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SUMMARY

Secondary bacterial infections often complicate viral
respiratory infections. We hypothesize that perturba-
tion of the gut microbiota during influenza A virus
(IAV) infection might favor respiratory bacterial
superinfection. Sublethal infection with influenza
transiently alters the composition and fermentative
activity of the gut microbiota in mice. These changes
are attributed in part to reduced food consumption.
Fecal transfer experiments demonstrate that the
IAV-conditioned microbiota compromises lung
defenses against pneumococcal infection. Inmecha-
nistic terms, reduced production of the predominant
short-chain fatty acid (SCFA) acetate affects the
bactericidal activity of alveolar macrophages.
Following treatment with acetate, mice colonized
with the IAV-conditioned microbiota display reduced
bacterial loads. In the context of influenza infection,
acetate supplementation reduces, in a free fatty
acid receptor 2 (FFAR2)-dependent manner, local
and systemic bacterial loads. This translates into
reduced lung pathology and improved survival rates
2934 Cell Reports 30, 2934–2947, March 3, 2020 ª 2020 The Author
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of double-infected mice. Lastly, pharmacological
activation of the SCFA receptor FFAR2 during influ-
enza reduces bacterial superinfection.
INTRODUCTION

Despite thewidespread application of vaccination programs and

antiviral drug treatments, influenza A virus (IAV) infections are

responsible for significant morbidity and mortality. Influenza in-

fections can also result in sporadic and often devastating pan-

demics; the 1918 pandemic led to the death of 50 million people.

Severe bacterial infections can occur in the aftermath of IAV

infection and contribute significantly to the excess morbidity

and mortality of influenza (McCullers, 2014). Streptococcus

pneumoniae was the most commonly detected bacteria in the

1918 and 2009 influenza pandemics. Murinemodels have shown

that infection with IAV disrupts pulmonary barrier integrity and

dampens innate antibacterial immunity, thus favoring local bac-

terial outgrowth and dissemination from the lungs (Ballinger and

Standiford, 2010; McCullers, 2014; Rynda-Apple et al., 2015;

Short et al., 2014). This inability to control bacterial infection is

associated with changes in the numbers and/or functions of

innate immune cells, including alveolar macrophages, conven-

tional dendritic cells, neutrophils, and non-conventional T cells
s.
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(Barthelemy et al., 2017; Ghoneim et al., 2013; McNamee and

Harmsen, 2006; Sun and Metzger, 2014). Regarding the impor-

tance of the gut-lung axis in diseases (Budden et al., 2017; McAl-

eer and Kolls, 2018), we hypothesized that perturbation of the

gut microbiota during IAV infection might favor bacterial

superinfection.

The gastrointestinal tract hosts a complex, highly diverse mi-

crobial ecosystem. The tightly regulated interplay between the

microbiota and the host enables the establishment and persis-

tence of immune homeostasis (Blander et al., 2017; Maslowski

and Mackay, 2011; Thaiss et al., 2016). The impact of

commensal microbes on host immune responses is not limited

to the gut compartment (i.e., barrier functions and gut homeosta-

sis) but also extends to systemic compartments and distant

mucosal interfaces, such as the lungs (Budden et al., 2017;

McAleer and Kolls, 2018). The mechanism by which the gut

microbiota regulates the size and/or the functions of the

steady-state immune cell pool depends onmicrobial-associated

molecular patterns, microbial metabolites, and their interactions

with progenitor cells and mature immune cells (Arpaia et al.,

2013; Koh et al., 2016; Shapiro et al., 2014). It has recently

been shown that a healthy microbiota has a critical role in the

host’s defense against respiratory tract infections, including

IAV (Abt et al., 2012; Bradley et al., 2019; Ichinohe et al., 2011;

Moriyama and Ichinohe, 2019; Steed et al., 2017) and

S. pneumoniae (Brown et al., 2017; Clarke et al., 2010; Schuijt

et al., 2016). In the latter context, nucleotide-binding oligomeri-

zation domain (NOD)-like receptor agonists modulate the func-

tions of effector immune cells, including alveolar macrophages

and neutrophils.

Pathological situations (such as infections and chronic inflam-

matory or metabolic disorders) can modify the diversity and

composition of the gut microbiota, leading to dysbiosis (Levy

et al., 2017). Changes in intestinal bacterial communities can

influence disease outcomes even in distant organs, as demon-

strated by transfer experiments with dysbiotic microbiota. Only

a few studies have investigated the impact of an acute respira-

tory infection on the gut microbiota, and most of these involved

animal (murine) models of influenza. In this system, severe infec-

tions with H1N1 and H5N1 IAV were associated with alteration of

the gut microbiota (Bartley et al., 2017; Deriu et al., 2016; Groves

et al., 2018; Wang et al., 2014a; Yildiz et al., 2018), a finding that

seems also to apply to infections in humans (Qin et al., 2015).

This perturbation of the microbiota is associated with enhanced

susceptibility to secondary enteric infections (Deriu et al., 2016;

Yildiz et al., 2018). Influenza-associated dysbiosis has yet to be

fully characterized (e.g., metabolic output) and functionally

explored. In particular, it remains to be seen whether changes

in the composition of the gut microbiota during influenza infec-

tion affect remote (respiratory tract) bacterial infections. In the

present study, we found that sublethal infection with the H3N2

and H1N1 subtypes of influenza is associated with changes in

the composition of the gut (cecal and intestinal) microbiota and

with a drop in the production of short-chain fatty acids (SCFAs),

the end products of dietary fiber fermentation. Pair-feeding ex-

periments indicate that this phenomenon was probably due to

decreased food intake, a well-known feature of influenza (Monto

et al., 2000). Fecal transfer experiments demonstrated that the
alterations in the microbiota compromised pulmonary immunity

against pneumococcal infection. We discovered that the dimin-

ished production of acetate (the predominant SCFA), by altering

the bactericidal activity of alveolar macrophages, was respon-

sible for this remote effect. Acetate supplementation during

influenza infection reinforced, in a free fatty acid receptor 2

(FFAR2)-dependent manner, lung defenses against secondary

pneumococcal infection and reduced the lethal outcome of

superinfected mice. Lastly, activation of FFAR2 by a highly spe-

cific agonist mimicked the effects of acetate and protected

against post-influenza bacterial superinfection. Our results pro-

vide new insights into the pathophysiological mechanisms that

underlie secondary bacterial infection post-influenza and might

be of value in developing appropriate therapeutic approaches

in diseases associated with dysbiosis and secondary bacterial

infections.

RESULTS

Sublethal Influenza Infection Transiently Alters the
Composition and Metabolic Output of the Gut
Microbiota
To study the impact of a sublethal influenza infection on the

composition and functionality of the gut microbiota, feces from

IAV (H3N2)-infected mice were collected, and 16S rRNA gene

profilingwasperformed.Thedeterminationof theweightedphylo-

geneticUniFrac distance (beta diversity) using unsupervised clus-

tering and principal-component analysis (PCA) clearly indicated

an intergroupdifference in the fecalmicrobiotaatday7post-infec-

tion (7 dpi), but not at 14 dpi (Figure 1A). A taxonomic analysis did

not reveal anymajor changes at the phylum level at 7 dpi, with the

exception of the Verrucomicrobia (Akkermansia) and, to a lesser

extent, the Cyanobacteria (Figure S1A; Table S1). Greater

changes were observed for lower taxonomic affiliations. Within

theBacteroidetes phylum, the relative abundanceof theBacteroi-

dales S24-7 family was reduced, while that of the Parabacteroi-

detes and Odoribacter genera was enhanced at 7 dpi (Table S1).

In the Firmicutes phylum, we observed a greater relative abun-

danceofClostridiales (unaffiliated),Ruminococcaceae, andMogi-

bacteriacecea families and theCoprococcus,Roseburia,Defluvit-

talea,Dorea,Ruminococcus, andGemmiger genera (Figure S1B).

In contrast, lower relative abundances were observed for the

Lachnospiraceae family (mainly unaffiliated Lachnospiraceae

and Clostridium genera) and the Dehalobacterium and Lactoba-

cillus (Bacilli class) genera. Lastly, within the Proteobacteria

phylum, the proportion of Alphaproteobacteria and Gammapro-

teobacteria (Escherichia genus) classes increased, while that of

Betaproteobacteria (Sutterella genus) decreased. Unsupervised

clustering andPCAof the cecal samples also revealeda clear shift

at 7 dpi relative to the controls (mock-treated mice) (Figure 1B).

Likewise, we observed variations at the phylum level and below

(Table S2). It is noteworthy that along with increased relative

abundances of Verrucomicrobia and Cyanobacteria (as was the

case in feces), we observed a dramatic drop in Actinobacteria

(Bifidobacteriaceae and Coriobacteriaceae families) in the cecal

samples.Quantitative PCRassaysdidnot reveal significant differ-

ences in the 16S rRNA gene copy number in the feces and cecal

compartment at any of the time points post-influenza,
Cell Reports 30, 2934–2947, March 3, 2020 2935



Figure 1. Altered Composition and Fermenta-

tive Activity (SCFA Production) of the Gut Mi-

crobiota during IAV Infection

(A) Seven and fourteen days after IAV (H3N2) infec-

tion, fecal contents were collected for 16S rDNA

profiling. Fecal samples from each mouse were also

collected the day of infection (D0). Bacterial com-

munities were clustered using PCA of weighted

UniFrac distance matrices (beta diversity). The first

three principal coordinates (PC1, PC2, and PC3) are

plotted for each sample, and the percentage varia-

tion in the plotted principal coordinates is indicated

on the axes. Each spot represents one sample, and

each group of mice is denoted by a different color

(blue: noninfected/day 0, red: 7 dpi/day 7, green, 14

dpi/day 14). Distance between dots represents

extent of compositional difference.

