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Abstract  

Almost 60 years ago, malignant mesothelioma (MM) was acknowledged as a specific cancer 
related to the inhalation of asbestos fibers (1). Its strong association with asbestos exposure 
triggered the development of researches. They consisted in epidemiological studies to know 
the risk factors that explain MM occurrence in the population, and of experimental studies 
to understand MM biological development as a neoplastic disease. Since that time, MM 
remains a rare and highly aggressive cancer that prompts researches to better manage 
patients with MM and to offer efficient therapies. To achieve this goal, a solid knowledge of 
the mechanisms of mesothelial carcinogenesis is needed and deserves basic researches to 
progress. So far, our knowledge is based on pathophysiological and toxicological researches, 
and from biological and molecular studies using MM tissue tumor samples and cell lines from 
humans and experimental animals. Most experimental studies have been based on the 
cellular and/or animal responses to asbestos fibers, and in genetically modified mice, 
demonstrating the genotoxic effect of asbestos and relationship with MM induction. The 
development of large-scale analyses allowing global integration of the molecular networks 
involved in mesothelial cell transformation should increase our understanding of mesothelial 
carcinogenesis. In human, MM tumors appeared as heterogeneous entities, based on 
morphological patterns and molecular specificities including gene mutations. The recent 
development of high throughput methods allowed classification of MM according to their 
histological type, genomic and epigenomic characteristics and deregulated pathways. The 
aim of the present review is to propose a potential mechanism of mesothelial carcinogenesis 
by integrating data, underlying the mechanisms that may be shared with other types of fibres 
that may pose current health issue. 
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Introduction 

Our present knowledge of the mechanisms of mesothelial carcinogenesis originates from 
pathophysiological and toxicological research carried out in vivo in rodents and in mammalian 
cells in culture. The development of analytical tools allowed biological and molecular studies 
of malignant mesothelioma (MM) tissue tumor samples and cell lines from humans and 
experimental animals. Most experimental studies have been based on the cellular and/or 
animal including genetically modified mice responses to asbestos fibers. These investigations 
have provided a body of data on the cellular and molecular effects of asbestos fibers on 
mesothelial cells and the mesothelium, including genomic and genetic changes and 
alterations of regulatory and signaling pathways. Human MM has been characterized at the 
genomic, genetic, epigenetic, and physiological levels, with the development of large-scale 
analyses allowing global integration of the molecular networks involved in the transformation 
of the mesothelial cell. 

As this volume is devoted to occupational cancer, the studies reported here will focus on 
asbestos, the only known human etiological factor widely used in the occupationnal 
environment associated with MM. Although epidemiological studies have clearly linked 
mesothelial carcinogenesis with both occupational and non-occupational asbestos exposure, 
no history of exposure can be found in about 10–20 % of MM cases (2-5). Some MM may be 
related to other fiber exposure or to other causes (6). Indeed, other types of natural fibers are 
associated with MM following environmental exposure, and other fibers used for industrial or 
commercial applications have been found to produce MM in animals, including man-made 
mineral fibers and more recently CNT. In 2014, IARC reviewed the classification of other 
fibrous materials, fluoro-edenite, silicon carbide fibres and whiskers, and CNT. Fluoro-edenite, 
a fibrous amphibole, was classified as carcinogenic (Group 1) as asbestos and erionite,  silicon 
carbide whiskers as probably carcinogenis (Group 2A) and a type of CNT as possibly 
carcinogenic (Group 2B) (7). 

CNT are of particular interest because of similarities with asbestos, which are discussed in 
several reviews (8-10). Recent studies investigating the effects of other elongated particles 
such as carbon nanotubes (CNT), and asbestos fibres as controls, have brought additional 
information on the mechanism of action of asbestos. In the field of investigation of the toxic 
potency of nanoparticles, the relation between the biological effects of asbestos and their 
properties led to the concept of high aspect-ratio nanoparticles (HARNs). In some parts of this 
review, we will mention CNT, which are a type of engineered HARNs that induces 
mesotheliomas and lung cancer in animal experiments (11). The aim of the present chapter is 
to update the data on potential mechanisms of mesothelial carcinogenesis by integrating data 
based on cellular and molecular effects of asbestos fibers on mesothelial cells with data 
obtained on altered physiological and molecular features of MM (12) 

Deposition and Translocation of Asbestos Fibers 

The initial route of entry of asbestos fibers is by inhalation. Fibers deposit in the 
tracheobronchial regions, distal airways, and alveolar spaces of the lungs (13). The major 
deposition mechanisms are by impaction, interception, sedimentation and diffusion, and are 
dependent on the physical characteristics of the particles (14, 15). It results that asbestos and 
other elongated mineral particles have a greater inhalability than spherical particles having 
the same mass or volume (16). While particles and fibers are readily cleared from the 
tracheobronchial airways by mucociliary transport, clearance from distal airways and alveoli 
is slower and mediated by phagocytosis by alveolar macrophages. Fiber length impairs 
macrophage-mediated clearance, especially for fibers that exceed the diameter of alveolar 
macrophages (10–25 μm). Impaired clearance may result in penetration of fibers through the 
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alveolar epithelium and subsequent translocation to the pleura and distant sites (17). Fibers 
that enter the interstitium may cross the visceral pleural by paracellular migration or by direct 
penetration (18). An alternative route of translocation to the pleural space is transport via 
lymphatics or the bloodstream (19).  

The parietal pleura lines the chest wall and the superior surface of the diaphragm, and the 
visceral pleura covers the lungs. The pleural space in humans is lined by a single layer of 
mesothelial cells approximately 1 μm thick resting on a basement membrane and underlying 
connective tissue and blood vessel (20). The major route of drainage of fluid, protein, 
particulates, and cells from the pleural space is lymphatic stomata that open between 
mesothelial cells on the parietal pleural lining. Lymphatic stomata are communication holes 
between the pleural cavity and the parietal pleura lymphatics, where the particles are not 
cleared and concentrate, depending on their shape and dimensions (21-23). The diameter of 
lymphatic stomata (~10–12 μm) limits the clearance of long fibers from the pleural space (19). 
The translocation of asbestos fibres in the lymph nodes and in the pleura has been reported 
in animal experiments, a process also found in CNT-exposed animals (8, 24-27). Asbestos 
persists in the lung regional lymphatics of mice one year after pharyngeal aspiration and giant 
cells formation is present in lymph nodes (28).  

Systemic dissemination of fibers through lymphatics and the bloodstream has been 
described in humans following autopsy (29-31). Asbestos fibers and asbestos bodies have 
been noted in the liver, mesentery, spleen, and abdominal lymph nodes (32, 33). Several 
studies have demonstrated the presence of asbestos fibers in the human pleura (30, 31, 34). 
The translocation of asbestos to the pleura is also suggested by the presence of pleural 
plaques that develop in the parietal pleura in asbestos-exposed subjects. Parietal pleura is 
also the location of early MM, although MM does not seem arise from pleural plaques. 
However, a statistically significant association was observed between mesothelioma and 
pleural plaques, consistent with the role of asbestos in these pathologies (35). 

Diffuse peritoneal malignant mesothelioma is also associated with exposure to asbestos 
fibers (36, 37). Fibers might reach the peritoneal mesothelial lining via diaphragmatic 
lymphatics that connect the pleura and peritoneal spaces or following systemic vascular and 
lymphatic dissemination. Another route of entry may be via swallowing of expectorated 
mucus and penetration of fibers through gastrointestinal wall. A biodisponibility of asbestos 
fibers may account for the occurrence, not only of MM and lung cancer, but of other types of 
cancers, larynx, ovary, and possibly pharynx, esophagus, stomach colon and rectum (38-42).  

