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1.  Introduction

There is a large amount of literature on different aspects of using time-of-flight (TOF) measurements in PET 
scanners. However, implementation details for reconstruction algorithms are often incomplete and scattered in 
various papers dealing either with reconstruction or with related topics (i.e. TOF PET scanners, estimations of 
random and scattered coincidences). Also, there is no formalization nor comparison of different implementation 
approaches and approximations. Here we focus on standard quantitative reconstructions from clinical data and 
on usual primary data formats (list-mode and histogram or raw sinogram), but the considerations are more 
general and apply to a wide family of algorithms and data formats. The optimization of LOR and TOF binning 
is not relevant for our purposes and we do not consider the family of TOF reconstruction methods based on 
preprocessed data formats (i.e. methods performing a single TOF backprojection and iterative operations in the 
image domain, Snyder and Politte (1983), Matej et al (2009)). First, we formalize the implementation of TOF and 
investigate some details and approximations. For each aspect, we mention articles that provided some theoretical 
or practical details. Then, we compare several implementations to investigate the impacts of approximations, 
using the CASToR platform, Merlin et al (2018), CAS (2017). This paper is also in support of the implementation 
of TOF in the CASToR platform.

2.  Theory

The TOF measurement for a pair of detected coincident photons is defined as the difference of photon arrival 
times ∆t, but in practice this time difference is converted into v, the presumed spatial position of the annihilation 
on the LOR. Here v is defined as the position with respect to the center of the LOR, and thus is expressed as 

v = c∆t
2 , c being the speed of light.
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Abstract
The time-of-flight (TOF) feature of PET scanners has been used for a long time in PET 
reconstruction, but many implementational aspects are still incomplete or ambiguous in the 
literature. Here we formalize and present theoretical and practical implementation details for the 
reconstruction of clinical TOF histogram and list-mode data using ML-EM. Relevant aspects include 
the computation of the TOF component of the system matrix, the processing of TOF bins, the use of 
estimations of random and scattered coincidences, and differences between histogram and list-mode 
ML-EM TOF reconstruction. Several approaches and approximations have been implemented in the 
CASToR platform and compared for OSEM reconstructions of patient data from the GE Signa PET/
MR scanner. Differences between implementations are not larger than the typical bias in clinical data 
reconstruction. The largest difference and contrast loss occur when the processing of histogram TOF 
bins is simplified, and list-mode reconstruction is most sensitive to the truncation of the Gaussian 
TOF probability distribution.
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The uncertainty of TOF measurements is usually modelled with a normalized (integral  =1) Gaussian func-
tion centered at v (Gaussian probability distribution). The Gaussian model and its parameters may be open to 
consideration because of imperfections of the imaging system, as for instance the spatial inhomogeneity of the 
timing resolution, the issue of timing alignment, Clementel et al (2013), the dependence on the count rate, Levin 
et al (2016), or the accuracy of the estimation of the standard deviation σ, Daube-Witherspoon et al (2006).

2.1.  Data formats
TOF measurements represent essentially additional information and do not modify other aspects in the acquired 
data. TOF histogram data contain an additional data matrix dimension for TOF bins: all the counts acquired in a 
LOR with a certain range of associated TOF measurements are summed into the corresponding TOF bin for that 
LOR. This implies the sum consistency property: the counts y ib for all TOF bins b in the LOR i must sum to the 
total counts y i detected in the LOR,

∑
b

yib = yi.� (1)

TOF list-mode data contain an additional TOF measurement value for each detected count, where the 
measurement can be continuous, though in practice it is necessarily saved with a limited precision, using a certain 
quantization step.