(B) PCA (H3N2/cecum). Blue, noninfected (mock);

red, 7 dpi; green, 14 dpi (n = 8, one of three inde-

pendent experiments shown).

(C) Cecal concentrations of total (left panel) and in-

dividual (right panel) SCFAs in mock-treated and

IAV-infected mice (n = 21–33, five pooled experi-

ments).

(D) Cecal concentrations of total SCFAs in mock-

treated and IAV (H1N1/pdm09)-infected mice (7 dpi)

(n = 6–8, one experiment performed).

(E) Blood concentrations of total SCFAs (9–10 pooled

sera, 4 mice/pool). The repartition of individual

SCFAs in the blood is represented (mock).

Results are expressed as the mean ± SD (C–E).

Significant differences were determined using the

Kruskal-Wallis ANOVA test (C) and the Mann-Whit-

ney U test (D and E) (*p < 0.05; ***p < 0.001). See also

Figures S1–S3 and Tables S1–S3.
demonstrating an overall stable gut bacterial load (Figure S1C). In

line with other studies (Wang et al., 2014a; Yildiz et al., 2018), no

IAV RNA genome was detected by quantitative PCR in the intes-

tine of IAV-infected mice (Figure S1D). This suggests that dysbio-

siswasnotdue toviral replication in this siteor topassive transport

of viralRNA into the intestinal tissue. Toexpandupon theseobser-

vations, we testedwhetherH1N1 IAV,which is the other dominant

subtype in human IAVs, alters the composition of the gut micro-

biota. Infection with H1N1 IAVs also led to clear variations in the

microbiota at 7 dpi (Figures S2 and S3; Tables S3 and S4). Similar

changes in phylogenetic specifications were observed for H1N1-

infected and H3N2-infected animals; shifts in Bacteroidales S24-

7, Lachnospiraceae, Ruminococcus, Lactobacillus, Sutterella,

andAkkermansia (relative tocontrols)wereobserved forboth virus

subtypes.Collectively, sublethal influenza (H3N2andH1N1) infec-

tion leads to transient gut dysbiosis.

Since changes in the composition of the gut microbiota can

alter its functionality (e.g., metabolic activity), we quantified the

production of SCFAs, major metabolites of the gut microbiota,

during the course of influenza infection. SCFAs are generated
2936 Cell Reports 30, 2934–2947, March 3, 2020
by bacterial fermentation of colonic dietary

fibers, reaching high concentrations in the

gut lumen under physiological conditions

(Koh et al., 2016). As shown in Figure 1C

(left panel), the total SCFA concentration
in the cecum 7 days after H3N2 infection was lower relative to

noninfected mice. The concentrations of acetate (the predomi-

nant SCFA), propionate, and butyrate were all lower (Figure 1C,

right panel). At 14 dpi, the cecal SCFA concentrations returned to

basal levels. A significantly reduced concentration of SCFAswas

also observed at 7 dpi inmice infectedwith H1N1 IAV (Figure 1D).

It is known that SCFAs produced in the gut can pass into the sys-

temic circulation and then exert remote biological effects (partic-

ularly acetate and, to a lesser extent, propionate and butyrate)

(Cait et al., 2018; Macia et al., 2015; Trompette et al., 2014). As

seen in Figure 1E, influenza infection resulted in a lowered con-

centration of SCFAs in the blood at 7 dpi. In agreement with other

studies (Cait et al., 2018; Macia et al., 2015; Mariño et al., 2017;

Trompette et al., 2014), acetate was the predominant SCFA

found in the blood. These data show that influenza infection

alters the metabolic (fermentative) output of the gut microbiota

at 7 dpi and that it affects local (gut) and systemic (blood)

concentration of SCFAs, an emerging group of dietary derived

metabolites endowed with immune regulatory functions (Tan

et al., 2014).



Figure 2. Enhanced Susceptibility to Respiratory Bacterial Infection in Mice Colonized with the IAV-Experienced Microbiota

(A) The experimental design for microbiota adoptive transfer is shown. 1 day after the second colonization, mice were challenged with S. pneumoniae (1 3 106

colony-forming units [CFUs]). Non-recolonized ABX-treated mice were infected 3 days after ABX cessation.

(B) The number of viable bacteria in the lung was determined 30 h after the bacterial challenge. The solid lines correspond to themedian values (n = 10, pool of two

independent experiments).

(C and D) The same procedure was performed, but this time, ABX-treated mice were recolonized with the cecal microbiota collected from mock-treated mice or

IAV-infected mice (H3N2 or H1N1, C and D, respectively). n = 19–21 (C) and n = 14 (D) (pool of three or two independent experiments).

Significant differences were determined using the Kruskal-Wallis ANOVA test (B) and the Mann-Whitney U test (C and D) (*p < 0.05; **p < 0.01).
The IAV-Experienced Microbiota Confers Susceptibility
to Respiratory Bacterial Infection
Through the continuous release of soluble factors, the gut micro-

biota can act at distance to modulate pulmonary immunity (Abt

et al., 2012; Bradley et al., 2019; Brown et al., 2017; Clarke

et al., 2010; Ichinohe et al., 2011; Schuijt et al., 2016; Steed

et al., 2017). We thus investigated the potential consequences

of IAV-induced gut dysbiosis on pulmonary antibacterial

defenses. To this end, we performed microbiota transfer exper-

iments (experimental protocol in Figure 2A). Using this approach,

recent reports have demonstrated that a healthy gut microbiota

can enhance resistance to pulmonary pneumococcal infection

(serotype 3) (Brown et al., 2017; Clarke et al., 2010; Schuijt

et al., 2016). To investigate this putative effect in our experi-

mental model, mice were treated with broad-spectrum antibi-

otics (ABX), to disrupt the residual microbiota, and were then

intranasally challenged with S. pneumoniae serotype 1, a major

serotype in humans. Relative to conventional (microbiota profi-

cient) mice, ABX-treated mice displayed a greater bacterial
load in their lungs, and oral administration of gut microbiota

collected from healthy mice restored bacterial clearance (Fig-

ure 2B). These data confirm that a transient arrest of micro-

biota-derived input signals (here due to ABX treatment) can alter

the early pulmonary defenses against bacterial infection.

We next determined whether a loss of input signals due to prior

influenza infection could compromise antibacterial pulmonary de-

fense. To this end, the gut microbiota collected from IAV-infected

mice was transplanted into ABX-treated mice. Strikingly, mice

colonized with the IAV (H3N2)-experienced microbiota had a

significantly greater bacterial count in the lungs than mice colo-

nizedwith themock (control) gutmicrobiota (Figure 2C, left panel).

The dysbiotic IAV-conditionedmicrobiota also enhancedbacterial

dissemination from the lungs, as revealed by the higher number of

viable bacteria in the spleen (Figure 2C, right panel). To investigate

whether this effect was strain specific, the same procedure was

repeated using gut microbiota collected from H1N1-infected

mice. This also led to enhanced susceptibility to pulmonary pneu-

mococcal infection (Figure 2D). This finding indicates that the
Cell Reports 30, 2934–2947, March 3, 2020 2937



Figure 3. Reduced SCFA Production by the IAV-Experienced Microbiota and Effect of Acetate (Ace) Supplementation on Host Defense

against Pneumococcal Infection

(A) Total cecal SCFA concentration in conventional mice, ABX-treated mice, and ABX-treated recolonized mice (n = 4–7, one of two independent experiments

shown).

(B) Total (left panel) and individual (right panel) cecal SCFA concentration in mice recolonized with the microbiota collected from mock-treated mice or IAV

(H3N2)-infected mice (7 dpi). n = 8 (one of two independent experiments shown).

(C) Recolonized mice (IAV-conditioned microbiota, 7 dpi) were infected with S. pneumoniae (1 3 106 CFUs). Mice were treated with Ace (200 mM in drinking

water) or vehicle (Vh) 5 days before the pneumococcal challenge (n = 15–20, pool of three independent experiments).

(D) S. pneumoniae colonies at exponential growth were added to culture medium in the absence or presence of grading concentrations of Ace or, as a positive

control, 1 U/mL penicillin and 1 mg/mL streptomycin. The optical density (O.D.). was measured over time, as stated in the figure.

Results are expressed as themean ±SD (A and B). Significant differenceswere determined using the Kruskal-Wallis ANOVA test (A) and theMann-Whitney U test

(B and C) (*p < 0.05; **p < 0.01).
altered pulmonary response transferred by the IAV-conditioned

microbiota is a general consequence of influenza infection,

regardless of the viral subtype. Hence, disturbance of the micro-

bial equilibrium in the gut during influenza infection enhances sus-

ceptibility to respiratory bacterial infections.