The Mesothelial Cell In Situ 

The mesothelium consists of a monolayer of mesothelial cells lying on a basement membrane 
and supported by connective tissue containing fibroblasts and macrophages. It provides a 
protective barrier for frictionless interface for the free movement of apposing organs and 
tissues, and in fluid transport across the pleura (43). Mesothelial cells may have specialized 
functions at different anatomical sites, as demonstrated by morphological studies at the 
ultrastructural level (44). Mesothelial cells play a role in the resolution of inflammation and 
tissue repair after pleural injury (45). Fibrosis is a potential outcome of chronic inflammation. 
These processes are of particular interest in investigating the mechanism of action of asbestos 
fibers in the pleura. 

So far, the mechanism of mesothelial cell regeneration remains poorly understood, mostly 
in the context of serosal injury following dialysis. However, some controversial hypotheses, 
have been formulated. Comprehensive reviews summarize our present knowledge of these 
potential mechanisms (46, 47). The regeneration process has been studied experimentally 
following mechanical, chemical, or heat injury of the peritoneal serosa. Briefly, six 
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mechanisms have been suggested to replace the injured mesothelial cells: (1) centripetal 
migration of adjacent mesothelial cells, (2) exfoliation of mature or proliferating mesothelial 
cells that replicate on the wound surface, (3) preexisting free-floating serosal cells having the 
capability to differentiate into new mesothelium, (4) macrophage transformation into 
mesothelial cells, (5) submesothelial mesenchymal precursors that migrate to and 
differentiate at the mesothelium surface, and (6) bone marrow-derived circulating precursors 
(47). The origin of these new mesothelial cells has not yet been confirmed, but according to 
Mutsaers et al. (47), mesothelial regeneration is not dependent on subserosal cells, but more 
likely results from implantation, proliferation, and incorporation of free-floating mesothelial 
cells (48). Recently, floating mesothelial cells were identified in pleural fluid after lung surgery 
in human, in the vein of this hypothesis (49). 

Effects of Asbestos Fibers in Wild-Type Animals 

The relationship between mesothelioma and exposure to asbestos, or to other fibers, 
erionite and fluoro-edenite, has been well demonstrated by numerous experimental studies 
carried out in rodents. Some samples of asbestos fiber substitutes, refractory ceramic fibers 
(RCF) and glass fibers, have induced MM after inhalation by rats or hamsters. These data have 
been described in detail in several IARC monographs (14, 39, 50). Other routes of exposure by 
intracavitary pleural or peritoneal injection have illustrated the carcinogenic potency of these 
mineral fibers. Both types of exposure have been used to assess fiber parameters modulating 
the oncogenic response in the pleura. It can be emphasized here that fiber-induced MM show 
similar morphological features in rodents as in humans (51-54). 

Some studies have investigated the pleural responses to asbestos fibers following 
deposition in the lung. An inflammatory reaction characterized by the recruitment of 
inflammatory cells and the presence of growth factors in the pleural fluid was demonstrated. 
These growth factors were able to induce proliferation of mesothelial cells in culture (55). An 
inflammatory response may be triggered by fiber translocation to the pleura as demonstrated 
in rodents exposed to glass fibers, RCF or CNT (56-59). The pleural reactivity to asbestos was 
observed in mechanistic studies using CNT, and asbestos as control fibers. Shvedova et al (28) 
reported the occurrence of pleuritis and mesothelial hyperplasia and/or atypia one year after 
pharyngeal aspiration of crocidolite in mice (28). 

Chromosome and DNA alterations 

Chromosomal and molecular alterations have been studied in mesothelial tissue and in 
MM developed in rats exposed to asbestos by intraperitoneal injection. Chromosomes losses 
and rearrangements were observed in rats exposed to crocidolite and chrysotile (60). 
Significantly enhanced mutation rate of lacI gene from omenta in Big Blue rats (a model to 
detect mutation potency) was found 12 and 24 weeks post-exposure to crocidolite, and 
significant enhanced level of 8-Oxo-2'-deoxyguanosine (8-OHdG), a major product of DNA 
oxidation, in DNA from 10-20 weeks post treatment of Wistar rats (61, 62). 8-OHdG in DNA 
was also enhanced in rats and hamters after intratracheal instillation 1 day after the exposure 
to crocidolite (63).  

The type of mutations has been poorly investigated in animals. No mutations were found 
in Trp53 (exons 5-8) or in Kras (exons 1, 2) (60, 64, 65). Additionally, no hot spot point 
mutation in Kras were detected, one year after pharyngeal aspiration of crocidolite in mice 
(28). In MM from Big blue rats, transversions G>T were predominant (29%) followed by 
deletion (26%), G>A (20%), G>C (12%), A>T (6%), A>G and insertion (3%), while in controls 
spontaneous mutations were G>T (19%), deletion (5%), G>A (57%), G>C (14%), A>T and A>G 
(0%) and insertion (5%) (61). Recently mutational signature was investigated in human 
malignant pleural mesothelioma (MPM) (66). The authors found a highest rate of mutations 
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C>T, which C>T mutations can be generated by spontaneous deamination of methyl-cytosine 
bases in 5′-CpG, and by APOBEC-catalyzed deamination of cytosine bases to uracil (67). One 
of the signature in human MPM may be associated to reactive oxygen species (ROS) but no 
significant difference in the mutational signature was found between asbestos-exposed and 
non exposed patients (66). 

DNA mutations in asbestos-exposed cells may occur through generation of ROS by surface 
reactivity of particles, by asbestos uptake, or by inflammation. Oxidative DNA damage has 
been reported in several studies (68-71). Moller et al (72) reported a critical assessment of 
the association between pulmonary exposure to particles, considering carcinogens carbon-
derived particles, quartz and asbestos and levels of oxidatively damaged DNA in lung tissues 
from animals (72). The authors mentioned that the results show that asbestos can generate 
genotoxicity in a dose-dependent manner and without a clear threshold, and that   
measurements of oxidatively damaged DNA, as marker of particle-induced genotoxicity in 
animal tissues, did not show evidence that inflammation is a perequisite for generating DNA 
oxidation (72).  

Inflammation 

Inflammation plays a role in cancer. Asbestos-related MPM pathogenesis is associated with 
fibroproliferative response (73). This process partly involves IL-1, as reported in a study 
comparing inflammation in wild-type (WT) and IL- /KO mice following injection of 
crocidolite or carcinogenic CNT fibers in the pleural cavity (74). Both types of mice developed 
mesothelial cell hyperplasia, leucocyte infiltration, granulomas and fibrotic responses, but 
fibrosis specific genes were downregulated in the IL-1/KO mice in comparison to WT mice 
(74).  

Induction of inflammation was confirmed by transcriptomic and proteomic analyses. 
Inflammatory response to asbestos, crocidolite and tremolite, was studied at the acute (1 day) 
and subacute (7 days) phase in lung of mice exposed by oropharyngeal aspiration (75). Gene 
expression demonstrated inflammatory response (increased cytokine and chemokine release) 
and tissue damage (LDH release in the broncho-alveolar fluid) (75). Fifty six days post esposure 
perivascular and parenchymal inflammation, granulomas and fibrosis were moderate to 
severe (75). A proteomic analysis was carried out in lungs of mice exposed to crocidolite, 
single-walled CNT and ultrafine carbon black by pharyngeal aspiration (76). The overall 
pattern of protein changes was similar across treatments, and GO functional categories were 
related to inflammation/immune response, fibrosis and tissue remodeling (76). 

