
HAL Id: inserm-02490884
https://inserm.hal.science/inserm-02490884

Submitted on 25 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brian2GeNN: accelerating spiking neural network
simulations with graphics hardware

Marcel Stimberg, Dan F M Goodman, Thomas Nowotny

To cite this version:
Marcel Stimberg, Dan F M Goodman, Thomas Nowotny. Brian2GeNN: accelerating spiking neural
network simulations with graphics hardware. Scientific Reports, 2020, 10 (1), pp.410. �10.1038/s41598-
019-54957-7�. �inserm-02490884�

https://inserm.hal.science/inserm-02490884
https://hal.archives-ouvertes.fr

1Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreports

Brian2GeNN: accelerating spiking
neural network simulations with
graphics hardware
Marcel Stimberg   1, Dan F. M. Goodman   2 & Thomas Nowotny   3*

“Brian” is a popular Python-based simulator for spiking neural networks, commonly used in
computational neuroscience. GeNN is a C++-based meta-compiler for accelerating spiking neural
network simulations using consumer or high performance grade graphics processing units (GPUs).
Here we introduce a new software package, Brian2GeNN, that connects the two systems so that users
can make use of GeNN GPU acceleration when developing their models in Brian, without requiring
any technical knowledge about GPUs, C++ or GeNN. The new Brian2GeNN software uses a pipeline
of code generation to translate Brian scripts into C++ code that can be used as input to GeNN, and
subsequently can be run on suitable NVIDIA GPU accelerators. From the user’s perspective, the
entire pipeline is invoked by adding two simple lines to their Brian scripts. We have shown that using
Brian2GeNN, two non-trivial models from the literature can run tens to hundreds of times faster than
on CPU.

GPU acceleration emerged when creative academics discovered that modern graphics processing units (GPUs)
could be used to execute general purpose algorithms, e.g. for neural network simulations1,2. The real revolution
occurred when NVIDIA corporation embraced the idea of GPUs as general purpose computing accelerators and
developed the CUDA application programming interface3 in 2006. Since then, GPU acceleration has become a
major factor in high performance computing and has fueled much of the recent renaissance in artificial intel-
ligence. One of the remaining challenges when using GPU acceleration is the high degree of insight into GPU
computing architecture and careful optimizations needed in order to achieve good acceleration, in spite of the
abstractions that CUDA offers. A number of simulators have used GPUs to accelerate spiking neural network
simulations, but the majority do not allow for easily defining new models, relying instead on a fixed set of existing
models4–8. Since 2010 we have been developing the GPU enhanced neuronal networks (GeNN) framework9 that
uses code generation techniques10,11 to simplify the use of GPU accelerators for the simulation of spiking neural
networks. GPUs, and in particular GeNN, have been shown to enable efficient simulations compared to CPUs and
even compared to dedicated neuromorphic hardware12. Other simulators that have taken this code generation
approach are Brian2CUDA13 (currently under development) and ANNarchy14 (Linux only).

Brian is a general purpose simulator for spiking neural networks written in Python, with the aim of simpli-
fying the process of developing models15–17. Version 2 of Brian18 introduced a code generation framework10,19 to
allow for higher performance than was possible in pure Python. The design separates the Brian front-end (writ-
ten in Python) from the back-end computational engine (multiple possibilities in different languages, including
C++), and allows for the development of third party packages to add new back-ends.

Here, we introduce the Brian2GeNN software interface we have developed to allow running Brian models on
a GPU via GeNN. We analysed the performance for some typical models and find that–depending on the CPU
and GPU used–performance can be tens to hundreds of times faster.

Results
We benchmarked Brian2GeNN on two model networks that we named “COBAHH” and “Mbody”. COBAHH
is an implementation of a benchmark network described by Brette et al.20 (for details, see Methods). Essentially,
this benchmark model consists of N Hodgkin-Huxley-type neurons, modified from the model by Traub and
Miles21, 80% of which form excitatory synapses and 20% inhibitory synapses. All neurons were connected to all

1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France. 2Department of Electrical and Electronic
Engineering, Imperial College London, London, UK. 3Centre for Computational Neuroscience and Robotics, Sussex
Neuroscience, School of Engineering and Informatics, University of Sussex, Brighton, UK. *email: t.nowotny@
sussex.ac.uk

OPEN

https://doi.org/10.1038/s41598-019-54957-7
http://orcid.org/0000-0002-2648-4790
http://orcid.org/0000-0003-1007-6474
http://orcid.org/0000-0002-4451-915X
mailto:t.nowotny@sussex.ac.uk
mailto:t.nowotny@sussex.ac.uk

2Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

other neurons randomly with a connection probability chosen such that each neuron received on average 1,000
connections for large models, or connections from all other neurons if the number of neurons was less than 1,000.

Mbody is an implementation of a previous model of the mushroom body22, but unlike in the original publi-
cation also with a similar neuron model to the one used for the COBAHH benchmark (for details, see Methods).
The model was used with 100 projection neurons, 100 extrinsic Kenyon cells and varying numbers N of intrinsic
Kenyon cells (hidden layer). Projection neurons in the input layer are connected with fixed probability of 15% to
intrinsic Kenyon cells. Up to N = 10,000 intrinsic Kenyon cells are connected all-to-all to the extrinsic Kenyon
cells, and for N > 10,000, they are connected randomly with probability chosen such that the extrinsic Kenyon
cells receive input from on average 10,000 intrinsic Kenyon cells.

The COBAHH model is an example of a popular model type used for cortical microcircuits whereas the
Mbody model is a typical feedforward network. COBAHH like models are used to investigate the dynamics of
balanced networks and do not involve learning while the Mbody example is a prototypical model of a simple
learning circuit, for instance for classification, and hence contains plastic synapses. The main audience for Brian
2 and GeNN are computational neuroscientists and we have therefore used models with conductance based
neurons. The models were scaled so that the activity in the models was within sensible physiological limits, i.e.
activity neither died out nor went into unrealistically high firing rates. The exact scaling and the details of the
models are explained in the Methods.

Both models were integrated with an exponential Euler algorithm at 0.1 ms time steps. The benchmarks pre-
sented here were obtained using the GeNN sparse matrix representation for synaptic connections.