Reduced Acetate Production by the IAV-Experienced
Microbiota Is Responsible for Enhanced Susceptibility
to Respiratory Bacterial Infections
We next investigated whether the greater susceptibility of mice

colonized with the dysbiotic IAV-conditioned microbiota associ-

ates with lower SCFA production. As expected, the cecal SCFA

concentration was much lower in ABX-treated mice than in con-

ventional animals, and colonization with a healthy microbiota

partially restored the SCFA content (Figure 3A). Interestingly, rela-

tive tomicecolonizedwith themock-conditionedmicrobiota,mice

colonized with the IAV-conditioned microbiota had significantly

lower concentration of SCFAs (Figure 3B, left panel). In particular,

the concentration of acetate and propionate was reduced (Fig-

ure 3B, right panel). It is noteworthy that at this time point, the con-

centration of butyrate remained at basal level. Together, altered

respiratory defenses of colonized mice (IAV-conditioned micro-

biota) associate with reduced SCFA production.
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We then addressed the hypothesis that the drop of SCFAs

may affect the pulmonary response. To this end, we looked at

whether SCFA supplementation of IAV-conditioned microbiota-

transplanted mice could reverse the dysfunctional pulmonary

response against S. pneumoniae. We focused on acetate, as it

represents the predominant SCFA found systematically (Cait

et al., 2018; Macia et al., 2015; Trompette et al., 2014) and Fig-

ure 1E). Remarkably, acetate supplementation (drinking water)

diminished bacterial count in the lungs and reduced systemic

spread of bacteria from the lungs (Figure 3C). SCFAs can exert

bactericidal and/or bacteriostatic functions (Coussens et al.,

2015; Wang et al., 2014b). As shown in Figure 3D, acetate had

no direct effect on S. pneumoniae outgrowth in vitro. Together,

the fermentation product acetate can restore the defective anti-

bacterial pulmonary response conferred by the dysbiotic IAV-

conditioned microbiota.

Restricted Food Intake (Mimicking Influenza Disease)
Alters the Gut Microbiota and the Pulmonary Defense
against Bacterial Infection
Rapid decreased food intake can alter the composition and the

metabolic activity of the gut microbiota (Li et al., 2017). We hy-

pothesized that one of the most influential factors that might



Figure 4. Altered Gut Microbiota and Pulmo-

nary Defense against Pneumococcal Infection

in Pair-Fed Mice

(A) Kinetic measurement of body weight loss of pair-

fed mice and IAV-infected mice (n = 8, one out of

three experiments performed).

(B) Analysis of the gut microbiota (feces) in pair-fed

mice. Bacterial diversity following food restriction

was determined by PCA andwas compared to that in

IAV-infected mice (H3N2, 7 dpi).

(C) Concentrations of cecal total SCFAs in nourished

mice, pair-fed mice, and IAV-infected (7 dpi) mice

(n = 14, pool of two independent experiments).

(D) Nourished and pair-fed mice were infected with

S. pneumoniae (1 3 106 CFUs).

(E) ABX-treated mice were recolonized with the mi-

crobiota collected from nourished mice or from pair-

fed mice. Recolonized mice were infected 3 days

after the first recolonization (1 3 106 CFUs).

(F) Mice recolonized with the dysbiotic (pair-fed-

conditioned) microbiota were treated or not with Ace

as described in Figure 3C.

n = 13–16 (D–F) (two pooled experiments). Results

are expressed as the mean ± SD (A–C). Significant

differences were determined using the Kruskal-

Wallis ANOVA test (C) and the Mann-Whitney U test

(D–F) (*p < 0.05; **p < 0.01; ***p < 0.001). See also

Figure S4 and Table S5.
result in alterations of the gut microbiota during influenza infec-

tion is decreased food intake (due to anorexia). In our sublethal

infection model, influenza infection is associated with decreased

food intake (and body weight loss) from days 4 to 11, with a peak

at day 7 (reaching�85%) (Figure S4A, left panel). In order to test

whether gut dysbiosis during influenza infection may be due to

reduced food consumption, we designed a pair-feeding experi-

ment. We restricted the food intake of noninfected mice, with

reductions of 10%, 35%, and 85% on days 4, 5, and 6, respec-

tively (based on measurement of food consumption by infected

animals; Figure S4A, right panel) in order to have body weight

loss similar to IAV-infectedmice. These pair-fedmicewere sacri-

ficed at day 7. As depicted in Figure 4A, pair-fed mice lost weight

(relative to normally fed mice) in much the same way as IAV-in-

fected animals and had lost �15% of their initial weight at the

time of the sacrifice. An analysis of the beta diversity clearly

showed that the bacterial population from pair-fed mice differed

from that of nourished mice and tended to cluster with the

population from the IAV-infected mice at 7 dpi (Figure 4B; data

not shown). Although the diet-imposed rapid weight loss did

not fully recapitulate the phenotype of influenza infection, a

taxonomic analysis revealed several common shifts in the diver-

sity and abundance of taxa (e.g., Parabacteroides, Lachnospira-

ceae, Lactobacillus, Alphaproteobacteria, and Akkermansia)

for pair-fed mice and IAV-infected mice (Figures S4B and S4C;
Cell
Table S5). Relative to nourished mice,

pair-fed mice displayed lower cecal

concentration of SCFAs (Figures 4C and

S4D).

To investigate the effect of food restric-

tion on the host’s pulmonary defenses,
pair-fed mice were infected with S. pneumoniae. As shown in

Figure 4D, the bacterial counts in the lungs and spleen were

higher in pair-fedmice than in control mice. To elucidate whether

the gut microbiota is causal for this enhanced susceptibility, we

performed microbiota transplantation experiments. The experi-

ments indicated that this enhanced susceptibility was at least

in part due to altered gut microbiota (Figure 4E). We next tested

our presumption that reduced acetate production in pair-fed

animals (due to dietary fiber deprivation) could enhance suscep-

tibility to pneumococcal infection. Indeed, acetate supplementa-

tion significantly reduced the bacterial load in mice that received

the pair-fed-conditioned (dysbiotic) microbiota (Figure 4F).

Together, food restriction mimicking influenza disease alters

the composition and metabolic activity of the gut microbiota

and increases susceptibility to respiratory bacterial infections.

These results support the notion that reduced food consumption

during influenza infection contributes to dysbiosis and altered

pulmonary defenses against bacterial infections.

The IAV-Conditioned Microbiota Impairs the
Bactericidal Activity of Alveolar Macrophages, an Effect
Restored by Acetate Supplementation
We next sought to gain insights into the mechanisms through

which the IAV-conditioned microbiota compromises the host’s

pulmonary defenses. Alveolar macrophages, conventional
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dendritic cells, neutrophils, invariant natural killer T cells (iNKT)

cells, and gd T cells play a (direct or indirect) role in the early clear-

ance of pneumococci (Cao et al., 2014; Nakamatsu et al., 2007;

van der Poll and Opal, 2009; Paget and Trottein, 2019). Flow cy-

tometry analysis indicated that colonizedmice (mock-conditioned

microbiota and IAV-conditioned microbiota) displayed an iden-

tical number of these cells in the lungs (Figures 5A, S5A, and

S5B). We and others have shown that interferon-g (IFN-g) and

interleukin-17A (IL-17A) production by iNKT cells and gd T cells,

respectively, contributes to the control of pneumococci outgrowth

(Barthelemy et al., 2017; Cao et al., 2014; Hassane et al., 2017).

Intracellular flow cytometry indicated a similar number of IFN-g-

expressing iNKT cells and IL-17A-expressing gd T cells upon

S. pneumoniae challenge in the twogroupsof colonizedmice (Fig-

ure 5B). Phagocytosis is an important early event in the control of

S. pneumoniae. To evaluate this, colonized mice were infected

with EGFP-expressing S. pneumoniae (serotype 1), and 4 h later,

cells were collected from the bronchoalveolar lavage (BAL) fluids.

At this time point, alveolar macrophages represented by far the

main cell population in the BAL fluids (>95%), and their numbers

were similar in the two groups (data not shown). Confocal micro-

scopy did not reveal any significant differences between the

groupsof animalswith regard to (1) the frequency ofmacrophages

having internalized S. pneumoniae and (2) the average number of

internalized bacteria per macrophage (Figures 5C and 5D). Quan-

titative real-time PCR (16S S. pneumoniae) assay on sorted alve-

olar macrophages confirmed this finding (Figure 5E). We next

turned to investigate potential alteration of the bactericidal activity

of alveolar macrophages. To evaluate this, the killing activity of

alveolar macrophages was measured. Compared to the control

group, alveolar macrophages collected from IAV-conditioned mi-

crobiota-colonized mice displayed an altered capacity to kill

pneumococci (Figure 5F). Indeed, in this animal group, an

enhanced number of viable internalized bacteria were counted af-

ter macrophage lysis and bacterial culture. Hence, alveolar mac-

rophages (IAV-conditioned microbiota) kill pneumococci less

effectively.