Global Gene Expression 

In the previously mentioned transcriptomic study (75), apart from genes of the 
inflammatory response, differentially expressed genes were involved in several other 
pathways regulating cell movement, death and survival, growth and cell proliferation, in 
comparison to control. In another study where amosite asbestos fibers and CNT were 
instillated into the pleural cavity of mice, transcitptomic microarrays analysis showed a 
common molecular signature of inflammatory lesions, and antibody-based array analysis 
showed activation of pro-oncogenic signaling pathways, including Src family kinases, Akt, 
mTOR, ERK1/2, and STAT3 (77). Progression of fiber-induced lesions is characterized by 
increased proliferation and oxidative DNA lesions (77). 

Gene mutations and signal pathway dysregulation were studied in 15 MM cell lines 
obtained from crocidolite-induced murine MM in three different mice strains, BALB/c, CBA 
and C57BL/6 (78). Whole exome analysis reported homozygous deletions in in Cdkn2a in 
14/15 cell lines, and deletion in Trp53, Setd2 or Lats2 in 1 to 3 cell lines, as well as a frequent 
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amplification of Myc(78). The genes significantly mutated belonged to pathways Wnt, Mapk 
and Jak/Stat, and mutations were also detected in genes form the Hedgehog and Notch 
pathways (78). A differential response depending on the mice strain must be noted, as the 
BALB/c MM cells had higher average number of mutations than MM cells from the other 
strains, and only mutation in one sample in the Mapk signaling pathway(78).  

Exposure of laboratory mice to carbon nanotubes mimics exposure to asbestos, from initial 
and chronic inflammation, through loss of the same tumour-suppressor pathways and 
eventual sporadic development of MM. These data support that fibers of a similar nature may 
pose significant health risks to MM (79). 

Immunological Effects 

Pathogenesis of asbestos, also shared by carcinogenic CNT, may be linked to their 
immunosuppressive effects, as reported in different studies (80-82). 

MM induction in GEM 

To investigate the role of specific genes in MM development, several models of MM have 
been developed using genetically modified mice (GEM) unexposed or exposed to mineral 
fibers. A recent review analyzes the different studies (83).  

GEM Unexposed to Asbestos Fbers 

A few studies inverstigated the development of MM in conditional mutant mice carrying 
either heterozygous (Htz) or homozygous (Hom) inactivated genes in the absence of asbestos 
exposure (84-87)(see (83) for review). Gene inactivation was carried out by injection of AdCre 
(Adenovirus expressing Cre recombinase) in the pleural or peritoneal cavity of mice carrying 
floxed relevant genes. All targeted genes were tumour suppressors, Nf2, Cdkn2a/Ink4a, 
Cdkn2a/Arf, Trp53, Rb, Tsc1, Pten or Bap1 alone or in combination. A high rate of thoracic MM 
was observed after injection of AdCre in the pleural cavity of double mutants Nf2 and Cdkn2a, 
Trp53 or Rb and in triple mutants Nf2, Trp53 and Ink4a (almost 100%) (85). After injection of 
AdCre in the peritoneal cavity or in the bladder of double Hom Trp53/Tsc1 mutants a high rate 
of MM developed, but none in Htz/Hom mutants showing a higher contribution of Trp53 (84). 
Involvement of Pten was also reported in the occurrence of pleural MM, as Hom Pten mice 
developed a frequency of 7% MM, but when coupled with Hom Trp53, 56% of mice developed 
pleural MM (87). Of note, genetic alterations in Tsc1 and Pten are found at very low frequency 
in MM. Kadariya et al (86) investigated the role ot Bap1, a gene predisposing to the 
development of MM and frequently mutated in human MM (88, 89). Interestingly, the authors 
generated mice with point mutations in Bap1 identical to germline mutations found in two 
human families with a BAP1 cancer syndrome, and presenting mesothelioma in several family 
members (86). They also studied Htz mice (knockout in exons 6 and 7). The results showed 
that Htz mice developed numerous types of cancers, but few or no MM (86). The tumour type 
with the highest incidence was ovarian sex cord stromal tumours, found in 63% Bap1 mutant 
mice (86). 

GEM Exposed to Asbestos 

Several studies investigated the development of MM in mice carrying Htz mutation in genes 
homologous to the most frequently inactivated in human MM, NF2, CDKN2A/INK4A, 
CDKN2A/ARF, BAP1 and TP53 (83). Studies were carried out on mice Htz for one tumor 
suppressor Trp53, Nƒ2, Cdkn2a/Ink4a, Cdkn2a/Arf or Bap1. A higher level of MM was found 
in asbestos-exposed Htz mice (crocidolite) in comparison with asbestos-exposed WT mice. No 
MM was observed in untreated mice (54, 86, 90-93).  
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Interestingly MM cells obtained from ascites in Trp53+/−mice exhibited Trp53 LOH and 
polyploidy (94). A loss of heterozygozity (LOH) of the Nƒ2 gene was found in Nƒ2+/−mice, 
suggesting a common mechanism for loss of the WT allele (54, 91). Moreover, in NF2+/−mice, 
two other TSG, Cdkn2a/Ink4a and Cdkn2a/Ink4b, were deleted at a high rate, while Trp53 was 
mutated at a much lower rate similar to human MM, (91, 92). A loss of the WT allele was also 
observed in MM Htz Bap1 mice exposed to asbestos (86).  

Gene alteration and expression were studied in mesothelioma cells from asbestos-treated 
MexTAg transgenic mice carrying SV40 large T Antigen (SV40Tag), in comparison with WT mice 
(95). Analysis of the Cdkn2 locus revealed deletion in WT animals, but not in MexTAg mice 
(95). As SV40Tag protein targets and impairs the p53 protein, this is consistent with different 
pathways of mesothelial cell transformation involving Cdkn2a/b and Trp53. Differentially 
expressed genes were involved in cell cycle regulation and DNA replication (95). 

Murine MM closely mimics the human disease characterized by peritoneal ascites, a long 
latency between fiber injection and MM appearance, and histological subtypes, epithelioid, 
sarcomatoid, and biphasic, similar to human MM. The results obtained with GEM show that 
in most cases, MM progression could follow several routes involving different TSG with 
Cdkn2a and Trp53 as independent key players. This is consistent with the  specific clinical 
features and molecular alterations in human MM.  

Collectively, results obtained in the different GEM experiments with or without asbestos 
exposure show that the most frequently altered murine genes homologous to the human 
genes, NF2, CDKN2A and TP53 are important in the neoplastic transformation of mesothelial 
cells, consistent with findings in human MM. The potential of other genes, Rb and Pten, is 
dependent on the inactivation of other key MM genes. Bap1 plays a role as cancer 
predisposing gene and is not specifically linked to the development of MM. The data obtained 
with asbestos-exposed mice are consistent with this observation. 

Effects of Asbestos Fibers on Mesothelial Cells in Culture 

While early studies have been carried out with cells of different species and tissues, human 
and rodent normal mesothelial cells have been most widely used to study the response of 
mesothelial cells to asbestos fibers (96).  