We benchmarked the models on different systems and with different backends. The GeNN backend through
the Brian2GeNN interface presented here was compared to the “C++ standalone” backend included with the
Brian simulator which runs on the CPU with either a single thread or with multiple threads via the OpenMP
interface. Benchmarks were performed for both, single precision (32 bit) and double precision (64 bit) floating
point. This is particularly relevant for GPUs because different GPU models have a different number of 64 bit
cores, which in addition may be run at reduced clock frequencies for thermal management, and, therefore, can
be between only 2× but up to 32× slower in double precision simulations than in single precision (see Table 1).

We recorded the overall wall clock time for the simulation including all stages from code generation and
initialization in Python to C++ compilation and execution of the binary (“overall runtime”). We also took more
fine-grained measurements of the time for code generation and compilation, the time spent for synapse creation
and initialization, the time spent for the actual simulation and the overhead, including, e.g., time spent on refor-
matting data structures between Brian 2 and GeNN formats, copying to and from the GPU and writing results
to disk. All simulation times that we present here are the smallest out of three simulation runs with an identical
setup.

We verified that the simulation results do not depend on the simulation method that was used (single- and
multi-threaded simulation on the CPU via Brian; simulation on the GPU via Brian2GeNN and GeNN). However,
the simulations that were performed for the benchmark results here cannot be directly compared with each other,
since synaptic connections and variable initialisation are random. When we fix these connections and initialisa-
tions to be identical across runs, we do get highly reproducible simulation results: in a test recording all the spikes
in a COBAHH network with 16,000 neurons over 10 s, all simulations with double precision gave exactly the same
results, i.e. all spikes fell into identical time steps for all neurons. When using single precision, small numerical
discrepancies (e.g. due to differences in the order of summations) added up and led to minor spike timing dis-
crepancies between simulations on the CPU and the GPU. However, all neurons emitted the exact same number
of spikes, the discrepancies were almost exclusively restricted to spikes occurring a single time step earlier or
later; only 9 out of 16,000 neurons (i.e., 0.06%) had any spikes shifted by more than a single time step. For the
Mbody benchmark, all simulations were completely identical across CPU- and GPU-based simulations in a test
with 160,200 neurons over 1 s, both for single and double precision. Note that in general, numerical simulations
performed on different platforms cannot be expected to always give results that are identical on a spike-by-spike
basis, especially in recurrent networks. Validating simulation results across different technical approaches there-
fore requires comparing more global measures such as firing and correlation statistics23. A validation of this type
has been performed previously for the GeNN simulator12.

Simulation time.  The results for the net simulation time for the two models on CPU and the TITAN Xp
and Tesla V100 GPUs are shown in Fig. 1 as a function of the size of the models, indicated by the total number

CPU GPU

cores Clock speed (GHz) Memory (GB) Architecture # cores Memory (GB)
Performance*
(single) Performance* (double)

Intel Xeon E5-1630 v3 Quadro K2200

4 3.7-3.8 16 Maxwell 640 4 1,439 45

Intel Xeon E5-1620 v2 Tesla K40c

4 3.7-3.9 32 Kepler 2,880 12 4,290 1,430

Intel Core i9-7920X TITAN Xp

12 2.9-4.4 64 Pascal 3,840 12 12,150 380

Dual Intel Xeon Gold 6148 Tesla V100

2 × 20 2.4 192 Volta 5,120 16 14,131 7,066

Table 1.  Configurations used for benchmarking. *Maximum performance in GFLOPS.

https://doi.org/10.1038/s41598-019-54957-7

3Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

of neurons. GeNN offers two different strategies for parallelising the spike propagation logic, along pre-synaptic
inputs (looping over post-synaptic targets) or along post-synaptic targets (looping over pre-synaptic sources). We
benchmarked both algorithms for each of the models.

The single thread CPU solution scales essentially linearly with the size of the two models, expressed in terms
of the number of simulated neurons (Fig. 1). This reflects the linear scaling of processing time with the number
of operations required and that both models are essentially neuron-bound on the CPU due to their computa-
tionally expensive neuron model, their chosen connectivity and the observed number of spikes. The 24-thread
OpenMP simulations take initially the same time for very small models but we found that the simulations ran
about 13–14 times faster than on a single CPU core for the largest MBody model tested on a single CPU core
(160,200 neurons) and 8–11 times faster for the largest COBAHH model tested on a single CPU core (256,000
neurons). Larger models were only tested on 24-thread OpenMP and GPUs due to the prohibitively long runtime
on a single CPU core. For models larger than 40,200 neurons (Mbody) and 8,000 neurons (COBAHH), the 24
thread OpenMP solution also scales approximately linearly with the number of neurons.

The simulations run on the GPU via Brian2GeNN (green and purple lines in Fig. 1) were significantly faster
than the 24 thread OpenMP (light gray), for instance, 40–54 times faster in the Mbody model for 10,240,200 neu-
rons and up to 24–26 times faster in the COBAHH model for 1,024,000 neurons when using the Tesla V100 GPU.
We have summarised the observed speed-ups achieved for the simulation time in Table 2. Overall the GPU runs
always faster than a single threaded CPU version, up to a factor of 400, but when compared against the 24 thread
OpenMP version, acceleration can vary from 2× slower than the CPU to about 50× faster.

Figure 1.  Benchmark of the net simulation time on a 12 core CPU with a single thread (dark gray) or using
OpenMP with 24 threads (light gray), compared to a consumer GPU (TITAN Xp) and an HPC model (Tesla
V100). For the GPUs, simulation times are displayed separately for a pre-synaptic parallelisation strategy
(dotted) or post-synaptic strategy (dashed). The better of the two strategies is highlighted by a solid line.