2.2.  Maximum-likelihood expectation-maximization (ML-EM) equations
Let A be the system matrix, λ the radioactive concentration, r̄ the expected count rate of random coincidences, 
s̄  the expected count rate of scattered coincidences and j  the voxel index. The multiplicative update part u of the 

ML-EM equation λt+1
j = ut

jλ
t
j  for voxel j  and iteration t differs for each data format. For TOF histogram data, the 

measured data are modelled with a Poisson distribution with expectation

ȳib =
∑

j

Aijbλj + r̄ib + s̄ib� (2)

and thus the update term for histogram data is

ut
j =

1∑
ib Aijb

∑
ib

Aijb
yib∑

k Aikbλ
t
k + r̄ib + s̄ib

.� (3)

This equation is used in the papers providing details about TOF histogram reconstruction and in the CASToR 
platform. The equation for list-mode data with quantized TOF measurements can be derived from the histogram 
equation (3) as

ut
j =

1∑
ib Aijb

Ncoinc∑
n=1

Ainjbn

1∑
k Ainkbn

λt
k + r̄inbn

+ s̄inbn

.� (4)

One could also write an equation for list-mode data with continuous TOF measurements, where the system 
matrix elements and background contributions are expressed as continuous functions of the TOF measurement 
vn,

ut
j =

1∑NLOR

i=1

∫
Aij(v)dv

Ncoinc∑
n=1

Ainj(vn)
1∑

k Aink(vn)λ
t
k + r̄in(vn) + s̄in(vn)

.� (5)

This equation  is used in the CASToR version 2. The equation  for list-mode data with quantized TOF 
measurements can also be derived directly from this list-mode equation with continuous TOF measurements 
(5) as

ut
j =

1∑NLOR

i=1

∫
Aq

ij(v)dv

Ncoinc∑
n=1

Aq
inj(vbn

)
1∑

k Aq
ink(vbn

)λt
k + r̄q

in
(vbn

) + s̄q
in
(vbn

)
� (6)

without going through the histogram equation (3) (the superscript q stands for ‘quantized’).

2.3.  System matrix elements and TOF weights
Ideally, the system matrix should be modelled by taking into account all the aspects of the acquisition process 
at once, but in practice it is convenient and reasonably accurate to approximate the system matrix elements as 
a multiplication of independent terms. Let Aij be the complete explicit system matrix elements for non TOF 
data, containing the geometric projection and other components. Let w be the TOF weights, independent of 
Aij, such that the system matrix elements for TOF histogram data are Aijb = Aijwijb, for TOF list-mode data 

Phys. Med. Biol. 64 (2019) 23NT01 (8pp)
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with continuous TOF measurements Aij(v) = Aijwij(v), and for TOF list-mode data with quantized TOF 

measurements Aq
ij(vb) = Aijw

q
ij(vb).

From the sum consistency (1) and from the model (2) follows an important sum consistency property for 
TOF weights w: the weights for a single LOR, a single voxel, and all TOF bins b or all TOF measurement values v 
must sum or integrate to 1, and thus represent a probability distribution.

∑
b

wijb = 1 ,

∫
wij(v)dv = 1 ,

∫
wq

ij(v)dv = 1.� (7)

There is a practical limitation to this property, because of the finite range of TOF measurements. This range can 
be called the TOF field-of-view and usually matches the size of the coincidence timing window. For voxels close 
to extreme TOF bins or measurements, the sum/integral (7) decreases. An illustration of this effect is shown in 
figure 1. The importance of this issue depends on the size of the imaged subject with respect to the scanner. For 
instance, we may say that the issue becomes of little importance if the distance between the edges of the patient 
body and of the TOF field-of-view is larger than 3 standard deviations of the TOF uncertainty function (75 mm 
for the Signa PET/MR). It should be noted that theoretically the sum can never reach exactly 1, because the TOF 
Gaussian uncertainty function is infinite and the range of TOF measurements finite, but in practice, for instance 
in the test in figure 1, the sum is equal to 1 in the scanner center.