We then looked at whether acetate treatment of colonized

mice (IAV-conditioned microbiota) could affect pulmonary cell

number and/or activation. Relative to controls, acetate treatment

did not significantly modify the frequency/number of macro-

phages, conventional dendritic cells, neutrophils, and unconven-

tional T cells or the activation threshold of the later (Figures 5A,

5B, and S5B). We then investigated whether acetate treatment

could reverse the altered effector functions of alveolar macro-

phages. Acetate treatment had no impact on phagocytosis ac-

tivity of alveolar macrophages but enhanced their killing activity

(Figures 5D–5F). To further demonstrate the role of alveolar mac-

rophages in acetate-induced pulmonary defense, colonized

mice were treated with clodronate-loaded liposomes. Macro-

phage depletion (Figure S5C) abrogated the protective effect

of acetate (Figure 5G). To investigate whether acetate directly

targets macrophages, killing assays were performed in vitro.

Pretreatment of macrophages with acetate enhanced the killing

of pneumococci (Figure 5H). Collectively, the dysbiotic IAV-

conditioned microbiota lowers pneumococci clearance through

impairment of alveolar macrophage functions, an effect restored

by acetate supplementation.
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Supplementation of Acetate during Influenza Protects
against Lethal Bacterial Superinfection
We then investigated the potential contribution of altered SCFA

production during IAV infection on secondary bacterial infection.

To this end, IAV-infected mice were treated with acetate and

secondarily infected with S. pneumoniae at day 7, the peak of

susceptibility. Remarkably, acetate supplementation lowered

the bacterial load in the lungs and resulted in reduced systemic

spread of bacteria from the lungs in double-infected mice (Fig-

ure 6A). The combined use of acetate, propionate and butyrate

did not further enhance resistance, relative to acetate alone (Fig-

ure S6A). Of note, the protective effect triggered by acetate did

not associate with major changes in the composition of the gut

microbiota (Figures 6B, S6B, and S6C). To determine the effect

of acetate on pulmonary damage, we evaluated and scored

lung samples histopathologically. Compared to the control

group, acetate-treated mice had less marked pneumonia,

including perivascular inflammatory infiltrates (Figure 6C). We

then determined whether the positive effect of acetate on bacte-

rial loads and lung pathology extended to ameliorated morbidity

and mortality outcomes. While acetate treatment had no effect

on weight loss due to IAV infection, it favored weight regain after

secondary pneumococcal infection (Figure S7A). Most notably,

supplementation of acetate during the course of IAV infection

effectively and significantly improved survival of double-infected

mice (�50% survival rate; Figure 6D).

We next assessed mechanisms through which acetate was

able to ameliorate disease outcomes of superinfected mice. Vi-

rus-induced alteration of epithelial barrier functions contributes

to bacterial superinfection (Barthelemy et al., 2018; McCullers,

2014; Rynda-Apple et al., 2015). Acetate treatment did not affect

viral load in lungs and had no effect on the expression of genes

associated with pulmonary barrier functions, the expression of

whichwas strongly altered during influenza (Figure 6E). Likewise,

acetate failed to affect the expression of IFN-inducible genes

and antiviral mediators (Figure S7B). Hence, acetate does not

act on viral replication and associated epithelial dysfunction.

We then reasoned that the beneficial effect of acetate might

rely on antibacterial functions of immune cells. Compared to

controls, acetate treatment did not modify the number of

macrophages, conventional dendritic cells, neutrophils, IFN-g-

expressing iNKT cells, and IL-17A-expressing gd T cells (Figures

S7C and S7D). Of interest, macrophage depletion by clodronate-

liposome inoculation abrogated the beneficial effect of acetate

(Figure 6F). Taken as a whole, low acetate production during

influenza infection influences susceptibility to secondary bacte-

rial infection, and supplementation of acetate (in part through

macrophages) is sufficient to improve disease outcomes.

Exogenous Administration of a Synthetic FFAR2 Agonist
Protects against Post-influenza Secondary Bacterial
Infection
Acetate can act through the G-protein-coupled receptors FFAR2

(formerly GPR43) and, to a lesser extent, FFAR3 (formerly GPR41)

(Milligan et al., 2017). Relative to FFAR2-competent mice, acetate

failed to significantly lower bacterial loads in superinfected

Ffar2�/� mice (Figure 7A). Of note, no significant difference was

noticed in terms of viral (not shown) and bacterial loads between



Figure 5. Altered Bactericidal Activity of AlveolarMacro-

phages in Mice Recolonized with the Dysbiotic IAV Mi-

crobiota

(A) Lung cells from recolonized mice were analyzed by flow cy-

tometry. The mean number ± SD of alveolar macrophages and

neutrophils are depicted.

(B) Recolonized mice were infected with S. pneumoniae (13 106

CFUs), and 16 h later, the mean number ± SD of iNKT cells

positive for IFN-g and gd T cells positive for IL-17A were deter-

mined. n = 8 (A and B) (two pooled experiments).

(C) Colonized mice were infected with EGFP-expressing

S. pneumoniae (1 3 106 CFUs). 4 h later, binding and internali-

zation of bacteria (green) was assessed by confocal microscopy.

Representative images are shown. Nuclei (blue) were visualized

by staining with DAPI. The central image is a maximum intensity

projection of the image stack (scale bars, 10 mm; insert magni-

fication, 23). Top and right: orthogonal view for the axis yz and

xz.

(D) The frequency of macrophages having internalized

S. pneumoniae and the average number of internalized bacteria

per macrophage are depicted (n = 6; one representative exper-

iment out of two).

(E) Quantification of S. pneumoniae in sorted alveolar macro-

phages (4 h after infection) by quantitative PCR. Data were

normalized against expression of the gapdh gene, and data are

expressed as DCt. One representative experiment out of two is

depicted.

(F) Alveolarmacrophageswere collected from colonizedmice 4 h

after S. pneumoniae infection. After extensive washing, cells

were lysed and plated on blood agar plates. The number of viable

bacteria is expressed per 1 3 105 cells (n = 7–14, two pooled

experiments).

(G) Ace-treated colonized mice (ABX/IAV) were treated with

clodronate-loaded liposomes or empty liposomes 16 h before

S. pneumoniae challenge (intranasal route) (n = 11–12, two

pooled experiments).

(H) Macrophages were pretreated with Ace (10 mM) for 1 h and

next exposed to opsonized S. pneumoniae. The number of viable

bacteria was assessed 2 h post-bacterial exposure by counting

CFUs from cellular lysate. Data are representative of two inde-

pendent experiments (n = 6).

Results are expressed as themean ±SD (A, B, and D). Significant

differences were determined using the Kruskal-Wallis ANOVA

test (A, B, and D–F) and the Mann-Whitney U test (G and H) (*p <

0.05; **p < 0.01; ***p < 0.001). See also Figure S5.
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Figure 6. Effect of Ace Supplementation in Mice Doubly Infected with IAV and S. pneumoniae

IAV-infected mice were treated with Ace (200 mM in drinking water) or Vh at 2 dpi, 5 days before the pneumococcal challenge (1 3 103 CFUs).

(A) The number of bacteria was determined 30 h after the S. pneumoniae challenge (n = 8–9, one representative experiment out of four is shown).

(B) PCA was performed on samples (cecum) collected from uninfected mice treated (bright blue) or not (dark blue) with Ace for 5 days and from mice infected

7 days earlier with H1N1 and treated (pink) or not (red) with Ace at 2 dpi (n = 4–5).

(C) Histological analysis of lung sections. Blinded sections were scored for levels of pneumonia (left; sum of different parameters), including perivascular in-

flammatory infiltrates (right) (n = 4 mice/group).

(D) The survival of superinfected animals was monitored (n = 14, two pooled experiments).

(E) Left: IAV M1 mRNA levels were measured in the whole lungs by quantitative RT-PCR. Data are expressed as Ct values. The dashed line represents the

detection threshold. Right: mRNA copy numbers of genes were quantified by RT-PCR. Data are expressed as fold increase over average gene expression in

mock-treated animals. One representative experiment out of two is shown (n = 5). Cdh5, VE-cadherin; Ocln, occluding).

(F) Ace-treated IAV-infectedmice were depleted (clodronate containing liposomes), or not (empty liposomes), in alveolar macrophages before the pneumococcal

challenge (n = 7–8, one experiment performed).

Results are expressed as the mean ± SD (C and E). Significant differences were determined using the Mann-Whitney U test (A and F) or ANOVA followed by the

Holm-Sidak test (C). In (D), survival of mice was compared using Kaplan-Meier analysis and the log-rank test (*p < 0.05; **p < 0.01). See also Figures S6 and S7.
vehicle-treated wild-type and Ffar2�/� mice. FFAR2 is amenable

to pharmacological manipulation in vivo (Milligan et al., 2017). Of

note, alveolar macrophages expressed transcripts for ffar2, while

ffar3mRNA expression was much lower (16-fold less expression)

(Figure 7B). To investigate the potential consequences of local

FFAR2 activation on post-influenza bacterial superinfection,

mice were treated with TUG-1375 (a selective FFAR2 agonist)

by intra-nasal administration. Pharmacological FFAR2 activation,
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just before pneumococcal challenge, led to a significant reduction

of lung bacterial burden and dissemination to blood (Figure 7C). In

contrast, the selective FFAR3 agonist AR420626 failed to confer

any protection (Figure 7D). Hence, the FFAR2 agonist TUG-1375

provided the same benefit as acetate in the treatment of post-

influenza bacterial superinfection. This latter finding opens up

important new possibilities for pharmacological management of

post-influenza bacterial superinfection.