Mbody benchmark

compared to CPU 1 thread compared to CPU 24 thread

neurons 40,200 80,200 160,200 40,200 160,200 10,240,200

Quadro K2200 39.2 6.5 52.0 6.7 60.7 7.0 3.3 0.6 4.3 0.5 4.3 0.5

Tesla K40c 34.7 25.6 58.8 39.8 80.9 53.8 2.9 2.4 5.7 4.2 7.1 5.8

Titan Xp 101.9 39.4 190.3 51.4 300.3 60.9 8.5 3.7 21.1 4.8 31.0 5.0

Tesla V100 124.3 105.9 235.5 191.7 401.6 251.7 10.4 9.9 28.3 19.7 53.9 40.4

COBAHH benchmark

neurons 64,000 128,000 256,000 64,000 256,000 10,24,000

Quadro K2200 18.0 4.9 24.2 4.5 13.6 4.1 1.7 0.6 1.3 0.5 – –

Tesla K40c 20.6 16.3 11.7 9.4 16.7 8.6 1.9 1.9 1.6 1.1 1.0 –

Titan Xp 57.7 29.1 40.3 22.2 73.8 33.7 5.4 3.4 7.2 4.1 16.9 6.5

Tesla V100 207.7 155.7 196.5 134.4 154.1 113.5 19.6 18.3 15.0 13.9 26.3 24.2

Table 2.  Speed-up on GPUs. This only considers simulation time. Numbers are relative to simulations on the
host of the Titan Xp GPU (see Table 1) and compare to a single-thread simulation (left) or a 24-thread OpenMP
simulation (right). The two numbers shown are for single precision (italic) and double precision (normal font).
The underlined numbers are the highest and lowest observed speed-ups for each of the four quadrants of the table.

https://doi.org/10.1038/s41598-019-54957-7

4Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Interestingly, the different parallelisation methods for spike propagation available in GeNN (dashed and dot-
ted lines in Fig. 1) perform differently as a function of size. The post-synaptic method is always faster for small
models while the pre-synaptic method wins for very large models. This trend is the same for both tested models,
but the exact crossover point where pre-synaptic parallelisation becomes more efficient depends on the model,
and to a lesser degree on the GPU hardware. For the Mbody example, the swap occurs at moderate model sizes
of about 40200 neurons, whereas for the COBAHH model, it is for much larger models (128,000 neurons for the
TITAN Xp and 512,000 neurons for the Tesla V100). Also, while the differences of the two methods are not that
pronounced for the large Mbody models, the post-synaptic method in the COBAHH model scales very poorly
with size at large model sizes, leading to quite low performance of Brian2GeNN in this mode. The pre-synaptic
method, on the contrary, is not particularly fast for smaller to medium sized COBAHH models (even slower than
the 24 thread OpenMP version), but scales excellently for the largest models, leading to significant speedups over
OpenMP.

The general trend of the post-synaptic method being faster for small models and the pre-synaptic method
for large models can be understood based on how these methods work and based on the scaling method of the
benchmark models. In the post-synaptic parallelisation method, each post-synaptic neuron occupies its own
thread and there is a loop over incoming spikes. This is efficient when there are many post-synaptic neurons and
few incoming spikes. In contrast, in the pre-synaptic method, each emitted spike is processed in a separate thread,
and there is a loop over the affected post-synaptic neurons. This method is better if there are many spikes and
few or a moderate number of post-synaptic targets. In both models, the number of post-synaptic targets during
scaling is constant (or capped for the iKCeKC synapses), but the number of spikes grows with the size of the
model. In small models, there are few spikes and relative to the small spike number many post-synaptic targets
- the post-synaptic method is better. For much larger models, there are many more spikes but roughly the same
number of post-synaptic targets for each spike, so the pre-synaptic method becomes better. When, however, the
exact crossover between the methods occurs, is hard to predict and can also depend on the GPU and the details
of how the connectivity and the activity in the models scale.

The simulation times for a larger variety of different GPU hardwares are shown in Fig. 2. Note that we here
display the results for the better of the two parallelisation strategies for each model run. We benchmarked four
different graphics cards (see Table 1). The results show consistent trends given the specifications of the hardware
(Table 1), even though some may not be as obvious as others. The Tesla V100 is almost always fastest, typically fol-
lowed by the TITAN Xp, Tesla K40c and Quadro K2200 card in this order. Note however, the marked difference in
double precision performance for the consumer cards (Quadro K2200 and TITAN Xp), compared to the high per-
formance computing cards (Tesla K40c and Tesla V100): In Fig. 2, the blue and green lines are at markedly higher
values on the left plots than on the right, while the orange and purple lines barely change between single and
double precision plots. This is expected because the consumer cards have NVIDIA GPU architectures (Maxwell
respectively Pascal) that have fewer double precision cores and double precision operations are hence up to 32
times slower than single precision, while the HPC cards used here are Kepler and Volta architecture and have only
a factor 2 performance difference between double precision and single precision operations. Accordingly, while
in single precision, the presumably less powerful but more recent Quadro K2200 card performs at the level of or
even better than the older but larger Tesla K40c accelerator, it does not compare favourably for double precision.

Comparing the two models, it is clear that the performance gains of Brian2GeNN on the different GPU plat-
forms is more marked for the Mbody model than for the COBAHH model. This would be expected for the spike
propagation code because the mainly feedforward structure of the Mbody model lends itself better to parallel-
isation on GPUs with GeNN than the randomly recurrently connected COBAHH model. It should be noted
that spike propagation is the most challenging aspect of running neural network simulations on GPUs24, and it
typically takes up a larger share of the total computation time compared to simulations on CPUs. We can see this
pattern in the examples presented here (executed on the Intel Core i9-7920X CPU with a Titan Xp GPU): in a sin-
gle precision simulation of the COBAHH model with 512,000 neurons, the synaptic propagation takes up 47% of
the time when run on the CPU (24threads), but 82% when run on the GPU; in a simulation of the Mbody model
with 10,240,200 neurons, synaptic propagation, including updates of the plastic synapses, takes up only 1–2% of
the time on the CPU but 20% on the GPU.

Time for other tasks.  So far we have presented results for the core simulation time. As explained in the
methods, Brian2GeNN has a substantial pipeline of tasks before and after the main simulation takes place.
Figure 3 illustrates the essence of how the computation times along this pipeline stack up. We defined four main
phases of a Brian2GeNN run: “code generation and compilation”, “synapse creation”, “main simulation” and “over-
heads”, which bundles smaller tasks such as transforming data formats between Brian 2 format and GeNN format,
copying from and to the GPU and writing results to disk. For illustration we have used the data from the TITAN
Xp card and Intel Core i9-7920X CPU. The data in the top two panels in Fig. 3 repeats the results for the simula-
tion time but also shows extrapolations for shorter and longer runs, where computation times are strictly propor-
tional to the length of simulated biological time. This phase is almost entirely determined by the GPU model. The
bottom two panels show the compute time spent on the other three phases, which are determined by the CPU and
the CPU-GPU bandwidth (for copying data to the GPU). Code generation and compilation is a fixed cost that is
completely independent of the model size. On the contrary, computation time for synapse creation and initialisa-
tion increases linearly with model size in terms of the number of neurons. The other overheads are initially almost
independent of model size but then also start increasing with the number of neurons. In the balance, for small to
mid-sized models and short simulation runs (1 s biological time), code generation and compilation dominates the
overall runtime whereas for large models and longer runs, the time for the main simulation dominates.