2.4.  Voxel sensitivity
As a consequence of the sum consistency property (7), the voxel sensitivity factors are always the same, regardless 
of the use of TOF and regardless of the data format (the only paper that mentions this property is Groiselle and 
Glick (2004)),

∑
i

Aij =
∑

i

∑
b

Aijb =
∑

i

∫
Aij(v)dv=

∑
i

∫
Aq

ij(v)dv.� (8)

2.5.  TOF bin definition
The notion of TOF bin for TOF histogram data is frequently used and straightforward. However, it does not 
account for the approach (6) for list-mode data with quantized TOF measurements, for the following reasons: 
this approach is not derived from the TOF histogram equation (3) and it deals with quantization instead of 
histogramming. In order to provide expressions for TOF weights and estimations of random and scattered 
coincidences for all types of ML-EM equations using the same formalism, we redefine the term ‘TOF bin’, 
so that it refers either to (a) the quantization bin, which only makes individual TOF measurement values less 
precise, without implying any summing of counts in the raw data, or to (b) the cumulative bin, which implies 
the accumulation or summing of counts with a certain range of associated TOF measurement values. Hence, the 
quantization bin is used in (6) and the cumulative bin is used in (3) and (4). The distinction is relevant because 
the TOF weights and the estimations of expected count rates of random and scattered coincidences have to be 
computed accordingly. Both types of TOF bin can be represented with a box function Πb, with width ∆vb, center 

Figure 1.  Example of the sum of TOF weights over histogram TOF bins for each voxel along a horizontal LOR passing through the 
center of the scanner (

∑
b wijb), for the entire transaxial TOF field-of-view (685 mm diameter) of the SIGNA PET/MR scanner; 

vertical lines show the edges of the largest image field-of-view for reconstruction (600 mm diameter).

Phys. Med. Biol. 64 (2019) 23NT01 (8pp)
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vb, and value h, as (9). The cumulative TOF bin has h  =  1 and its integral equal to the bin width ∆vb, whereas the 
quantization TOF bin has h = 1/∆vb and its integral equal to 1.

Πb(v) =

{
h for vb −∆vb/2 < v � vb +∆vb/2

0 otherwise.
� (9)

2.6.  Computing TOF weights
Here we investigate different approaches to computing the TOF weights, under the assumption of a Gaussian 
TOF uncertainty model. TOF weights can be expressed from two equivalent points of view: (a) by considering 
the contribution of each voxel to a TOF bin or measurement, or (b) by considering an uncertainty function 
associated to a TOF bin or measurement, and sampled for each voxel. Usually, TOF bins are equidistant and have 
the same width, which simplifies computations greatly.

When computing the TOF weight for a list-mode detected coincidence n with its associated continuous TOF 
measurement vn, it is equivalent to (a) center the Gaussian function at the voxel projection onto the LOR vj  and 
sample it at vn and (b) center the Gaussian function in vn and sample it at vj  (see figure 2 left).

TOF weights for TOF bins can be formulated in the same manner for both cumulative (wijb) and quantization 

(wq
ij(vb)) bins, based on several approaches:

∫
N (v|vj,σ)Π(v|vb,∆vb)dv = h

∫ vb+∆vb/2

vb−∆vb/2
N (v|vj,σ)dv� (10a)

=
(
N (·|0,σ) ∗Π(·|0,∆vb)

)(
vj − vb

)
� (10b)

≈ N (vb|vj,σ)h∆vb.� (10c)

The contribution of a voxel j  to a bin b for a LOR can be expressed using (10a) (see figure 2 center). This was 
explicited in Mehranian et al (2016) for cumulative TOF bins. Equivalently, it can be expressed by first computing 
the convolution (10b), which is a function of the distance between the TOF bin center and the voxel projection 
onto the LOR, and then sampling it for the given voxel and TOF bin (see figure 2 right). These two approaches 
are equivalent in theory, but in practice (10a) is more suited for computation on the fly and (10b) is more suited 
for precomputation (slight differences may occur depending on the precision of the precomputed function, see 
figure 3). It should be noted that the difference between weights for cumulative bins wijb and for quantization bins 

wq
ij(vb) boils down to a single multiplicative factor equal to the TOF bin width: wq

ij(vb) = wijb/∆vb. Therefore, the 
two approaches to list-mode reconstruction with quantized TOF measurements (4) and (6) are equivalent, the 
difference being conceptual.