Genotoxicity 

In cultures of normal rat pleural mesothelial cells, asbestos induces chromosome 
alterations and abnormal mitoses (97-102). DNA breaks, base oxidation and stimulation of 
DNA repair were also evidenced (68, 103-108). Furthermore, DNA breakage and cell cyle 
arrest were detected in rabbit pleural mesothelial cells exposed to crocidolite (68). 
Interestingly DNA breakage was related to the phagocytosis of fiber by mesothelial cells as 
reduction of phagocytosis reduced the level of DNA breakage (68). When incubated in the 
absence of serum or in low levels of serum concentration, cell proliferation was observed 
(109, 110). However, in proliferating mesothelial cells, asbestos provoked a p53- and p21-
dependent cell cycle arrest consistent with the induction of a DNA damage-induced response 
(102). P53 was also induced in serum-deprived G0-synchronized mesothelial cells exposed to 
asbestos, but failed to block cell cycle progression (111). Comparison between different 
studies showed that significant effects were found with doses of 0.5–1 μg/cm2 (71). 

To summarize, studies on genotoxicity of asbestos fibers demonstrate that asbestos fibers 
are genotoxic for mesothelial cells. DNA repair processes are stimulated in asbestos-treated 
mesothelial cells. The consequences of DNA damage will be dependent on the efficiency and 
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fidelity of repair. When genomic damage is extensive, an apoptotic program should be 
induced. Life-or-death decisions may be at the heart of malignant transformation, and 
defective mechanisms of arrest or apoptosis may be critical to the development of malignancy 
(112). Several studies with mesothelial cells in culture have emphasized the occurrence of 
apoptosis (68, 102, 113). However, some cells can survive with genetic alterations that can be 
inherited in daughter cells. In that context, it is remarkable that mesothelial cells show both 
cell cycle arrest and mitotic abnormalities, suggesting that some cells could pass through cell 
cycle checkpoints with unrepaired DNA and chromosomal damage. Recent findings suggest 
that BAP1 could play a role as recucing apoptosis (114). 

Inflammation 

The ability of mesothelial cells to interact and internalize asbestos fibers is an important 
feature that is linked to the deleterious effects of asbestos, especially production of 
inflammatory factors by these cells, and interaction with the dynamic of mitosis. Activation of 
the Nalp3 inflammasome that triggers inflammation, is observed in mesothelial cells exposed 
to asbestos (73, 115). 

Epigenetic Changes 

Recently, some data on epigenetic changes in asbestos-exposed cells in culture were 
reported. DNA methylation profiling and gene expression were studied in Met5A cell line 
exposed to asbestos (chrysotile and crocidolite) (116). Only 26 CpG sites were differentially 
methylated after treatment by both asbestos types and methylation changes were the same 
for 15 of them (116). Results did not show correlation between methylation and gene 
expression, except for DKK1, an inhibitor of Wnt signal pathway, whose expression is 
upregulated by chrysotile treatment. With chrysotile, differential methylation occurred in 
genes involved in cell response to stimuli, cell adhesion and cellular matrix (116). With 
crocidolite, several genes from the DNA damage response were downregulated and 
upregulated genes were involved in metabolic process (116). 

Effects on Signaling Pathways  

Two studies investigated the response of human mesothelial cells to crocidolite asbestos 
by transcriptomic analyses (117, 118). Gene expression was investigated in normal pleural 
human mesothelial cells and in LP9, an h-TERT immortalized human mesothelial cell line 
exposed to crocidolite by transcriptomic analysis (118). Several genes were upregulated 
(ATF3, PTGS2, FOSB, IL8, NR4A2, and TFPI2). Among them the transcription factor ATF3 
regulated levels of asbestos-induced inflammatory cytokines, IL-1b, IL-13, G-CSF, and the 
growth factor, PGDF-BB, in LP9/TERT-1 cells (118).  ATF3 silencing by specific siRNA reduced  
cytokines and  PGDF-BB expression levels (118).  

The response of Met-5A cells to crocidolite was investigated using a Protein Pathway Array, 
which assesses proteins and phosphoproteins functionally linked to proliferation, apoptosis, 
cell cycle regulation, DNA repair, signaling, and transcription activity (119). Three pathways 
were only affected by crocidolite, ILK signaling, PPARa/RXRa and G1/S phase checkpoint 
regulation (119). Interaction between pathways, investigated by Ingenuity Pathway Analysis 
identified several proteins regulating the networks, P53, CCND1, RB1 and CTNNB1 in asbestos-
treated Met-5A cells in comparison with untreated cells (119). These results confirm the 
effects of asbestos on cell cycle progression. Concerning the role of P53, it must be noted that 
Met-5A are SV40-transformed cells, which show a basal accumulation of nuclear P53(120). 

An upregulation of genes involved in invasion, including MMP2, was reported in a 
transcriptome microarray analysis of Met-5A mesothelial cells exposed to CNT and crocidolite 
at subcytotoxic concentrations (121). Gene signaling network analysis found other genes 
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involved in the asbestos- or CNT-induced invasion network as potential regulators of MMP2 
(121). 

Fiber Properties in Relation to the Biological Effects and Carcinogenic Potency 

These paragraphs summarize the biological mechanisms leading to the development of 
diffuse malignant mesothelioma, focusing on the physiochemical properties of asbestos 
fibers, and other carcinogenic natural mineral fibers known to induce MM in human. Several 
recent mechanistic studies have been carried out with CNT providing new perspectives to 
account for the mechanism of action of elongated particles. The reader is referred to 
comprehensive reviews for a details on the fiber properties in relation to the biological effects 
and carcinogenic potency (8, 10, 11, 19, 122). Several fiber parameters are of importance in 
the mechanism of asbestos toxicity.  

Physico-chemical Properties of Asbestos Fibers and Elongated Particles. 

Asbestos fibers are fibrous silicates and are classified into two groups based on their crystal 
structure and chemical composition: serpentine asbestos which is called chrysotile and 
amphibole asbestos which includes crocidolite, amosite, tremolite, actinolite, and 
anthophyllite (123, 124). Fluoro-edenite is a fibrous amphibole not used in the industry, but 
naturally occurring present in quarry stones (125). Erionite fibers are a form of the mineral 
zeolite characterized by a high internal surface area. They are associated with the 
development of diffuse malignant mesothelioma in epidemiological studies (126-128). These 
naturally occurring fibrous minerals are variable with respect to chemical composition, 
associated minerals, and trace contaminants depending on their geographic origin (129). 
Asbestos fibers may contaminate other mineral deposits, for example, talc (126, 130) and 
vermiculite from Libby, Montana (130, 131), and exposure to these mixed materials has also 
been linked with diffuse malignant mesothelioma (128, 132). The physiochemical properties 
of mineral fibers associated with biological activity include shape and dimensions, surface 
chemistry and reactivity, and biopersistence (8). 

Shape and dimensions 

Shape and diumensions are fiber parameter modulating the biological effects of asbestos 
and elongated fibres. Fiber length and diameter determine the respirability and site of 
deposition in the lungs, and clearance mechanisms. Short fibers are taken more easily by 
macrophages than long fibers and can be eliminated by the clearance mechanims. In 
experimental studies, it was generally found that the fiber dimensions are important, with 
long and thin fibers more active that shorter fibers on cultured cell and with a greater 
carcinogenic potency in animals. 

Phagocytosis is an important function of macrophages and other cells as it determines the 
intracellular availability of the fibers and possible interactions with cell components (73, 115). 
A recent study investigated phagocytosis of CNT according to their geometry and 
demonstrated that geometry and volume influence the efficiency of phagocytosis (133). 

Fiber length has been associated with the induction of aneuploidy and chromosomal 
damage due to direct physical interference with the mitotic apparatus or by binding to cell 
cycle regulatory proteins (134, 135) (136). Chromosome damage and mitosis impairement is 
also a feature of CNT as observed in several types of rodent and human cells (137-139).  