https://doi.org/10.1038/s41598-019-54957-7

5Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

To give a rough guide at which amount of biological time for any given model size it becomes viable to use
Brian2GeNN we have calculated the minimum simulated biological time for which the overall runtime for
Brian2GeNN is smaller than a 24 thread OpenMP solution (Fig. 4). For simulated biological time of 100 s or
more it is always faster to use Brian2GeNN, regardless of model size or employed GPU accelerator. For shorter
simulated time it depends on the simulated model and the GPU. For example, simulating 10 s biological time is
perfectly viable on a Tesla V100 for the Mbody model at size 40,200 but would be slower on a Tesla K40c; or, sim-
ulating 10 s biological time would not be viable for any of the tested GPUs for the COBAHH model at size 8,000
but viable on all of them at size 64,000.

Discussion
In designing software for computational neuroscience, there are two seemingly conflicting requirements: for
high performance and for flexibility. The ability to create new types of models is essential for research that goes
beyond what is already known at the time that a simulator package is created. However, hand written code that
implements particular models can be much more computationally efficient. This is particularly true in the case
of GPU simulations, as it is difficult to make maximally efficient use of GPU resources. Consequently, almost all
GPU-based simulators for spiking neural networks have not made it possible to easily create new user-defined
neuron models4–8. The exceptions are GeNN, the package Brian2CUDA13 currently under development, and
ANNarchy14, which is discussed below.

Figure 2.  Benchmarking of the net simulation time for different GPU models. Measurements were taken
separately for the MBody model (top) and COBAHH model (bottom) for double precision floating point (left)
and single precision (right). Simulation time is shown relative to the simulated biological time (10 s). CPU
performance was measured on the host of the TITAN Xp GPU (see Table 1). For the GPUs, the better (smaller)
of the simulation times for either pre-synaptic or post-synaptic parallelisation strategy are shown; circles mark
the simulations where the pre-synaptic strategy was faster, and squares those where the post-synaptic strategy
was faster. See Fig. 1 and main text for more in-depth explanation.

https://doi.org/10.1038/s41598-019-54957-7

6Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3.  Overview of the components that make up the total runtime of a simulation for the Mbody (left) and
the COBAHH benchmark (right). The top panels show the time spent in the simulation itself which scales with
the biological runtime of the model (shown at the right) and dominates the overall runtime for big networks
and/or long simulations. Simulation times were measured for biological runtimes of 10 s (middle line), while the
times for runs of 1 s (bottom line) and 100 s (top line) were extrapolated. The bottom panels show the time spent
for code generation and compilation (blue), general overhead such as copying data between the CPU and the
GPU (orange), and the time for synapse creation and the initialization of state variables before the start of the
simulation (green). The details shown here are for single-precision simulations run on the Titan Xp GPU.

Figure 4.  Minimal biological runtime after which the total simulation time, including preparations such as
code generation and compilation (cf. Fig. 3), is smaller when using a GPU compared to 24 threads on a CPU,
for networks of different sizes. This data was calculated from benchmark results as displayed in Fig. 2. The CPU
comparison is the host of the Titan Xp GPU (see Table 1). Results for the Mbody benchmark (left) and the
COBAHH benchmark (right). The calculations are based on single precision performance for the Quadro GPU
(blue) and Titan Xp GPU (green), and on double precision performance for the Tesla K40c (orange) and the
Tesla V100 GPU (purple).

https://doi.org/10.1038/s41598-019-54957-7

7Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

The technique of code generation allows us to solve this apparent conflict, and has been used by both the
GeNN and Brian simulators9,10,19 as well as a number of other neural simulators11. In the case of GeNN, when
writing a new model users need to write only a very small section of generic C++ code that defines how the
variables of a neuron model are updated, and this is then inserted into a detailed template that allows that model
to be simulated efficiently on a GPU. Brian meanwhile allows users to write their model definition at an even
higher level, as standard mathematical equations in a Python script. These are then automatically converted into
low-level C++ code to be compiled and executed on a CPU. In both cases, users write high level code (short
snippets of C++ in the case of GeNN, or Python/mathematics in the case of Brian) and efficient low level code
is automatically generated.

Linking Brian and GeNN accomplishes two tasks. Firstly, it allows existing Brian users to make use of a GPU
to run their simulations without any technical knowledge of GPUs (via GeNN). Secondly, it gives GeNN users
a high level and feature packed interface (Brian and Python) to manage their simulations. GeNN was originally
designed to be used at the C++ level, with network setup and simulation management handled by the user in
C++, but not all computational neuroscientists are comfortable working at this level and there can be consider-
able savings in development time working at a higher level.

The only other spiking neural network simulation package to allow for flexible model definition in a high level
language, and for code to run on GPUs, is ANNarchy14. This simulator was originally designed to adapt a model
definition syntax similar to Brian’s to rate-coded networks (rather than spiking neural networks), and to make
use of GPUs for high performance. It has subsequently been updated to allow for the definition of spiking neural
networks as well as hybrid networks, and simulating spiking networks on the GPU is now provided as an experi-
mental feature. In contrast to Brian2GeNN which supports all major operating systems, ANNarchy only supports
running simulations on the GPU on Linux.

As noted in24, on GPUs it is unlikely that there is a single best algorithm for spiking neural network simulation,
but rather the best algorithm will depend on the model. A diversity of GPU spiking neural network simulator
packages is therefore desirable.

Brian’s framework for defining models of neurons, synapses, networks and computational experiments
is designed to be as expressive and flexible as possible. Consequently, not all features of Brian are available in
GeNN, and not all simulations that can be run in GeNN will run efficiently. Among the most important currently
unsupported features are continuous, i.e. not spike-based, connections (used for example to implement electri-
cal synapses); heterogeneous, i.e. synapse-specific, synaptic delays; arbitrary, time-varying continuous stimuli;
and complex simulation schedules (for example, multiple simulation runs or different simulation time steps for
individual groups of neurons/synapses). Attempting to use an unsupported Brian feature with Brian2GeNN will
simply raise an error.

