illumina HiSeq 2000 instrument at over 80 million reads 
per sample. The Illumina software RTA1.12.4.2/HCS1.4.8 
converted this fluorophore information to sequence data 
and obtain FASTA files. Quality control was performed 
using ShortRead package for R [10]. FASTA files were 
aligned to the reference genome (hg19) using TopHat2 to 
generate BAM files [9]. A matrix of read counts was then 
created using HTSeq [1]. Then we used the CIBERSORT 
algorithm [11] to assess the abundances of 22 cell types 
in the transcriptomic data using the gene expression data 

and the LM22 signature gene file (default file). We only 
retained, for further analyses, the 6 cell types determined 
by the EstimateCellCounts algorithm in the methylomic 
dataset (Additional file 1: Table S1).

Spearman’s and Person’s correlations between cell 
populations estimated using the methylomic data and 
the transcriptomic data were tested using SPSS software 
(IBM SPSS Statistics for Windows, Version 24, IBM 
Corp., Armonk, NY). The significance threshold was set 
to an alpha-risk of 0.05 and multiple testing corrections 
were done using the Benjamini–Hochberg method.

Fractions of cells derived from the methylomic and 
the transcriptomic datasets were computed and the 
results are presented in Additional file  1: Table  S1. For 
the comparison between the two modalities, using all 
the samples, all Spearman’s correlations were significant 
with a coefficient moderate to high (0.45 to 0.81). The 
weakest correlation was obtained for CD8 T lymphocytes 
and the highest for CD4 T lymphocytes (see Table  1). 
All correlations remained significant after multiple-
testing correction by the Benjamini–Hochberg method. 
Pearson’s correlations are reported in Additional file  1: 
Table  S2. We then tested the correlation in the same 
individual between T0 and T1. As expected, due to 
the longitudinal variation of cells, there were fewer 
significant correlations with weaker coefficients (see 
Table 1).

These results indicate that cell heterogeneity can 
reliably be computed using bioinformatic algorithms 
like CIBERSORT for transcriptomic data and 
EstimateCellCounts function in R for methylomic 
data. Moreover, such a posteriori corrections are easier 
to apply than a priori adjustment that would involve 
flow cytometry or microbeads cell separations which 
are difficult to perform when the samples have been 
previously frozen.

Given that the correlation between transcriptomic and 
methylomic data is strong, it is reasonable to consider 
using the first dataset to predict the cell composition 
of the second one. This may be particularly useful 
when the reference-database is not provided for the 
later or if the second dataset is derived from a non-
omic approach. For instance, we can use the cell counts 
derived from a methylomic dataset to establish a cell 
mixture composition and then correct the targeted 
transcriptomic data (e.g. Q-PCR) where the cell counts 
could not be obtained. Inversely, the genome-wide 
transcriptome could be used to correct cell counts in 
a targeted methylation study (e.g. pyrosequencing). 
Cell composition can be retrospectively estimated and 
correlated across the different sets of data, even in a 
dataset with limited sample size, but only when the 
samples are simultaneously collected. Due to the weak 
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longitudinal correlations, correction of a dataset with the 
cell mixture composition estimated from another dataset 
is reliable only when the samples are collected at the 
same time. It does not appear to be a reliable approach 
to correct data from one modality when the sample for 
the second modality has been collected at a different 
timepoint.

Limitations
The main limitation of our report is the sample size that 
is very limited to only 10 individuals. However, the strong 
correlations obtained demonstrated the high reliability 
of the algorithms even for small studies. We have to 
acknowledge that longitudinal correlations are based in 
10 samples with 2 timepoints whereas the correlations 
between the two modalities are based on 20 samples; the 
smaller sample size may have decreased the significance 
of the longitudinal correlations.

Only 6 cell types were shared between the two analyses. 
However, these cell types are those mainly present in 
blood and worthy to be considered for cell mixture 
correction in methylomic or transcriptomic analyses.

Another limitation is that we have only performed 
these examinations from datasets that were derived 
from human blood. We cannot extrapolate on how 
significant such correlations would be if other tissues or 
species had been used. Indeed, the two algorithms used 
here are anchored to reference-databases of methylomic 
or transcriptomic profiles obtained from major cell-
types deemed to be present in the tissue of interest and 
uses this reference to infer sample-specific cell-type 
proportions. Sometimes however the reference of interest 
is not available for a particular tissue or species, but other 

algorithms can perform reference-free estimates (e.g. R 
package RefFreeEWAS for methylomic data) [7].

Finally, it is important to remember that even if 
some bioinformatics corrections can be applied to the 
omic datasets, the ideal tissue for a specific condition 
should be extensively discussed. Therefore, additional 
elements should also be considered when epigenetic and 
transcriptomic studies are being designed, among which 
possible batch effect or surrogate variables.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-4936-2.

Additional file 1: Table S1. Raw proportions of the six different cell types 
both in the methylation dataset and in the RNA sequencing dataset. 
Table S2. Pearson’s correlation between the proportion of each cell type 
estimated from the methylomic dataset and the transcriptomic dataset.
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Table 1  Spearman’s correlation between  the  proportion of  each cell type estimated from  the  methylomic 
and transcriptomic datasets and Spearman’s correlation between the proportion of each cell type in T0 and T1 for each 
dataset

NK natural killer cells, CD8T CD8 T lymphocytes, CD4T CD4 T lymphocytes, B cell B lymphocytes, BH Benjamini–Hochberg

Cell type Comparison between cell counts obtained 
from methylomic and transcriptomic dataset (n = 20)

Longitudinal correlation 
in the methylomic dataset 
(n = 10)

Longitudinal correlation 
in the transcriptomic dataset 
(n = 10)

Coefficient Significance Significance 
after BH correction

Coefficient Significance Coefficient Significance

CD8T 0.45 0.044 0.044 0.79 0.007 0.79 0.006

CD4T 0.81 < 10−4 < 10−4 0.72 0.019 0.81 0.005

NK 0.67 1·10−3 2·10−3 0.55 0.100 0.26 0.467

B cell 0.63 3·10−3 0.005 0.68 0.032 0.52 0.128

Monocytes 0.55 0.012 0.016 0.82 0.004 0.79 0.006

Granulocytes 0.76 0.017 0.019 0.30 0.405 0.21 0.556

Lymphocytes (all) 0.76 < 10−4 3·10−4 0.38 0.276 0.66 0.038
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