Surface chemistry 

Surface chemistry determines interactions between the fiber and the molecules present in 
the fiber vicinity. Fibers may interact with macromoleucules in the biological fluids (proteins, 
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phospohlipids…) (128). Surface iron, especially on amphiboles surface may be released, which 
could catalyze the formation of reactive oxygen species (ROS), and may be associated with 
biological effects of mineral fibers including lipid peroxidation, oxidative DNA damage, and 
activation of intracellular signaling pathways (140-143).  

Biopersistence 

Biopersistence is considered as a major determinant of fiber pathogenicity in the lungs 
(144). It is dependent on fiber clearance and on the ability of fibers to be broken, splitted, or 
attacked by the biological medium in the lungs (144). Differences in biopersistence of asbestos 
fibers have been linked with carcinogenic potency, as biopersistent fibers could sustain a local 
inflammatory response (145). Amphibole asbestos fibers are more potent than chrysotile 
asbestos fibers due to their increased biopersistence in the lungs (8). However, chryotile fibers 
are detected in autopsic lungs several years past-exposure to asbestos, and their 
biopersistence and effects could be linked to the surface modification of the fibers (146-148). 
Additionally, thes fibers should be stable regarding the lun pH (149). Fiber biopersistence in 
the pleura is not documented; in particular, there are no data on the relationship between 
biopersistence in the lung and translocation of fibers from the lung to the pleura, nor on the 
pleural clearance of fibers following inhalation (150, 151). 

High aspect ratio and biopersistence have been hypothesized to be important properties 
of engineered nanomaterials that raise concern about their potential to be translocated to 
and retained in the pleura following inhalation (19, 152). A long-term study, after intratracheal 
instillation of CNT in rats, reported that pulmonary lung burden did not decrease significantly 
over time up to more that one year after instillation (153). 

Summary Hypotheses on the Mechanism of Action of Asbestos Fibers to Generate MM 

The development of diffuse malignant mesothelioma is a complex, multistage process that 
is governed by the physicochemical properties of crystalline mineral fibers and their 
propensity to migrate to the pleural and peritoneal linings. The most important properties of 
asbestos fibers related to carcinogenicity are fibrous shape and dimensions, surface chemistry 
and reactivity, and biopersistence (39).  

Interactions between mesothelial cells and fibers can cause genetic and chromosomal 
changes. There is a great body of evidence (1) that asbestos fibers can directly interfere with 
chromosomes and the mitotic spindle and (2) that they induce the formation of reactive ROS 
resulting in DNA breaks, oxidation, and mutations (154-157). Further, (3) the physical 
interaction of fibers with target cells causes persistent inflammation and, consequently, 
modulation of inflammatory and immune responses. ROS have been clearly indicated to cause 
genetic damage including chromosomal breaks and mutations and they are well known to 
initiate signal transduction pathways that are, in turn, linked to inflammation, proliferation, 
and apoptosis (157, 158). Free radical scavengers decrease genotoxic endpoints such as 
micronucleus formation induced by fibers and antioxidant enzymes can protect cells against 
genotoxicity induced by chrysotile fibers (159, 160). 

Prolonged interaction between pleural inflammatory cells and adjacent mesothelial cells 
causes persistent release of chemokines and cytokines, inflammatory mediators, ROS and 
reactive nitrogen species, and growth factors, that trigger repeated episodes of inflammation 
resulting in mesothelial cell injury, death and/or proliferation (161). This may be also linked 
to altered gene methylation patterns and to epigenetic gene silencing identified in human 
MM (162-164). Genomic instability and acquired gene and chromosomal alterations in 
mesothelial cells may lead to altered cell cycle and growth regulation, resistance to apoptosis, 
impaired repair of DNA and chromosomal damage, activation of oncogenes and inactivation 
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of tumor suppressor genes (134, 135, 163, 165). This persistent inflammatory 
microenvironment in combination with oxidative stress and cell division impairement 
generates a strong selective force for mesothelial cells that have acquired genetic and 
epigenetic changes that promote their survival, proliferation, and tumor progression (164). 

Molecular Alterations in Human MM 

Carcinogens provoke several types of somatic gene mutations, consisting of DNA and 
chromosome alterations. Some mutations are the signature of past exposure to given 
carcinogens. Somatic mutations in tumors are of interest both to determine the mechanism 
of action of carcinogens and to elucidate their adverse consequences on cellular homeostasis. 

Chromosomal imbalance 

Structural and numerical chromosomal abnormalities are numerous and complex in MM. 
A detailed review can be seen in Chapter 19 (166). It can be summarized here that one of the 
most frequent alterations are losses in the 3p21 region including the frequently inactivated 
gene BAP1, and other less frequenty altered gene SETD2 (167). Frequent losses also occur in 
9p21, which encloses the CDKN2A(INK4A/ARF) locus, encoding both the P16INK4A and the 
P14ARF proteins, and the CDKN2B locus, encoding P15 protein, and in 22q12 which encloses 
the NF2 locus, which encodes the protein merlin. 

Gene mutations 

In MPM, there are a limited number of genes known to be recurrently mutated in a high 
percentage of MM.  

Inactivation of CDKN2A and CDKN2B TSG are mostly due to large deletions (168-170). 
CDKN2A deletions have been considered as a marker of asbestos exposure in a study of non-
small cell lung carcinomas (171). In MM, DNA methylation of CDKN2A and CDKN2B have been 
reported at a frequency of 13 % (nine patients) and 4 % (three patients) respectively, and 
positively correlated with asbestos body counts in the lung (172, 173). The average 
methylation frequency of these genes in the literature is about 10 % (92, 172, 174-178). It was 
also suggested that mesotheliomas express microRNA (miRNA) that could inhibit P16/CDKN2A 
expression, based on an in silico analysis for miRNA target gene prediction (179). Interstingly, 
a recent experimental study of instillation of either long asbestos fibers (amosite) or long CNT 
showed hypermethylation of Cdkn2a(Ink4a/Arf) in early lesions that precedes mesothelioma 
(77). Both P16INK4A and P15INK4B are inhibitors of the kinase function of cyclin/cdk complexes 
involved in cell cycle progression. The protein P14ARF has an indirect function on cell cycle 
regulation, by positively regulating the level of P53 through interaction with P53 inhibitors. 
Consequently, cells with damaged DNA can proliferate and survive in the absence of P14ARF. 
In murine models of asbestos-induced mesothelioma, the orthologous genes, Cdkn2a/Ink4a 
and Cdkn2b, are also inactivated by deletion (91, 92, 180)((83). 