However, some features that are supported may also lead to slow code on the GPU. This is because efficient
use of the GPU requires appropriate paralellisation strategies and specific memory access patterns, and for some
features (particularly relating to backpropagation of information in synapses) it is very difficult to arrange data
in memory so that it can be accessed efficiently for both, forward and backward propagation on the GPU24. The
very different scaling of runtimes in the COBAHH example for pre- and post-synaptic parallelisation strategies
for synaptic updates in large model instances, as seen in Fig. 1, is a very typical example of such phenomena.
However, it is not straightforward to predict when problems of this kind will be significant. The Mbody example
has STDP but because it is otherwise well suited for GeNN due to essentially feedforward connectivity for the
majority of synapses and sparse firing, it speeds up well in Brian2GeNN. The COBAHH example does not have
plasticity and yet, due to its relatively dense, random connectivity and somewhat higher firing rates, the speedups
are good but less pronounced than in the Mbody example. Ideally, one would like to be able to predict the likeli-
hood and magnitude of an expected speedup for a given model on a given GPU but this is a notoriously difficult
problem24. We therefore encourage users to simply try Brian2GeNN on their script, which can be done by adding
just two lines to their script importing brian2genn and selecting the ‘genn’ device.

A general limitation of running simulations on GPU rather than CPU is memory, as GPUs typically have
much less available memory. At the time of writing, the largest memory available on a GPU is 32GB on the
extremely expensive V100, while consumer cards have less than 12GB. Available RAM typically limits maximum
simulation size due to synaptic weight matrices (very close to 8 bytes per synapse for single precision or 12 bytes
per synapse for double precision). For example, the COBAHH simulation at the largest sizes has around 60–70
times as many synapses as the Mbody simulation, meaning that maximum simulation sizes (as measured by the
number of neurons) for the Mbody simulation are larger than for COBAHH (Fig. 2).

Further work on Brian and GeNN will go in two main directions. On the GeNN side, we plan to expand the
features available in GeNN to cover more of the features available in Brian, as well as improving efficiency. A spe-
cific bottleneck that has been recently identified is the synapse creation task (see Fig. 3). Work is under way that
enables synapse creation on the GPU instead of the CPU with considerable performance advantages, in particular
where synaptic connectivity becomes more intricate.

On the Brian side, we plan to simplify and optimise the process of writing third party back-ends. This will not
only simplify future development of Brian2GeNN but will also encourage the development of an ecosystem of
back-ends, for example featuring different GPU algorithms or targeting different computational hardware such
as field programmable gate arrays (FPGAs). An interface to generate CUDA code directly from a Brian script,
called Brian2CUDA13, is also under development, but has not yet been released. Note that Brian2CUDA uses
different data structures and algorithms than GeNN, and Brian, Brian2CUDA and GeNN are all developed by
independent teams, and it is therefore likely that both GeNN and Brian2CUDA will be useful for different mod-
elling requirements.

For Brian2GeNN itself, we are planning to expose more of the optimisation choices offered to direct users
of GeNN to Brian2GeNN users, for instance per-synapse group choices for connectivity matrix representations

https://doi.org/10.1038/s41598-019-54957-7

8Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

(sparse, dense, ragged, bitmask) and parallelisation strategies (pre- or post-synaptic). We will also work on expos-
ing the emerging on-GPU initialisation methods mentioned above and the heterogeneous synaptic delays that
were recently introduced to GeNN.

Methods
Brian2GeNN.  Brian2GeNN makes use of the existing code generation facilities in the Brian and GeNN sim-
ulators. These code generation facilities differ in important aspects. The Brian simulator provides a comprehen-
sive code generation framework that converts not only high-level descriptions of neural and synaptic models to
executable code, but also extends this framework to model initialization including the generation of synapses
according to high-level rules. In addition, the user code is written in Python, a language that is very accessible to
researchers with a less technical background. However, the generated code is C++ code that runs only on the
CPU, and therefore cannot make use of the computational power of GPU accelerators. GeNN’s code generation
framework on the other hand is focused more on organizing the code to run efficiently on highly parallel GPUs,
leaving the task of defining the code for simulating the neural and synaptic model, and the details of how to run
the overall simulation to the user. This is completed in C++, which allows tight integration with other C++
based code, e.g. in the context of robotic controllers, but also makes writing a GeNN simulation relatively difficult
for inexperienced programmers. The major advantage of using GeNN is its ability to generate efficient CUDA
code that can be executed on a GPU to accelerate simulations.

Brian2GeNN acts as a “glue” between Brian and GeNN, thereby combining the advantages of both simulators.
It is built as an extension of Brian’s code generation mechanism and can therefore be directly used from within a
Brian script; by choosing the “GeNN device” (lines 2–3, Fig. 5 top), a standard Brian simulation is turned into a
hybrid Brian/GeNN simulation. Such a script typically sets up the simulation components and then triggers the
simulation of the network (Fig. 5 top and bottom left). At this point, the code generation process is activated and
generates, compiles and executes the target code. The results of this simulation are then written to disk by the exe-
cuted code, enabling the Python code to access the requested results to analyze or plot them. The executable code
(Fig. 5 bottom right) is jointly generated by Brian (blue boxes), Brian2GeNN (green boxes/arrows), and GeNN
(red box) and executed partly on the CPU and partly on the GPU. The initial steps, synapse creation and model
initialization, are unchanged from Brian’s default code generation process. However, since Brian and GeNN use
different data structures to represent synapses, Brian2GeNN has to generate code to convert between the two
formats. In addition, it copies all the data to the GPU so that it can be used during the simulation run. The main
simulation loop delegates the core of the simulation, the dynamic update of neural and synaptic state variables as
well as the propagation of synaptic events, to the code generated by the GeNN simulator, which executes on the
GPU. After each time step, some of this data may be copied back from the GPU and converted to the Brian format
so that it can be recorded by Brian’s monitoring mechanism. After the end of the simulation run, Brian2GeNN
takes care to copy all data back from the GPU and to convert it to the Brian format, so that Brian can store the
results to disk and make them available for analysis in the Python script.

Benchmark models.  We benchmarked Brian2GeNN on two models, named COBAHH and Mbody.