Figure 7. Effect of FFAR2 Agonist Treatment

on Bacterial Superinfection Post-influenza

(A) Wild-type (WT) mice and Ffar2�/� mice (litter-

mates) were treated with Ace as in Figure 6A (n = 5–

7, one representative experiment out of two is

shown).

(B) Ffar2 and Ffar3 transcript levels were assessed

by quantitative RT-PCR on enriched alveolar mac-

rophages (two independent experiments).

(C and D) IAV-infected mice were treated with the

selective FFAR2 agonist TUG-1375 (C) or with the

selective FFAR3 agonist AR420626 (D) (1 mM in

50 mL, intranasal [i.n.] route) or Vh 16 h before the

pneumococcal challenge. n = 13–14 (C) (two pooled

experiments) and n = 6–8 (D) (one representative

experiment out of two).

Results are expressed as the mean ± SD. Signifi-

cant differences were determined using the Krus-

kal-Wallis ANOVA test (A) and the Mann-Whitney U

test (B–D) (*p < 0.05; **p < 0.01).
DISCUSSION

A large body of research indicates that alterations in the gut mi-

crobiota have a role in the pathogenesis of various chronic dis-

eases. The present study sought to analyze the impact of an

acute respiratory infection on the gut microbiota and study the

consequences of any functional perturbations on disease out-

comes. Our results showed that influenza infection alters the

composition and functionality of the gut microbiota and that

these changes account for enhanced susceptibility to secondary

pulmonary bacterial infections. Our study also highlighted the

importance of gut-microbiota-derived SCFAs (acetate) on the

host’s pulmonary defenses against bacterial (super)infections.

Recent reports have indicated that influenza infections in hu-

mans (H7N9) and in murine models (H1N1 and H5N1) alter the

composition of the gut microbiota (Bartley et al., 2017; Deriu

et al., 2016; Groves et al., 2018; Qin et al., 2015; Wang et al.,

2014a; Yildiz et al., 2018). Our data confirm and extend these
Cell R
findings (both H3N2 and H1N1 subtypes).

In our settings (sublethal inocula), influenza

infection altered the relative abundances

of microbial taxa at 7 dpi in both the cecum

and the colon, resulting in significant

changes in beta diversity. In contrast to

chronic diseases in which phylogenic di-

versity falls markedly, we observed

marked changes for lower taxonomic affil-

iations during influenza. At 7 dpi, we

observed the emergence of several bacte-

rial genera that were absent or almost

absent in noninfected animals, notably

Escherichia (Proteobacteria) and the

mucus-degrading bacterium Akkermansia

(Verrucomicrobia). Importantly, the alter-

ation of the gut microbiota’s composition

at 7 dpi was associatedwith a concomitant

drop in the intestinal concentration of
SCFAs, an effect that might have been due to lower abundances

of SCFA-producing bacteria. Among potential candidates (with

low numbers at 7 dpi; see Tables S2 and S4) are Lachnospira-

ceae (Firmicutes), Lactobacillaceae (lactobacillus genus), and

Bifidobacteriaceae (Actinobacteria) families, which are notable

for containing many species capable of fermenting complex car-

bohydrates into SCFAs. In line with the known resilience of the

gut community to short-term perturbations, the microbiota

changes during influenza infection were transient with an overall

return to a baseline profile at 14 dpi. At this time point, mice

recover from weight loss and display higher resistance to sec-

ondary bacterial infections (Barthelemy et al., 2016; data not

shown).

Food intake and diet composition can rapidly shape the struc-

ture and function of the gut microbiota (David et al., 2014; Desai

et al., 2016; Maslowski et al., 2009). Moreover, previous studies

have revealed that fasting and feeding rhythms significantly alter

the gut microbiota (Thaiss et al., 2016). Loss of appetite is a
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feature of influenza (Monto et al., 2000). In view of our present re-

sults, we suggest that decreased food intake during influenza

infection, and thus reduced amounts of ingested complex carbo-

hydrates, from 4 dpi onward is at least partly responsible for

perturbation of the microbiota. Indeed, food-restricted mice

(mimicking the situation in influenza) displayed several micro-

biota changes also found in IAV-infected mice, including, for

instance, Lachnospiraceae and Lactobacillus (reduced) and Al-

phaproteobacteria and Akkermansia (augmented). As also

observed during influenza infection, food restriction was associ-

ated with a drop in SCFA production. Reduced availability of di-

etary fibers and complex carbohydrates due to food restriction

may influence competition between gut commensals at the

expense of SCFA producers and to the benefit of bacteria using

host mucins as an energy source (Desai et al., 2016). Acute

starvation inmice decreases host resistance to respiratory pneu-

mococcal infection (Mancuso et al., 2006). In our model of

pair-feeding that mimicked the situation encountered during

IAV infection, we observed increased susceptibility to

S. pneumoniae. Fecal transfer experiments indicated that pertur-

bation of the gut microbiota of pair-fed mice has an impact on

pulmonary defenses, an effect reversed by supplementation of

the fermentation product acetate. This raises important ques-

tions about the consequences of severely reduced food (fiber)

intake (e.g., due to pathologies, stresses, or voluntary fasting)

on the delivery of immune regulatory signals by the gut micro-

biota, a topic that warrants further investigation. Although we

cannot completely rule out the existence of other mechanisms,

including systemic or local inflammatory factors (such as IFNs)

(Deriu et al., 2016; Wang et al., 2014a), our data argue strongly

for a critical role of altered nutritional status (due to anorexia) in

dysregulation of the microbiota’s composition and function dur-

ing influenza infection. The reduced consumption of fruit and

vegetables rich in fibers (an indirect source of SCFAs) in western

countries, and the associated reduced richness of the gut micro-

biota, is likely to amplify this phenomenon.

Recent data indicate that dysbiosis in the upper respiratory

compartment contributes to post-influenza secondary bacterial

infections (Planet et al., 2016). The present study is the first to

have addressed the question of whether alterations in the gut mi-

crobiota might predispose to secondary bacterial infections of

the lung. A continuous input from complex microbiota is neces-

sary to maintain the (pulmonary) innate immune system. We

hypothesized that a loss of input from gut-microbiota-derived

signals during IAV infection may have negative consequences

on pulmonary defenses against bacterial infection. Fecal transfer

experiments demonstrated that (metabolic) gut microbiota

changes during influenza infection have an impact on respiratory

bacterial infection (enhanced local outgrowth and dissemination

from the lungs). Our data are in line with recent reports demon-

strating that a healthy gut microbiota favors pulmonary host

defense by improving the antibacterial activities of alveolar mac-

rophages (Brown et al., 2017; Clarke, 2014; Lankelma et al.,

2017; Schuijt et al., 2016). These cells are particularly relevant

in bacterial infections, since loss of their functions (e.g., during

influenza) favors the replication of opportunistic pathogenic bac-

teria, including S. pneumoniae (Ghoneim et al., 2013; Sun and

Metzger, 2014). Of interest, while supplementation of NOD-like
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receptor agonists is sufficient to restore pulmonary defense in

microbiota-depleted (ABX) mice (Brown et al., 2017), our study

indicates that in IAV microbiota-colonized mice, supplementa-

tion with acetate is sufficient to restore host defense against

S. pneumoniae. However, we cannot exclude that in addition

to reduced SCFA (acetate), the dysbiotic IAV gut microbiota

might suppress antibacterial defense in the lungs via other

mechanisms yet to be unraveled. It is noteworthy that both

NOD-like receptor agonists (Brown et al., 2017) and acetate

(the present study) converge on enhanced macrophage effector

functions (bactericidal activity). Hence, the gut SCFA acetate

can target alveolar macrophages, a pathway affected during

IAV infection. It is likely that acetate directly targets alveolar

macrophages. Our recent data showed that IAV infection affects

monopoiesis in the bone marrow (Beshara et al., 2018), a phe-

nomenon not perturbed by exogenous acetate treatment (not

shown). Our results agree with a report demonstrating that gut

SCFAs can distally target macrophages (microglia, the brain’s

resident macrophages) to promote their innate effector functions

(Erny et al., 2015). They are also in agreement with Galv~ao and

collaborators, who showed that acetate protects against Klebsi-

ella pneumoniae (a Gram-negative bacterium) respiratory infec-

tion, an effect that depended on FFAR2 (Galv~ao et al., 2018).