TP53 mutations occur at a lower rate in comparison with other human cancers, they are 
mainly due to non- or missense substitutions (66, 168, 170, 181, 182). Different frequencies 
of 7.4% and 16.3% are reported in 2 studies respectively(66, 170). None TP53 mutation was 
reported in the epithelioid molecular MM subtype, in a whole exome analysis of 202 MPM 
(66), but TP53 mutations were found in MM of epithelioid histologic type in other studies 
(170, 183). The protein P53 is activated in response to DNA damage and is a regulator of 
senescence, apoptosis and autophagy. In animal models of MM (see above), the mutated 
status of Trp53 was investigated in mice exposed to mineral fibers by intraperitoneal 
inoculation. In C57Bl/6 p53+/−mice, a strain having one allele mutated in the gene Trp53, loss 
of the WT allele was found at a high rate in MM induced by asbestos fibers (90). 
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In large-scale analyses alterations of NF2 TSG are frequently found, in about 20 % of MPM 
(66, 170). Higher percentages were previously reported in smaller series (184-187). NF2 has 
pleiotropic functions, being involved in regulation of cell proliferation, apoptosis, and 
endocytic trafficking and acting upstream of several signaling pathways including the Hippo 
signaling pathway (188). Mutations in NF2 consist of both point mutations and deletions 
(189). In Nƒ2WT and Nƒ2+/− FVB mice, Trp53 alterations were infrequent.  Nƒ2 mutations were 
detected in mice exposed to asbestos and exposed to ceramic fibers (92, 180). Alteration in 
the chromosomal region of the Trp53 locus was infrequent (190). These results suggest that 
deletions would be more likely a consequence of the mechanism of action of asbestos, while 
p53 point mutations could be related to “spontaneous” gene alterations in this model. 

Alteration of NF2 is also consistent with a physical mechanism of action of asbestos fibers 
with mesothelial cells. The encoded protein, merlin is a regulator involved in signaling 
pathways that control, among other parameters, cell shape, proliferation (involving the 
hyaluronic acid receptor, CD44, which is important for proliferation of MM cells), survival, and 
motility (188). Merlin is a component of the adherens junctions and other types of cell-to-cell 
contacts (191, 192). As cell division is mechanically impaired by the presence of asbestos 
fibers, mutation of NF2 could be responsible for enhanced proliferation as well as impaired 
mitotic control. 

Somatic BAP1 mutations are frequent in MM. A frequency of about 20% was reported in 
several studies, although higher rates, up to 60% are reported (88). Bueno et al (66) reported 
a frequency of mutations in 23% in MPM, that was the highest rate of mutations in 
comparison with the other predominantly mutated genes NF2, TP53 and SETD2 (66). In 
another series including MPM tumors and cultured MPM cells, a higher percentage of BAP1 
mutations was found in the subgroup of epithelioid MPM (subgroup C1) in comparison with 
subgroup including both epithelioid and sarcomatoid MPM (subgroup C2) (169). BAP1 
germline mutations were found in a few cases of sporadic mesotheliomas (193). However, no 
germline mutations in BAP1 was found in a cohort of patients in Australia (194). So far, the 
weight of germline BAP1 mutations in asbestos-induced MM is not clear. 

Up to recently, BAP1 was the only gene reported as possibly confering an increased 
susceptibility to MPM. A recent paper reported a gene sequencing analysis  of 85 cancer 
susceptibility genes on germline DNA of patients with pleural, peritoneal, and tunica vaginalis 
MM (195). Twelve percent of patients with MM carried mutations in genes such as BRCA2, 
CHEK2, CDKN2A and ATM, especially those with peritoneal MM, minimal asbestos exposure, 
young age, and a second cancer diagnosis(195). 

So far, no recurrent mutations have been reported in oncogenes. However, a ‘hot spot’ of 
mutations in the TERT gene core promoter has been reported in 15% of MPM MPM (196). 
TERT promoter mutations were significantly more frequent in MPM with sarcomatoid 
histologic subtype (196). 

Regulatory Pathways in MM Cells 

Constitutive activation of several signaling pathways has been demonstrated in MPM by 
the occurrence of mutations and/or deregulated expression of specific regulators in 
comparison with normal mesothelial cells. These studies have been carried out in primary 
tumor samples but also in malignant mesothelial cell cultures developed from tissue samples. 
Pathway deregulation in MM has been shown by gene sequencing and gene expression 
profiling (197, 198). Alterations were recurrently reported in several pathways: hippo, MAPK, 
PI3K/AKT/mTOR hedgehog, Wnt signaling pathways, cell cycle, P53/DNA repair and apoptosis 
and ubiquitin/proteasome system due to the frequent alteration of the deubiquitinase, BAP1.  
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The Hippo Pathway 

The Hippo pathway is of special interest regarding the high frequency of mutations 
detected in merlin encoded by the NF2 gene. As mentioned above, merlin negatively regulates 
cell proliferation and other cell functions (199, 200). Its activity is affected by interaction 
between extracellular signals and membrane proteins, and activated merlin transduces 
signals suppressing the transcriptional activity of YAP coactivator for TEAD and other 
transcription factors (168, 201). YAP and LATS1/2, regulator kinases of the hippo pathway, 
may mediate proper organization of cytokinesis machinery and mitosis progression (199). NF2 
co-inactivation with LATS2 led to loss of cell contact inhibition in human MM cells (202). LATS2 
gene was found to be deleted in three out of six MM cell lines and in one out of 25 tumors by 
DNA sequencing analyses (203). A more recent study reported LATS2 mutations in 11% (7/61) 
MPM cells (202). Merlin exists in two forms, active unphosphorylated or inactive 
phosphorylated. This later form is found in MPM cells possibly accounting for another 
mechanism for the deregulation of the hippo pathway in these cells (204). 

In an integated analysis of gemomics data hippo pathway was identified as altered in all 
histological type of MPM due to gene alterations in several members of the pathway (66). 

Cell Cycle 

The alteration of CDK inhibitor genes located at the CDKN2 (CDKN2A and CDKN2B) locus, 
as mentioned above, contributes to uncontrolled cell proliferation. Cell cycle control can be 
affected in MM cells not only by the loss of other negative regulators but also by the 
overexpression of cyclin-dependent kinases (CDKs), cyclins (CCNs), and regulators of the 
mitotic checkpoints. These alterations have been shown by gene profiling analyses using 
microarrays (205-207). Overexpressed genes were involved in the regulation of all phases of 
the cell cycle and cell replication and control of cell cycle progression (205). 

Several genes involved in the control of entry in mitosis and mitosis progression were also 
detected. Overexpression of aurora kinases (AURK) has been reported in several studies (206, 
208). In a recent study, higher expression of aurora kinase A (AURKA) mRNA expression was 
reported in a subset of MM with poor prognosis (170). Stathmin, a gene involved in the 
regulation of the microtubule dynamics by inhibiting the formation of microtubules and/or 
promoting their depolymerization, was strongly overexpressed in MPM, resulting in protein 
overexpression, possibly by an epigenetic regulation (209-211). 

These results can account for the complex, even chaotic, chromosomal alterations 
mentioned above, as the result of a defective control of cell cycle progression through 
different phases of the cell cycle, including dysregulation of mitosis. 

P53/DNA repair and apoptosis 

Mutations in TP53 and BAP1 play a role in MM pathogenesis. TP53 has multifunctional 
tumor-suppressor response, including the DNA damage response (DDR)  function and 
regulation of senescence and apoptosis (212). Additionally, BAP1 encodes a multifunctional 
ubiquitin C-terminal hydrolase, which is also involved in DNA repair and stress response (213, 
214). Epigenetic mechanism was identified as a mechanism involved in gene silencing in DDR 
responses (215). A nanostring analysis reported that mRNA expression of 12 target genes 
involved in different DDR pathways was significantly associated with expression levels of 
miRNAs in a series of 24 epithelioid MPM (216).  

Otherwise, specific regulators can contribute to MM resistance to apoptosis, such as low 
expression of proapoptotic proteins (Bax, Bak, Bad, Bid, or Bim) and high levels or activity of 
antiapoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) regulating mitochondrial function (217-220). 
Approaches to control MM proliferation have focused on the resistance of MM cells to 
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apoptosis (221, 222). Integrated analysis of the genomics data identified alteration of P53 
signaling pathways (66). 