COBAHH model.  The COBAHH model is a model frequently used in simulations of cortical structures and
consists of two populations (Fig. 6a), a population of 0.8·N excitatory neurons and 0.2·N inhibitory neurons,
where N denotes the total number of neurons, which was scaled from 200 to 1,024,000. Each pair of neurons is
connected by a synapse with fixed probability p = 1,000/N (i.e., pairwise Bernoulli-distributed, potentially includ-
ing self-connections), so that on average each neuron receives 1,000 inputs, regardless of scaling. For N < 1,000, p
is set to 1, i.e. the network is all-to-all connected. Synapses are modeled as conductance based synapses,

= − + −I g V V g V V() () (1)E E I Isyn post post

∑τ
δ= − + −

dg
dt

g
w t t()

(2)
E E

E
E

i
i

∑τ
δ= − + −

dg
dt

g
w t t()

(3)
I I

I
I

i
i

where gE is the conductance of the synapse at time t, wE is the “weight” of the synapse, τE = 5 ms is the timescale
of synaptic PSCs, VE = 0 mV is the reversal potential and ti denotes the spike times of the pre-synaptic neuron.
The sum is over all pre-synaptic spikes and δ represents the Dirac δ distribution. The symbols are analogous for
the inhibitory synapses with values τI = 10 ms and VI = −80 mV. The weights for synapses were chosen as
wE,wI = ω·10−9 nS, where ω ~ U([0,1]) is a uniformly distributed random variable on the interval [0,1] and the
synaptic conductances were initialized independently according to the following normal distributions:
~g N(40nS,(15 nS))E

2 and ~g N(200 nS , (120 nS))I
2 . Note that there is no substantial effect of the recurrent

synapses due to the very low weight values wE and wI. This has been done on purpose, so that scaling the network
does not affect the network activity. However, since the values are non-zero, the simulations still include all the
computations to propagate the synaptic activity and are therefore representative for benchmarking purposes.

Neurons were modeled by Hodgkin-Huxley type conductance based model equations,

https://doi.org/10.1038/s41598-019-54957-7

9Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

= − + − + − +C dV
dt

g V V g m h V V g n V V I() () () (4)M L L Na
3

Na K
4

K syn

where CM = 0.2 nF is the membrane capacitance, gL = 10 nS, gNa = 20 μS, gK = 6 μS are the maximal conductances,
VL = −60 mV, VNa = 50 mV and VK = −90 mV the reversal potentials and the activation variables have dynamic
equations of the form

α β= − −
dx
dt

x x(1) (5)x x

where x = m, h, or n. The rate curves αx and βx are summarised in Table 3.

Figure 5.  Running simulations with Brian2GeNN. Top: Excerpt from an example Brian script that will execute
in a hybrid Brian/GeNN simulation due to the import of the brian2genn library (line 2) and the selection of
the “GeNN device” (line 3). Bottom left: Typical workflow of a Brian2GeNN simulation: the run call triggers
the code generation, compilation and execution. After the successful run, results are stored to disk and made
available to the Python script. Numbers refer to the corresponding lines in the example code on top. Bottom
right: Structure of generated code. Parts of the code result from Brian’s standard code generation process (blue),
while the main run step is implemented by GeNN (red) and everything is connected together by Brian2GeNN
(green). The preparation of the simulation and actions such as variable monitoring are executed on the CPU
(left), while the core of the simulation is executed on the GPU (right). The numbers in the boxes refer to the
elements of the example code (top) and general schematic (bottom left) which are the base for the code of the
corresponding block. For example, the “run step”, i.e. the advancement of the state variables of neurons and
synapses at every time step, is based on the definitions of the neuron and synapse models in (1) and (2).

https://doi.org/10.1038/s41598-019-54957-7

1 0Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Membrane potentials were initialized independently as −~V N V(0) (5 mV, (5 mV))L
2 . Spikes were detected

whenever the membrane potential V surpassed Vthresh = −20 mV and neurons were refractory, i.e. could not pro-
duce further spikes, for 3 ms after each spike.

Mbody model.  The Mbody model is essentially a feedforward network inspired by the mushroom body of
insects. As illustrated in Fig. 6b, there are three neuron populations, the projection neurons (PNs) of the antennal
lobe, the so-called intrinsic Keynon cells (iKCs) of the mushroom body calyx, and the extrinsic Kenyon cells
(eKCs) of the mushroom body lobes. PNs project to iKCs with a random connectivity, where each synapse exists
with probability pPNiKC = 0.15 (i.e., pairwise Bernoulli-distributed). For networks with less than 10,000 iKCs,
NiKC ≤ 10,000, the connections between iKCs and eKCs are all-to-all. For NiKC > 10,000 they are random with
fixed probability piKCeKC = 10,000/NiKC for each connection to exist. This will on average connect 10,000 iKCs to
each eKC. In addition to the feedforward connections, eKCs inhibit each other laterally with an all-to-all connec-
tivity (including self-connections). Synapses are described as conductance based synapses,

= −I g V V() (6)x xsyn post

∑τ
δ= − + −

dg
dt

g
w t t()

(7)
x x

x
x

i
i

where gx are the time dependent conductances of the synapses, wx stands for the synapse weights, Vx stands for
VPNiKC = ViKCeKC = 0 mV and VeKCeKC = −92 mV, and τx for the synaptic timescales of τPNiKC = 2 ms, τiKCeKC = 10 ms,
and τeKCeKC = 5 ms, respectively. The sum is over all spikes in the pre-synaptic neuron, ti are the spike times and δ
is the Dirac δ distribution as before. The weights are wPNiKC = (6.75 + 0.844 v) nS, where v N(0,1)~ is a normally
distributed random variable, and weKCeKC = 50.6 nS. Synapses between iKCs and eKCs additionally follow a spike
timing dependent plasticity (STDP) rule. At each spike occurrence,

Figure 6.  Diagrams of the two benchmark models, COBAHH (a) and Mbody (b). The COBAHH model is
fully recurrent, whereas the Mbody model is essentially feedforward with exception of some all-to-all inhibition
among the 100 eKCs.

Variable α [kHz] β [kHz]

m α = .
− −

−
− −

v

e
0 32 50

1
m v50

4
β = .

+

−
+

v

e
0 28 23

1
m v23

5

h α = .
− −

e0 128h
v46

18 β =
+

− −
e

4

1
h v23

5

n α = .
− −

−
− −

v

e
0 032 48

1
n v48

5
β = .