Our findings are in line with the emerging concept whereby

gut SCFAs remotely influence immune responses in the lungs

and can modulate disease outcomes, including asthmatic reac-

tions (Cait et al., 2018; Maslowski et al., 2009; Trompette et al.,

2014) and respiratory viral and bacterial infections (Antunes

et al., 2019; Chakraborty et al., 2017; Galv~ao et al., 2018; Mor-

iyama and Ichinohe, 2019; Trompette et al., 2018). The SCFAs’

potential role in innate immune defenses against respiratory in-

fections has yet to be characterized in detail. Importantly, ace-

tate supplementation reduced, in a FFAR2-dependent manner,

the bacterial burden after the episode of influenza, despite the

immunosuppressive environment imposed by IAV. Of impor-

tance, this translated into reduced lung pathology and

improved survival rate of double-infected mice. Manipulation

of the gut microbiota (which, as we show, becomes deleterious

during influenza) might represent an interesting option to limit

post-influenza bacterial superinfections. Importantly, Tromp-

ette and collaborators have demonstrated that preventive sup-

plementation of diets enriched in fibers protected against influ-

enza infection (lower virus load and pathology) (Trompette

et al., 2018). This treatment is associated with enhanced fre-

quency of Bifidobacterium and Bacteroides genus and

enhanced levels of SCFAs (particularly butyrate). Remarkably,

butyrate controls influenza infection by reducing, through

enhanced CD8+ T cell activity, viral replication. This report is

fully in line with our current study, although the consequences

of high-fiber diets (or acetate-yielding diets) on secondary bac-

terial infections are presently unknown. Preventive consump-

tion of fermentable fibers, by protecting the SCFA-producing

compartment, may maintain intestinal homeostasis and rein-

force the lung’s defenses (against IAV and bacteria) during

influenza. In the same line, probiotics (e.g., SCFA producers

such as the Bifidobacteria and Lactobacillus spp) have been

successfully used in the context of IAV infection (Zelaya

et al., 2016), although their impact on superinfection was not



characterized. In the future, strategies that seek to harness the

power of the gut microbiota (via pre-/probiotics) to manage

influenza infections might help to control both viral diseases

and the harmful viral/bacterial synergy during bacterial superin-

fections. Alternatively, the use of SCFAs or FFAR2 agonists as

therapeutics might be envisaged to lower bacterial superinfec-

tion post-influenza. FFAR2 agonists are viewed as a promising

treatment of metabolic syndromes such as type 2 diabetes and

obesity (Milligan et al., 2017; Ulven, 2012). Our study shows the

positive effect of a synthetic FFAR2 agonist in respiratory infec-

tion and highlights a new opportunity for further development

against bacterial pneumonia.

The present study provided evidence that during influenza

infection, extrapulmonary disorders, namely dysbiosis, can

negatively influence bacterial superinfection. Further research

in this direction might help to define predictive markers (i.e., sys-

temic SCFAs) and/or develop therapeutic approaches against

these superinfections. Lastly, our findings might have broader

applications in the treatment of acute diseases associated with

an altered microbiota and secondary infections such as trauma,

burns, and sepsis.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mAb anti-CD45 (BV510) BioLegend Cat# 103138, clone 30-F11, RRID: AB_2563061

mAb anti-CD11b (perCP/Cy5.5) BioLegend Cat# 101228, clone M1/70, RRID: AB_893232

mAb anti-Ly6G (APC-Cy7) BioLegend Cat# 127624, clone 1A8, RRID: AB_10640819

mAb anti-Siglec F (PE) BD Biosciences Cat# 552126, clone E50-2440, RRID: AB_394341

mAb anti-CD11c (PE/Cy7) BioLegend Cat# 117318, clone N1418, RRID: AB_493568

mAb anti-MHCII (AF700) BioLegend Cat# 107622, clone M5/114.15.2, RRID: AB_493727

mAb anti-CD64 (APC) BioLegend Cat# 139306, clone X54-5/7.1, RRID: AB_11219391

mAb anti-TCRb (Pe/Cy7) BioLegend Cat# 109222, clone H57-597, RRID: AB_893625

mAb anti-CD11b (PerCP/Cy5.5) BioLegend Cat# 101228, clone M1/70, RRID: AB_893232

mAb anti-IFNg (AF647) BioLegend Cat# 505814, clone XMG1.2, RRID: AB_493314

mAb anti-IL17A (PE) BioLegend Cat# 506904, clone TC11-18H10.1, RRID: AB_315464

Bacterial and Virus Strains

Influenza A/ Scotland/ 20/ 74 (H3N2) virus (Barthelemy et al., 2017) N/A

Influenza A/California/04/2009 (Barthelemy et al., 2018) N/A

Influenza A/WSN/1933 (H1N1) virus (Barthelemy et al., 2017) N/A

Streptococcus pneumoniae clinical isolate

E1586 (serotype 1)

(Barthelemy et al., 2017) N/A

Streptococcus pneumoniae eGFP (Kjos et al., 2015) N/A

Chemicals and Antibiotics

Propidium iodide BioLegend Cat# 421301

Power SYBR Green PCR Master Mix ThermoFisher Scientific Cat# 4367660

Neomycin Sigma-Aldrich Cat# N6386

Ciprofloxacin Sigma-Aldrich Cat# 17850

Ampicillin Sigma-Aldrich Cat# M3761

Metronidazole Sigma-Aldrich Cat# N6386

Nystatin Sigma-Aldrich Cat# N40014

Vancomycin R&D Cat# 5506

Gentamicin ThermoFisher Scientific Cat# 15710049

Sodium Acetate Sigma-Aldrich Cat# 791741

CellMask Green Plasma Membrane Stain ThermoFisher Scientific Cat# C37608

DAPI ThermoFisher Scientific Cat# D1306

Thioglycollate Broth Sigma-Aldrich Cat# 70157

Clodronate liposome Liposoma Cat# CP-005-005

Critical Commercial Assays

High-Capacity RNA-to-cDNA Kit ThermoFisher Scientific Cat# 4387406

NucleoSpin� RNA Macherey-Nagel Cat# 740955

QIAamp DNA Stool Mini Kit QIAGEN Cat# 51504

MetaBiote� Genoscreen N/A

AMPure XP Beckman Coulter Cat# A63880

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Janvier Labs, France RRID:MGI:5752053

Ffar2�/� (Maslowski et al., 2009) N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

16S ribosomal gene sequences dataset This paper NCBI: PRJNA602797

Oligonucleotides

GAPDH Forward 50-GCAAAGTGGAGATTGTTGCCA-

30 Reverse 50-GCCTTGACTGTGCCGTTGA-30
This study N/A

Oas3 Forward 50-GTGGCACCGATGTCGAACTC-30

Reverse 50-AGCAACATTCGCATGGCA-30
This study N/A

Stat1 Forward 50-GCTGCCTATGATGTCTCGTTTG-30

Reverse 50-TTCCGTATGTTGTGCTGCAAC-30
This study N/A

FoxJ1 Forward 50-CCACCAAGATCACTCTGTCGG-30

Reverse 50-AGGACAGGTTGTGGCGGAT-30
This study N/A

Occluding Forward 50-
AGCAGCCCTCAGGTGACTGTTATT-30 Reverse 50-
ACGACGTTAACTCCTGAACAAGCA-30

This study N/A

VE-cacherin (Cdh5) Forward 50-
AGAGTCCATCGCAGAGTC-30 Reverse 50-
CAGCCAGCATCTTGAACC-30

This study N/A

Isg15 Forward 50-GGCCACAGCAACATCTATGAGG-

30 Reverse 50-CTCGAAGCTCAGCCAGAACTG-30
This study N/A

Ffar2 Forward 50- TTAATCTGACCCTGGCGGAC-30,
Reverse 50-AGCGCGCACACGATCTTT-30,

This study N/A

Ffar3 Forward 50-TTGTATCGACCCCCTGGTTTT-30

Reverse 50-GCTGAGTCCAAGGCACACAAG-30
This study N/A

IAV M1 Forward 50-AAGAACAATCCTGTCACCTC

TGA �30 Reverse 50-
CAAAGCGTCTACGCTGCAGTCC-30

This study N/A

Table S6

Software and Algorithms

GraphPad Prism GraphPad Software https://www.graphpad.com

FACSDiva BD FACSDIVATM

Software

N/A

FLASH N/A

QIIME v1.9.1 QIIME http://qiime.org/

Uclust v1.2.22q N/A

RDP classifier method v2.2 N/A

Primer Express Software v3.0.1 ThermoFisher Scientific Cat# 4363991

ZEN Zeiss https://www.zeiss.fr/corporate/home.html

AutoQuant Bitplane https://imaris.oxinst.com

ImageJ ImageJ https://imagej.nih.gov/ij/

Others

Standard diet Safe Cat# U8231G10R
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, François

Trottein (francois.trottein@pasteur-lille.fr).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and ethics statement
Specific pathogen-free C57BL/6J mice (6 week-old, male) were purchased from Janvier (Le Genest-St-Isle, France). Mice were

maintained in a biosafety level 2 facility in the Animal ResourceCenter at the Lille Pasteur Institute for at least twoweeks prior to usage
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to allow appropriate acclimatation. All experiments complied with current national and institutional regulations and ethical guidelines

(Institut Pasteur de Lille/B59-350009 and CEEA 75. Nord Pas-de-Calais). All experiments were approved by the Ministère de l’Edu-

cation Nationale, de l’Enseignement Supérieur et de la Recherche, France (00357.03 and APAFIS 13743-2018022211144403).

Ffar2�/� mice (> 10 backcrosses) were produced as previously described (Maslowski et al., 2009).

Viruses and bacteria
The mouse-adapted H3N2 IAV strain Scotland/20/1974, H1N1 IAV strain WSN/1933, H1N1 IAV strain California/04/2009 (pdm09),

and the clinical S. pneumoniae isolate E1586 (serotype 1) were described in Barthelemy et al. (2018).

METHOD DETAILS

Diets
Unless specified, mice were fed a standard rodent chow (SAFE A04) (SAFE, Augy, France) and water ad libitium. This diet contains

�11.8% fiber including �10% water-insoluble fiber (3.6% cellulose) and 1.8% water-soluble fiber.