From several studies, P53 appears to be stabilized in MM, suggesting basal overexpression 
and/or another type of dysregulation. The P53 protein is constitutively expressed, not only in 
MM cells in culture, but also in immunohistological sections of primary tumors (223-226). 
Candidates for P53 activation could be up-regulation of IGF-1/AKT/mTOR pathway and altered 
energy metabolism, which have been identified as additional functions of P53, as recently 
reviewed (227). Energy metabolism of MM cells is characterized as aerobic glycolysis (the 
Warburg effect), and the P53 protein could be induced to shut down this pathway (227, 228). 

MAPK and PI3K/AKT/mTOR Signaling Pathway 

The MAPK and PI3K/AKT/mTOR signaling pathway control various cellular processes, cell 
proliferation and differentiation, cell migration, survival, apoptosis, response to stress and 
mitogens, and is deregulated in solid cancers (229). In normal cells, these pathways are 
triggered by the activating phosphorylation of tyrosine kinase receptors (RTKs), followed by a 
protein kinase cascade. Downstream networks from RTKs can be activated by RTK mutation 
or sustained signaling through autocrine or paracrine mechanisms. 

MPM cells express both vascular endothelial growth factor (VEGF) and the VEGF receptors 
(fms-related tyrosine kinases, FLT1 and FLT4, and fetal liver kinase, KDR/FLK1) (230-233). VEGF 
expression was enhanced in a large proportion of MPM in comparison with nonneoplastic 
specimens (234). An autocrine role for VEGF in cell proliferation has been suggested (232, 
235). 

MM cell growth may also be linked to autocrine or paracrine stimulation growth factors 
such as PDGF (236-242) 

Epidermal growth factor receptor (EGFR) is overexpressed in 44–97 % of MM as found by 
immunohistochemical studies, but no mutation was detected in contrast with others types of 
cancer (243) 

Human MM cells express insulin growth factor (IGF) and insulin growth factor receptors 
(IGFR), and the activation of IGFR activates downstream signaling (244, 245). IGF-I appears to 
function as an autocrine growth factor in human mesothelial cells (246). IGFBPs also regulate 
IGF-dependent growth (245, 247, 248). 

Hepatocyte growth factor receptor (MET) is a proto-oncogene and the receptor for the 
ligand hepatocyte growth factor/scattering factor (HGF/SF). Both MET and HGF/SF proteins 
are expressed in some MPM suggesting the establisment of an autocrine loop of the (249). In 
vitro HGF/SF increases spreading, motility and/or invasiveness of mesothelial cell lines and 
inhibition of MET reduced cell proliferation (250-252). The activation status of MET and other 
RTKs, EGFR family, PDGF-A and PDGFR-B has been investigated in 20 MPM cell lines and 23 
primary specimens of MPM, and the effect of MET-specific inhibitors was investigated on cell 
lines (253). The results showed that inhibition of a single RTK was not sufficient to obtain a 
tumor suppressor effect but that inhibition of multiple RTK was required (253). 

The MAPK signaling pathway is constitutively activated in MM as demonstrated by the 
phosphorylation and activation of downstream proteins of the MAPK cascade, ERKs, Jun 
amino-terminal kinases/stress-activated kinases (JNKs/SAPKs) and p38 MAPK, and inhibition 
of cell proliferation and induction of apoptosis by inhibitors of the pathway (254-256). RTK 
activation can be achieved by a variety of growth factors, such as EGF family, PDGF, FGF, and 
HGF/SF, and cytokines such as TGF-ß, TNF, and IL1. The relative levels of tyrosine 
phosphorylation of 42 distinct RTKs were determined in MM cell lines established from 
surgical specimens. A coordinated activation of several RTKs – EGFR, ERBB3, AXL, and MET – 
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was reported (257). No recurrent mutations were identitified in members of MAPK signaling 
pathway in MM. 

Activation of RTKs also induces activation of other downstream signaling cascades 
including PI3K-AK) pathway. PI3K/AKT/mTor is activated in MM (258). Phosphorylation of AKT 
protein, the active form of the protein, and activation of the Akt pathway have been 
demonstrated in MM cells (198, 219, 259). In MM cells, PTEN, a TSG and negative regulator 
of the PI3K-AKT pathway, homozygous deletion has been reported in a very small subset of 
MPM cell lines (260, 261). Integrated analysis of the genomics data identified mTOR pathway 
as deregulated in MPM (66). Uppregulation of PI3K and mTOR signaling pathways were 
associated to poor prognosis (170). 

Other signaling pathways 

Other signal transduction pathways Wnt, Hedgehog and Notch are activated in MM cells. 
These pathways are important in embryonic development, and also as regulators of cancer 
stem cells (CSC), a side population which is resistant to chemotherapy and radiotherapy (262, 
263). 

The Wnt signaling pathway regulates cell proliferation and cell polarity, its activation 
prevents beta-catenin inactivation, a coactivator of transcription, allowing the expression of 
a variety of genes exerting pleiotropic effects (264). However, cell growth inhibition and 
apoptosis of MPM cells was observed according to a beta-catenin-independent inhibition of 
Wnt signaling (265, 266). In MPM, the Wnt pathway could be altered as a result of promoter 
hypermethylation of regulatory genes (265, 267, 268). Gene expression profiling of MM cell 
lines, primary MPM tumors and normal pleural tissue demonstrated that numerous Wnt and 
Wnt-related genes were upregulated and that some Wnt antagonists were downregulated 
(269). These results suggest that deregulation of the Wnt signaling pathway is involved in 
mesothelial carcinogenesis. Hedgehog signaling pathway is inactive in normal mesothelium, 
it can be reactivated in some MM and targeted to reduce the stemness-related cell population 
(270-272). Mutations in genes of these pathway have been suggested in MM (273). The 
deregulation of Notch signaling pathways has been reported in MM, with expression levels of 
Notch1 and Notch2 being elevated and reduced, respectively in human MM cell lines (274). 
These proteins act as positive and negative modulators, respectively, of PI3K/Akt/mTOR 
signaling pathway. 

Epigenetic pathways 

More recently, alterations in epigenetic pathways, DNA methylation, histone modification, 
nucleosome remodeling and RNA-mediated targeting (noncoding RNAs) have been reported 
in MPM. These pathways are important as they are connected to cancer (275). Modifications 
of DNA methyl transferases, chromatin remodelers and differential expression of noncoding 
RNAs in comparison with normal mesothelium are found in MM. DNA methylation was 
associated to silencing TSGs (276). Mutations in genes SMARCA4, ARID1A and ARID2 involved 
in the chromatin remodeling SWI/SNF complexes have been found in a low percentage of 
MM, and in the histone methyl transferases SETD2 and KMT2D (66, 276). Promoter 
methylation was associated with alterations of gene expression and an upregulation of several 
DNA methyltransferases in MM (276, 277). High-throughput integrated analysis of the 
genomics data identified histone methylation, RNA helicases pathways are altered in MPM 
(66). 

Immune checkpoints 

Immune checkpoints are modified in cancer cells. In normal tissue, they permit the 
maintenance of a self-tolerance function. In cancer cells, the expression of immune-
checkpoint proteins is modified, allowing tumor evasion, and blockade of the immune 
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checkpoints is a developing field in anticancer immunotherapy (278). Among them inhibitory 
T cell receptors, CTL4 and PD1, or ligand PDL1 are presentely targeted using specific antibodies 
to enhance immune recognition (279). Studies have investigated the level of expression of 
checkpoints proteins in MM, and an heterogeneity between tumors of their expressions and 
also of the immune cell content has been reported (66, 170, 280). Further studies should 
improve the knowledge of immune microenvironment of tumor cell and improve targeted 
immunotherapy (281).  
 