− −
e0 5n

v53
40

Table 3.  Activation and inactivation rate curves as functions of v = V/[mV].

https://doi.org/10.1038/s41598-019-54957-7

1 1Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Δ =







Δ >

−

τ

τ

− Δ

Δ
w Ae t

Ae

0

otherwise (8)

t

t
l

l

+ Δw w w (9)ij ij

where wij symbolises the weight of a synapse between the spiking neuron and every other neuron it is connected
to, and wij is clipped to the interval [0,wmax] after Δw is added. Δt = tpost − tpre is the time difference between
pre- and post-synaptic spikes and we have adopted an all-to-all pairing rule, i.e. at each post-synaptic spike, all
previous pre-synaptic spikes are considered and vice versa. The learning amplitude is A = k·0.1 nS, the STDP time
scale τl = 10 ms, and wmax = k · 3.75 nS. The model was originally developed for 2,500 iKCs, which approximates
the size of a Drosophila mushroom body, and we use the constant k = 2,500/NiKCeKC as a scaling factor for param-
eters relating to the synaptic conductance from iKCs to eKCs. If k < 1, we set it to 1. Here, NiKCeKC is the expected
number of synapses to each eKC, i.e. NiKCeKC = NiKC if NiKC < 10,000 and NiKCeKC = 10,000 otherwise. This scaling
avoids biologically unrealistic, too large inputs to eKCs.

The weights of the plastic synapses were initialized in two steps. First, all synapses were set to a low “inactive”
weight k·ω·wmax/10. Then, each weight was set to a higher, “active” weight k(2.5 + 0.5ν) with probability 0.2. Here
ω ~ U([0,1]) is again a uniform random variable in [0.1] and ν ~ N(0,1) a normally distributed random
variable.

The PN neurons in the input layer are described by a spike source array, i.e. they emit spikes at pre-determined
times and are otherwise not modeled in detail. We use a structured set of random input patterns. First we
choose 10 basis input patterns by randomly choosing 20 active PNs. Each of these input patterns is multiplied
into Nrep variants by changing the identity of each of the active PNs with probability 0.1. The number Nrep is
determined such that the overall runtime is as desired (see below) and all variants are presented once. Patterns
are presented every 50 ms with a random jitter chosen uniformly between 0 and 2 ms. All other neurons are
described by Hodgkin-Huxley equations as in the COBAHH model above, Eq. (4) and Table 3, but parameterised
slightly differently with CM = 0.3 nF, gL = 26.7 nS, gNa = 7.15 μS, gK = 1.43 μS, VL = −63.56 mV, VNa = 50 mV, and
VK = −95 mV. All Hodgkin-Huxley neurons were initialised with V = VL, m = 0, and h = 0.5.

The source code of the two model networks is published alongside the entire benchmarking code and results
at https://github.com/brian-team/brian2genn_benchmarks.

Benchmarks.  Benchmarks were run on a number of different workstations, with different GPUs installed
ranging from a standard consumer card (Quadro K2200) to a more powerful gaming GPU (TITAN Xp), an older
computing accelerator model (Tesla K40c) to the most recent and most powerful accelerator (Tesla V100). The
different configurations for benchmarking are listed in Table 1. We used Brian 2, version 2.225, GeNN version
3.226, and Brian2GeNN version 1.227 for our benchmarks.

In initial benchmarks we tested the models when run with “monitors”, Brian’s mechanism for recording the
activity during a simulation, and without. We observed that when monitoring the state of a few neurons, monitors
play virtually no role in the context of the two models used as benchmarks here. We, therefore, only present the
benchmarking figures without monitors in place. For the runs using Brian2GeNN, we used GeNN’s Yale sparse
matrix representation9 throughout. While for smaller models, dense matrix representations may have speed
advantages, the more relevant mid- and large-scale models would lead to “out of memory” failure on all tested
GPUs with either of GeNN’s dense matrix representations. Even with sparse matrix representation, some of the
largest simulation sizes could not be run on all GPU models because of the difference in size of the GPU memory
on the employed devices. The corresponding data points were omitted from the benchmark figures.

Data availability
Brian2GeNN is developed publicly on github (https://github.com/brianteam/brian2genn). The scripts and raw
results of the benchmark runs are available at https://github.com/brian-team/brian2genn_benchmarks.

Received: 7 May 2019; Accepted: 21 November 2019;
Published: xx xx xxxx

References
	 1.	 Oh, K.-S. & Jung, K. GPU implementation of neural networks. Pattern Recognit. 37, 1311–1314, https://doi.org/10.1016/j.

patcog.2004.01.013 (2004).
	 2.	 Rolfes, T. Neural networks on programmable graphics hardware (Charles River Media, Boston, MA, 2004).
	 3.	 NVIDIA® Corporation. CUDA™, https://developer.nvidia.com/cuda-zone (2006–2018).
	 4.	 Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A. & Veidenbaum, A. V. A configurable simulation environment for the

efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks 22, 791–800, https://doi.
org/10.1016/j.neunet.2009.06.028 (2009).

	 5.	 Fidjeland, A. & Shanahan, M. Accelerated simulation of spiking neural networks using GPUs. In The 2010 International Joint
Conference on Neural Networks (IJCNN), 1–8, https://doi.org/10.1109/IJCNN.2010.5596678 (2010).

	 6.	 Mutch, J., Knoblich, U. & Poggio, T. CNS: a GPU-based framework for simulating cortically-organized networks. Comput. Sci. Artif.
Intell. Lab. Tech. Rep. (2010).

	 7.	 Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M. & Harris, F. C. A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling. Front. Neuroinformatics 7, 19, https://doi.org/10.3389/fninf.2013.00019 (2013).

	 8.	 Bekolay, T. et al. Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinformatics 7, 48, https://doi.
org/10.3389/fninf.2013.00048 (2014).

https://doi.org/10.1038/s41598-019-54957-7
https://github.com/brian-team/brian2genn_benchmarks
https://github.com/brian-team/brian2genn_benchmarks
https://github.com/brian-team/brian2genn_benchmarks
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://developer.nvidia.com/cuda-zone
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.1109/IJCNN.2010.5596678
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fninf.2013.00048

1 2Scientific Reports | (2020) 10:410 | https://doi.org/10.1038/s41598-019-54957-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 9.	 Yavuz, E., Turner, J. & Nowotny, T. GeNN: A code generation framework for accelerated brain simulations. Sci. Rep. 6, 18854, https://
doi.org/10.1038/srep18854 (2016).