Infections and assessment of bacterial loads
For infection with IAV alone, mice were anesthetized by intramuscular injection of 1.25 mg of ketamine plus 0.25 mg of xylazine in

100 ml of phosphate buffered saline (PBS), and then intranasally (i.n.) infected with 50 ml of PBS containing (or not, in a mock sample)

30 plaque forming units (p.f.u.) of the H3N2 IAV strain A/Scotland/20/1974, 200 p.f.u. of the H1N1 IAV strain A/WSN/1933 or 100 p.f.u.

of H1N1 A/California/04/2009 (pdm09) (Barthelemy et al., 2017, 2018). These doses correspond to sub-lethal doses, which are

necessary to investigate secondary bacterial infection. For infection with S. pneumoniae alone, a high dose (1x106 c.f.u.) of

S. pneumoniae serotype 1, a serotype linked to invasive pneumococcal disease (clinical isolate E1586) was used. To deplete alveolar

macrophages, mice were i.n. inoculated with empty liposomes or clodronate liposomes (50ml, Liposoma, Amsterdam, the

Netherlands) 24 h before the S. pneumoniae challenge. For secondary pneumococcal infection, IAV (H1N1, pdm2009)-infected

mice were challenged at 7 dpi with a low dose (1x103 c.f.u.) of S. pneumoniae, a dose that is largely sufficient to allow bacterial

outgrowth and dissemination. In single and double infected mice, bacteria in the lungs and spleen were counted 30 h after the

S. pneumoniae challenge by plating serial 10-fold dilutions of lung or spleen homogenates onto blood agar plates. The plates

were incubated at 37�Cwith 5%CO2 overnight and viable bacteria were counted 24 h later. Survival and bodyweightweremonitored

daily after IAV infection and mice were euthanized when they lost in excess of 20% of their initial body weight.

Reagents, antibodies, flow cytometry and cell sorting
The FFAR2 agonist TUG-1375 (2R,4R)-2-(2-chlorophenyl)-3-(4-(3,5-dimethylisoxazol-4-yl)benzoyl)thiazolidine-4-carboxylic acid)

and the FFAR3 agonist AR420626 (N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

amide were produced as described (Hansen et al., 2018; Hudson et al., 2014). Acetate, propionate and butyrate were from

Sigma-Aldrich (Saint Louis, MO). Ampicillin, neomycin, metronidazole, ciprofloxacinand and nystatin were from Sigma-Aldrich

and vancomycin was from R&D systems (Minneapolis, MN). Antibodies used for flow cytometry have been described in Barthelemy

et al. (2016, 2017). Flow cytometry analysis was performed exactly as described (Barthelemy et al., 2016). Monoclonal antibodies

against mouse CD45 (Brilliant Violet 510-conjugates), CD11b (PerCP-Cy5.5-conjugated), Siglec F (PE-conjugated), Ly6G

(APC-H7-conjugated), CD11c (PE-Cy7-conjugated), MHC class II (AF700-conjugated), CD64 (APC-conjugated), TCRb (PE-Cy7-

conjugated), TCRgd (PerCP-Cy5.5-conjugated), IFN-g (AlexaFluor-647), IL-17A (PE), and isotype controls were purchased from Bio-

Legend (San Diego, USA) and BD Bioscience (New Jersey, USA). PBS-57 glycolipid-loaded and unloaded control CD1d tetramers

(APC-conjugated) were from the National Institute of Allergy and Infectious Diseases Tetramer Facility (Emory University, Atlanta,

GA). The propidium iodide was purchased from BioLegend (San Diego, CA).

Cell immunostaining and flow cytometry were performed as previously described (Barthelemy et al., 2017). Briefly, mononuclear

cells from the lungs were plated in U-bottom 96-well plates and labeled for dead cells (ThermoFisher Scientific). To identify immune

cells, lung mononuclear cells were labeled with appropriate dilutions of conjugated antibodies exactly as described (Barthelemy

et al., 2017). The data were acquired on an LSRFortessa cytometer (Becton Dickinson Biosciences, Rungis, France) running FACS-

Diva software andwere then analyzed with FACSDiva software. For the analysis, 1x106 cells were acquired. Macrophageswere iden-

tified as CD45+ Siglec F+ CD11blow and neutrophils as CD45+ CD11b+ Ly6G+ Siglec F-. Conventional dendritic cells were identified as

CD45+ CD11c+high MHC class II+ Siglec F- CD64-, monocyte derived dendritic cells as CD45+ CD11c+ MHCII+ Cd11b+ Siglec F-

Ly6G- CD64+, gd T cells as CD45+ TCRb- TCRgd+ and invariant natural killer T as CD45+ TCRb+ CD1d tetramer+. Intracellular

FACS staining of iNKT cells and gd T cells was performed as described (Barthelemy et al., 2017; Hassane et al., 2017). After cell sur-

face labeling, alveolar macrophages were sorted using a FACSAria cytometer (BD Biosciences).

Sample collection, DNA extraction and 16S rRNA gene copy number
To study the impact of influenza infection on the gutmicrobiota, micewere i.n. infectedwith IAV and their feceswere collected at 7 dpi

and 14 dpi. Feces from each mouse were also sampled the day of infection (one hour before IAV infection) and served as controls.

Cecal samples were collected from different sets of animals including mock-treated mice and IAV-infected (7 dpi and 14 dpi) mice.
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Fecal samples from vehicle-treated and acetate-treated mice were also collected at 7 dpi. Fecal and cecal samples as well as whole

cecum homogenates were stored at�80�Cuntil further analysis. Microbial DNAwas extracted from 150mg of fecal or cecal samples

(QIAamp DNA stool Kit, QIAGEN, Germany). The concentration of extracted DNA was determined using on a DNA fluorometric in-

tercalant (SYBR� Green, ThermoFisher Scientific (Waltham, MA)). Bacterial loads were quantified using qPCR assays. Standard

curves were constructed to optimize the experiments and perform absolute quantification. The standard was a mix of 17 genomic

DNA extracted from different bacterial strains with an even 16S rRNA gene copy number of each strain. Briefly 4.8 ml (1 ng DNA) were

added into 10 ml of total volume mix (Taqman Universal MasterMix, Thermofischer) and optimized primer/probe concentrations to

obtain a 100 ± 10%qPCR efficiency on the standard and samples. Cycling condition were those recommended by themanufacturer.

Each sample was analyzed in triplicates. The Ct values were calculated using default parameters of software provided by the real-

time PCR instrument manufacturers (7900HT fast real-time PCR System, Thermofischer). Mean Ct values were finally confronted to

the standard curve to deduce the number of 16S rRNA gene copy in each sample.

16S rRNA gene pyrosequencing and data processing
The V3-V4 region of the 16S rRNA gene was amplified using an optimized and standardized amplicon-library preparation protocol

(Metabiote�, GenoScreen, Lille, France). Positive (artificial bacteria Community comprising 17 different bacteria (ABCv2)) and nega-

tive (sterile water) control were also included. Briefly, PCR reactions were performed using 5ng of genomic DNA and in-house fusion

barcoded primers (at 0.2 mM final concentrations), with an annealing temperature of 50�C for thirty cycles. PCR products were pu-

rified using Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA), quantified according to GenoScreen’s pro-

tocol, andmixed in an equimolar amount. Sequencing was performed using 250-bp paired-end sequencing chemistry on the Illumina

MiSeq platform (Illumina, San Diego, CA, USA). Raw paired-end reads were then demultiplexed per sample and subjected to the

following process: (1) search and removal of both forward and reverse primer using CutAdapt, with no mismatches allowed in the

primers sequences; (2) quality-filtering using the PRINSEQ-lite PERL script, by truncating bases at the 30 end with Phred quality

score < 30; (3) paired-end read assembly using FLASH, with a minimum overlap of 30 bases and > 97% overlap identity.

Taxonomic Affiliation and diversity analyses
Taxonomic and diversity analyses were performed with the Metabiote Online v2.0 pipeline (GenoScreen, Lille, France) that is partially

based on the softwareQIIME v1.9.1. Following the pre-processing, the full-length 16S rRNA sequenceswere analyzed and chimeric se-

quences were removed from the dataset (in-house method based on the use of USEARCH8.1 algorithm). Then, a clustering step was

performed in order to group similar sequences with a nucleic identity defined threshold (97% identity for an affiliation at the genus level

on the V3-V4 regions of the 16S rRNA gene) with Uclust v1.2.22q through an open-reference operational taxonomic unit (OTU) picking

process and complete-linkagemethod, finally creating groupsof sequences orOTUs. AnOTUcleaning stepbasedon the dataobtained

for the ABCv2 community was performed. Themost abundant sequence of eachOTUwas considered as the reference sequence of its

OTU and was then taxonomically compared to a reference database (Greengenes database, release 13_8; https://greengenes.

secondgenome.com/) by the RDP classifier method v2.2. Various diversity indices were computed using QIIME v1.9.1. Alpha diversity

indices (within-sample) and beta diversity (between-sample) were used to examine changes inmicrobial community structure between

mice fecal and cecal group samples. Measurement of alpha diversity included Shannon diversity index, number of observed OTUs and

Chao1 index (richness and evenness). For b-diversity measures, we computed the weighted UniFrac distances. The principal coordi-

nates analysis (PCoA) method was used to visualize group overall microbial differences. Differences in relative abundance of individual

taxa, betweenmice cecal group samples, were assessed for significance using theMann-WhitneyU test controlling for false-discovery

rate (FDR), implemented within the software package QIIME. TheWilcoxon signed-rank test (paired t test) was used for 16S analysis of

fecal samples.