Human MM Molecular Heterogeneity 

MM heterogeneity appears to be one cause of the limited efficiency of treatments (282). 
Histological diversity reflects the various morphological patterns of MM defined through 
detailed classifications of the tumors (283). Immunohistochemical markers are useful for 
differential diagnosis of MPM and molecular markers, such as BAP1 protein expression and 
deletion of CDKN2A locus are currently used (284). CGH arrays and gene mutations analyses 
of MM have added a level of complexity in MM heterogeneity. DNA sequencing have revealed 
numerous copy number alteration and gene mutations (166). Moreover, within tumors, 
mutations are not detected in every mesothelioma cell in the tumor, possibly linked to 
polyclonal evolution (282, 285). 

Recently comprehensive genomic analyses allowed classifying MM in different subtypes 
through transcriptome analysis alone or coupled to other analysis such as sequencing (66, 
169, 170, 202, 208, 286). One transcriptomic study reported a clusterisation of MPM in 2 
subtypes loosely correlated with tumor histology, consistent with a molecular diversity partly 
related to morphological pattern (286). In another study, gene expression profiles of 
epithelioid versus sarcomatoid MM were analyzed, and led to the identification of genes 
related to lower survival expressed in sarcomatoid MM, such as aurora kinases A and B and 
functionally related genes involved in mitosis and cell cycle control (208). The authors 
developed a prognostic classifier based on their microarray data, but found a limited 
predictive value (208). Howerver, the identification of diagnostic markers is of potential 
interest for better patients management (208). Another transcriptomic analysis defined two 
robust molecular MPM subtypes, C1 and C2, only partly related to histologic types but closely 
related to prognosis (169). Interestingly, epithelioid MPM were found in both groups, with a 
worse survival prognosis in the C2 subtype. These MM groups also exhibited differential rate 
of mutations, with more frequent BAP1 alterations in C1 subtype. Pathways analysis revealed 
that EMT was differentially regulated between MPM subtypes, C2 subtype being 
characterized by a mesenchymal phenotype (169). A subtype of C2, the C2LN subtype, 
characterized by the double inactivation of NF2 and LATS2 TSG, was identified by coupling 
transcriptomic and genetic analyses (202). Another  publication has identified four distinct 
molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-
sarcomatoid (biphasic-S) using RNA-seq data (66). Exome analysis in the same tumor samples 
confirmed already identified and less commomly known mutated genes, BAP1, NF2, TP53, 
SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51, and alterations in Hippo, mTOR, 
histone methylation, RNA helicase and P53 signaling pathways without establishing a link with 
the 4 molecular subtypes (66). Investigation of the immune microenvromment found highest 
rates of T cells and M2 macrophages in the sarcomatoid group (66). Finally, one publication 
reported a comprehensive integrated genomic study providing histology-independent 
determinants of poor prognosis (170). Four clusters, namely iCluster 1 to 4, were 
characterized. The authors also defined a genomic subtype with TP53 and SETDB1 mutations 
and extensive loss of heterozygosity, and a strong expression of the immune-checkpoint gene 
VISTA in icluster 1 related to epithelioid MPM (170). Gene methylation seems associated to 



Page 18 sur 34 

 

prognosis as the methylation level is different between clusters, and higher in better 
prognosis clusters (170). 

The mechanisms of mesothelioma heterogeneity have been recently discussed 
emphasizing the different levels of MM heterogeneity (287). The recent publications on 
molecular characterization of MPM and the definition of distinct groups with specific 
molecular biomarkers linked to prognosis is of paramount interest to refine the diagnosis, to 
guide the therapeutic option and to develop targeted therapies. In the future, it may be 
expected that integration of metabolic, epigenetic and genomic data will succeed in proposing 
therapy adaped to the patients tumor. 

Conclusions   

Recent studies brought some light on the mechanism of MM carcinogenesis, and some 
questions remain to be addressed. Carcinogenesis progresses through multi-dependent steps, 
from fibers inhalation to neoplastic transformation of mesothelial and tumor growth. 
Asbestos remains the major risk factor for MM and past exposure can explain most of the 
MM, demonstrating a strong link between asbestos activity and mesothelial cell 
responsiveness. Lung, larynx, ovary, possibly stomach colon and rectum cancers are other 
cancers linked to asbestos exposure, but asbestos is not the unique cause for these cancers. 
Fibers can reach these organs via clearance, translocation and ingestion mechanisms, after 
inhalation. The relationship with past-asbestos exposure addresses the question of the 
specific sensitivity of mesothelial cells. The recent investigations carried out with CNT 
demonstrated a pleural translocation. Further studies would account for a more precise 
mechanism of particle translocation. 

The BAP1 gene was discovered and suggested as predisposing to MM in a context of 
asbestos exposure. In human, this gene is mutated in BAP1 tumor predisposition syndrome 
(BAP1-TPDS), which increases the risk of a variety of malignant and benign tumors. In MM, 
BAP1 mutation may be not a predisposing factor, as other cancers are associated in BAP1-
TPDS families, but BAP1 mutation is more likely a sensitivity factor in subjets exposed to 
asbestos, asking the question of the role of BAP1 in mesothelial cell physiology. The results 
obtained with GEM are consistent with this hypothesis as no MM is found in unexposed 
Bap1+/- mice, in contrast with asbestos-exposed Bap1+/- mice. A recent study suggest the 
association of other germinal gene mutations associated to MM formation (195). 

Carcinogenesis is defined by several capabilities that cells acquire during the neoplastic 
process (288, 289). Asbestos can induce genotoxicity, an early step in mesothelial cell 
transformation, due to DNA oxidation generated by oxidative stress and inflammation, and 
chromosome aberrations generated by mitosis impairement. It seems that there is no 
evidence that inflammation is a perequisite for generating DNA oxidation. Chromosome 
alterations are also reported in human cells exposed to CNT. Further studies carried out with 
HARNs should improve our knowledge of the mechanism of fiber-induced genotoxicity.  

Studies of human MM cells and tissue samples have identified cellular and molecular 
changes in comparison with normal cells. MM is characterized by numerous copy number 
alterations including frequent deletions, gene fusions and point mutations in a limited number 
of genes, most being TSG. In MM, genes are inactivated by mutation or by methylation. Apart 
from activating mutations in TERT promoter, no other recurrent oncogenic activation has 
been reported. Inactivated genes in MM are involved in the regulation of several pathways, 
cell cycle, hippo, P53/DNA repair and MAPK and PI3K/AKT/mTOR regulatory pathways. 
Moreover, epigenetic changes in DNA methylation, histone modification, nucleosome 
remodeling and miRNA-mediated targeting were more recently reported to occur in 
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mesothelioma cells. Ongoing researches will improve our knowledge on the molecular ways 
followed by mesothelial cells during  neoplastic transformation.  

Several recent clinico-biological studies have performed a molecular classification of MM, 
based on transcriptomic and multi-omic studies. The results have highlighted the molecular 
heterogeneity of MM, where tumors can be classified in different subtypes with different 
gene mutations, level of epithelial-mesenchymal transition, deregulated pathways, 
immunological microenvironment, and linked to survival outcome. These studies 
demonstrate that MM are heterogenous tumors, not only clinically and morphologically but 
also on a molecular basis. The results are encouraging to go forward and define biomarkers 
to develop efficient precision medicine.  
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