	10.	 Goodman, D. F. M. Code Generation: A Strategy for Neural Network Simulators. Neuroinformatics 8, 183–196, https://doi.
org/10.1007/s12021-010-9082-x (2010).

	11.	 Blundell, I. et al. Code Generation in Computational Neuroscience: A Review of Tools and Techniques. Front. Neuroinformatics
12, 68, https://doi.org/10.3389/fninf.2018.00068 (2018).

	12.	 Knight, J. C. & Nowotny, T. GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front. Neurosci. 12, 941, https://doi.org/10.3389/fnins.2018.00941 (2018).

	13.	 Augustin, M., Alevi, D., Stimberg, M. & Obermayer, K. Flexible simulation of neuronal network models on graphics processing
units: an efficient code generation approach based on Brian. In Bernstein Conference 2018, https://doi.org/10.12751/nncn.
bc2018.0072 (2018).

	14.	 Vitay, J., Dinkelbach, H. Ü. & Hamker, F. H. ANNarchy: a code generation approach to neural simulations on parallel hardware.
Front. Neuroinformatics 9, 19, https://doi.org/10.3389/fninf.2015.000191702.06463 (2015).

	15.	 Goodman, D. & Brette, R. Brian: a simulator for spiking neural networks in python. Front. Neuroinformatics 2, 5, https://doi.
org/10.3389/neuro.11.005.2008 (2008).

	16.	 Goodman, D. F. M. & Brette, R. The Brian simulator. Front. Neurosci. 3, 192–197, https://doi.org/10.3389/neuro.01.026.2009 (2009).
	17.	 Goodman, D. F. M. & Brette, R Brian simulator. Scholarpedia 8, 10883, https://doi.org/10.4249/scholarpedia.10883 Revision

#129355 (2013).
	18.	 Stimberg, M., Brette, R. & Goodman, D. F. M. Brian 2, an intuitive and efficient neural simulator. eLife 8, e47314, https://doi.

org/10.7554/eLife.47314 (2019).
	19.	 Stimberg, M., Goodman, D. F. M., Benichoux, V. & Brette, R. Equation-oriented specification of neural models for simulations.

Front. Neuroinformatics 8, 6, https://doi.org/10.3389/fninf.2014.00006 (2014).
	20.	 Brette, R. et al. Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23, 349–398, https://

doi.org/10.1007/s10827-007-0038-6 (2007).
	21.	 Traub, R. D. & Miles, R. Neural Networks of the Hippocampus (Cambridge University Press, New York, 1991).
	22.	 Nowotny, T., Huerta, R., Abarbanel, H. D. I. & Rabinovich, M. I. Self-organization in the olfactory system: Rapid odor recognition

in insects. Biol Cybern 93, 436–446 (2005).
	23.	 van Albada, S. J. et al. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network

Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. Front. Neurosci. 12, https://doi.org/10.3389/
fnins.2018.00291 (2018).

	24.	 Brette, R. & Goodman, D. F. M. Simulating spiking neural networks on GPU. Netw. (Bristol, England) 23, 167–82, https://doi.org/1
0.3109/0954898X.2012.730170 (2012).

	25.	 Stimberg, M., Goodman, D. F. M. & Brette, R. Brian 2 (version 2.2), https://doi.org/10.5281/zenodo.1459786 (2018).
	26.	 Knight, J., Yavuz, E., Turner, J. & Nowotny, T. GeNN (version 3.2), https://doi.org/10.5281/zenodo.593735 (2018).
	27.	 Stimberg, M., Nowotny, T. & Goodman, D. F. M. Brian2GeNN (version 1.2), https://doi.org/10.5281/zenodo.1464116 (2018).

Acknowledgements
We thank James Knight for assisting us with running benchmarks on the Tesla V100 device and helping with
adjustments in GeNN. This work was partially funded by the EPSRC (grants EP/J019690/1, EP/P006094/1)
and Horizon 2020 research and innovation program under grant agreement no. 785907 (Human Brain Project,
SGA2), and the Royal Society (grant RG170298). The Titan Xp and the K40c used for this research were donated
by the NVIDIA Corporation. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for supporting this project by providing computing time through the John von Neumann
Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

Author contributions
M.S., D.G. and T.N. developed Brian2GeNN, M.S., D.G. and T.N. ran benchmarks, M.S. produced figures, M.S.,
D.G. and T.N. wrote the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1038/srep18854
https://doi.org/10.1038/srep18854
https://doi.org/10.1007/s12021-010-9082-x
https://doi.org/10.1007/s12021-010-9082-x
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.12751/nncn.bc2018.0072
https://doi.org/10.12751/nncn.bc2018.0072
https://doi.org/10.3389/fninf.2015.000191702.06463
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.4249/scholarpedia.10883
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.5281/zenodo.1459786
https://doi.org/10.5281/zenodo.593735
https://doi.org/10.5281/zenodo.1464116
http://www.gauss-centre.eu
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Brian2GeNN: accelerating spiking neural network simulations with graphics hardware

	Results

	Simulation time.
	Time for other tasks.

	Discussion

	Methods

	Brian2GeNN.
	Benchmark models.
	COBAHH model.
	Mbody model.

	Benchmarks.

	Acknowledgements

	Figure 1 Benchmark of the net simulation time on a 12 core CPU with a single thread (dark gray) or using OpenMP with 24 threads (light gray), compared to a consumer GPU (TITAN Xp) and an HPC model (Tesla V100).
	Figure 2 Benchmarking of the net simulation time for different GPU models.
	Figure 3 Overview of the components that make up the total runtime of a simulation for the Mbody (left) and the COBAHH benchmark (right).
	Figure 4 Minimal biological runtime after which the total simulation time, including preparations such as code generation and compilation (cf.
	Figure 5 Running simulations with Brian2GeNN.
	Figure 6 Diagrams of the two benchmark models, COBAHH (a) and Mbody (b).
	Table 1 Configurations used for benchmarking.
	Table 2 Speed-up on GPUs.
	Table 3 Activation and inactivation rate curves as functions of v = V/[mV].