Measurement of food consumption and pair-feeding experiments
Food consumption was calculated daily during influenza infection. Briefly, a known amount of food was placed in a cage of six mice.

The amount of remaining food was measured every 12 h. The amount of consumed food was calculated by the difference divided by

six and expressed as food intake per mouse per day. To provide the pair-fed group with only as much food daily as is consumed by

IAV-infectedmice, we restricted the food access during the last three days for 15% (day 4), 35% (day 5) and 85% (day 6), respectively

(sacrifice at day 7). Mice were anesthetized at day 0. The pair-feeding time point was determined using data generated from IAV-in-

fectedmice with the goal of achieving a�15% loss of bodymass (as at 7 dpi). Food was supplied twice a day to pair-fed animals and

water was available at all times. The ad libitum (normally nourished) group mice were allowed unrestricted access to food and water.

Weight loss of paired-fed mice and IAV-infected mice were measured in a daily manner. Fecal pellets (16S rRNA sequencing) and

cecal content (SCFA quantification) were collected at baseline (control) and seven days after (pair fed).

Measurement of SCFA concentrations and treatment with acetate or FFAR2/FFAR3 agonists
Concentrations of SCFAs in the cecal content were determined after extraction with diethyl ether using GC-2014 gas chromatog-

raphy with AOC-20i auto injector (Shimadzu, Hertogenbosch, the Netherlands) as described (DeWeirdt et al., 2010). Concentrations

of SCFAs in plasma were determined after extraction with acetonitrile. Results are expressed as mmol/g of cecal content or as mM

(blood). To assess the effects of SCFAs on lung defense against bacterial infection, conventional mice (no ABX treatment), mice
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recolonized with IAV microbiota and mice infected with IAV were treated with acetate (200 mM, drinking water) five days before the

S. pneumoniae challenge (1x106 c.f.u. for conventional and recolonized mice and 1x103 c.f.u. for IAV-infected mice, respectively).

IAV-infected mice were also treated (drinking water) with a combination of acetate, propionate and butyrate (200mM, 50mM and

5mM, respectively). The FFAR2 agonist TUG-1375 and the FFAR3 agonist AR420626 (stock solutions in DMSO at 20mM) were inoc-

ulated by the i.n. route (50 ml, 1 mM) 16 h before S. pneumoniae infection. Histopathological evaluation of the lung of double-infected

mice was performed as described previously (Horvat et al., 2007).

Quantification of viral loads and assessment of gene expression by quantitative RT-PCR
Total RNA from lung tissues were extracted with the NucleoSpin� RNA kit (Macherey-Nagel, Hoerdt, Germany). RNA was reverse-

transcribed with the High-Capacity cDNAArchive Kit (Life Technologies, USA). The resulting cDNAwas amplified using SYBRGreen-

based real-time PCR and the QuantStudio 12K Flex Real-Time PCR Systems (Applied Biosystems, USA) following manufacturers

protocol. Relative quantification was performed using the gene coding glyceraldehyde 3-phosphate dehydrogenase (Gapdh). Spe-

cific primers were designed using Primer Express software (Applied Biosystems, Villebon-sur-Yvette, France) and ordered to Euro-

fins Scientifics (Ebersberg, Germany). Relative mRNA levels (2-DDCt) were determined by comparing (a) the PCR cycle thresholds (Ct)

for the gene of interest and the house keeping gene Gadph (DCt) and (b) DCt values for treated and control groups (DDCt). Data are

expressed as a fold-increase over the mean gene expression level in mock-treated mice. Quantification of viral RNA was performed

as described in Paget et al. (2011). Viral load is expressed as viral RNA normalized to gapdh expression level. Data were normalized

against expression of the gapdh gene and were expressed as Ct.

Microbiota transfer experiments
Mice received broad-spectrum ABXs (ampicillin 2g/L; neomycin 2g/L, metronidazole 1g/l, ciprofloxacin 1g/l, nystatin 0.08 g/L and

vancomycin 0.5g/l) in drinking water supplemented with glucose (10 g/l) for three weeks. The cages were changed every two

days. Depletion of bacteria in the feces were checked after culture in thioglycollate broth medium (Sigma) for 24 h at 37�C. ABX-
treated mice were colonized twice (three days and five days after ABX cessation) by oral administration of 200 ml of cecal suspension

containing 1x109 bacteria recovered from naive mice, mock-treated mice or IAV-infected mice (7 dpi). Colonized mice were infected

with S. pneumoniae (1x106 c.f.u.) three days after the first colonization. Weights of control and ABX-treated mice (colonized or not)

were equal at the moment of pneumococcal inoculation.

In vivo phagocytosis and killing assays and assessment of pneumococcal load in alveolar macrophages
To visualize bacteria associated with phagocytes or internalized by phagocytes, recolonized mice were infected with eGFP-express-

ing S. pneumoniae (1x106 c.f.u., serotype 1) (a gift from Dr JW Veening, university of Groningen, the Netherlands). Four hours later,

BAL fluid cells (> 95% alveolar macrophages) were washed and plated (u-Slide 8 Well ibiTreat, IBIDI, Martinsried, Germany). Mem-

branes were labeled (CellMaskDeep red plasmamembrane stain, Thermofisher) and after washes and fixation, nucleus were labeled

with DAPI (Thermofisher) and maintained in PBS. Samples were observed with CLSM Zeiss LSM 880 (Zeiss, Oberkochen, Germany)

with Plan Apochromat 63xoil/1.4 objective. Excitation was performed with an Argon laser (458 to 488 to 514 nm) or a laser diode

(561 nm and 405nm) (Lasos Lasertechnik GmbH, Jena, Germany). The spectral detection range was adjusted for each fluorophore

by using aQuasar detection unit. Images were acquiredwith ZEN software (Zeiss, Carl Zeiss, Oberkochen, Germany), deconvoled by

AutoQuant software (Bitplane, Oxford Instruments company, Zurich, Switzerland) and assembled using ImageJ software. The fre-

quency of macrophages having internalized S. pneumoniae and the average number of internalized bacteria per macrophage

were determined (more than 20 visual fields analyzed/mouse). To determine the pneumococcal load in alveolar macrophages, cells

(CD45+ Siglec Fhi CD11b-) were sorted using a FACSAria cytometer (BD Biosciences) (> 99% purity). DNA was extracted and

analyzed using quantitative PCR (QuantStudio 12K Flex, Applied Biosystems). Data were normalized against expression of the gapdh

gene andwere expressed asDCt. To determine the bactericidal activity of macrophages, re-colonizedmicewere infectedwith 1x 106

c.f.u. of S. pneumoniae (serotype 1). Four hours later, BAL fluid cells were collected and extensively washedwith PBS in the presence

of 15 mg/ml of gentamycin (Thermo Fisher Scientific). Cells were then washed twice in sterile PBS and lysed in sterile double de-

ionized water. To assess bacterial killing, the number of ingested viable bacteria was determined by quantitative plating of serial di-

lutions of the lysates onto blood agar plates. The number of viable bacteria was expressed per 1x105 cells.

In vitro killing assay
For the in vitro killing assay, macrophages were pre-treated with acetate (10mM) for 1 h and then exposed with opsonized

S. pneumoniae at MOI 10. Cells were incubated at 4�C for 1 h, followed by 3h of incubation at 37�C for bacterial internalization. Cells

were washed in sterile PBS, incubated with penicillin and streptomycin (30U/ml) for 30min to kill extracelllular bacteria and then

washed and incubated with vancomycin (0.75mg/ml) for 2 h. Bacterial-exposed macrophages were lysed at 0 and 2 h post exposure.

The number of viable bacteria were determined by quantitative plating of serial dilutions of the lysates onto blood agar plates.
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S. pneumoniae outgrowth in vitro

S. pneumoniae colonies at exponential growth were added to Todd Hewitt Broth at the absorbance of 0.04 OD (600 nm) in the

absence or presence of 0.1, 1 or 10mM of acetate, or 1U/ml of pennicilin and 1 mg/ml streptomycin used here as a positive control.

The O.D. was measured every 30 minutes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Results are expressed as the mean ± standard deviation (SD) unless otherwise stated. All statistical analysis was performed using

GraphPad Prism v6 software. A Mann-Whitney U test was used to compare two groups unless otherwise stated. The Wilcoxon

signed-rank test (paired t test) was used for 16S analysis of fecal samples. Comparisons of more than two groups with each other

were analyzed with the One-way ANOVA Kruskal-Wallis test (nonparametric), followed by the Dunn’s posttest. Survival of mice was

compared using Kaplan-Meier analysis and log-rank test.*, p < 0.05; **, p < 0.01; ***, p < 0.001. Statistical details of experiments can

be found in the figure legends. Sample sizes were dictated to adhere to the French home office 3R principles, while providing appro-

priate statistical power.

DATA AND CODE AVAILABILITY

The 16S ribosomal gene sequences datasets generated during this study are available at NCBI (SRA) under accession number

PRJNA602797.
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