Various approximations can be used for simplifying computations. TOF quantization bins can be simply 
neglected, which implies reverting to the continuous list-mode (5). The weights for cumulative TOF bins can be 
approximated by simple multiplication of a Gaussian sample with the width of the TOF bin (10c). This is equiva-
lent to the approach in Lois et al (2010), Watson (2007), and in the CASToR version 2, where there is no concern 
about absolute value: the TOF weights are computed for all TOF bins for a voxel and a LOR, and then normalized 
by their sum to satisfy the sum consistency (7). Equation (10c) is a crude approximation to (10a) or (10b), and 
can be viewed as a decrease of the nominal σ. There may be other approximations in between, such as (10c) with 
a larger σ that accounts for the TOF bin width.

The nominal Gaussian function can be truncated, for instance to a certain number of standard devia-
tions. Truncation implies setting some TOF weights and consequently system matrix elements to zero. This 
impairs the sum consistency (7), which may have the following consequences: (a) if the voxel sensitivity fac-
tors are computed using the system matrix with truncation, they will differ from non TOF sensitivity factors 
and (8) will not be satisfied anymore, (b) if the voxel sensitivity factors are computed using the system matrix 
without truncation, (8) will be satisfied but discrepancies will occur between the system matrix elements used 

Figure 2.  Illustration of the computation of TOF weights for continuous TOF measurements (left), for TOF bins using approach 
(10a) (center) and for TOF bins using approach (10b) (right).

Phys. Med. Biol. 64 (2019) 23NT01 (8pp)
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for projection/backprojection operations and the voxel sensitivity factors. To ensure that (8) is satisfied, the 
truncated Gaussian function may be normalized so that its integral equals 1. However, such a function would 
represent a different TOF uncertainty model with a different standard deviation.

Building the TOF weights independently from the projection component p  of the system matrix implies 
that the TOF component has a constant value over the volume of a single voxel. In theory, it may be more 
accurate to account for TOF directly in the formulas for computing the projection component of the system 
matrix p ijb or pij(v). In this case, a more general sum consistency property must be satisfied: 

∑
b pijb = pij  and ∫

pij(v)dv = pij . However, in practice, this question has not been studied and may become relevant if the TOF 
uncertainty is reduced to the order of the voxel size.

2.7.  Random coincidences
The random coincidences depend on the detection process and their associated TOF measurements may 
be considered random as well. In view of the sum consistency (1), we want a model (2) such that 

∑
b r̄ib = r̄i 

and 
∫

r̄i(v)dv = r̄i. Let us consider a widespread method for estimating the expected count rate of random 
coincidences for a LOR i, ̄ri = Si1Si22τ , where Si1 and Si2 are the rates of single counts detected at LOR end points, 
and τ  is the timing window for coincidence detection. The expected random count rate per cumulative TOF 
bin ̄rib can be estimated by replacing 2τ  with the temporal size of the TOF bin ∆tb. This is equivalent to dividing 
the standard estimation r̄i by the number of TOF bins. This estimation was mentioned in Haynor et al (1988), 
and used for list-mode reconstruction with quantized TOF measurements (4) in Wang et al (2006), Zhang et al 
(2017). The continuous expected random count rate ̄ri(v) can be regarded as a limit case when the width of the 
TOF bin approaches 0. As it is a function of the distance v along the LOR, it can be estimated by dividing the 
estimation r̄i with the spatial total span of TOF measurements (∼spatial equivalent of the coincidence timing 
window), which gives a constant 2Si1Si2/c. The estimation r̄q

i (vb) for quantized TOF measurements in (6) also 
equals the same constant. Hence, for a LOR, the estimation of the random count rate is the same for all TOF bins, 
or equivalently for all continuous or quantized TOF measurements.

2.8.  Scattered coincidences
The estimation of scattered coincidences must also include the estimation of their associated TOF measurements. 
Two main methods have been developed for the estimation of the expected count rate of scattered coincidences: 
Watson (2007) provides scatter estimation s̄ib for cumulative TOF bins and Werner et al (2006) provides a 
continuous scatter estimation s̄i(v). As for random coincidences, we want a model such that 

∑
b s̄ib = s̄i  and ∫

s̄i(v)dv = s̄i . Depending on the availability of estimation methods, the cumulative and quantization bin 
estimations ̄sib and ̄sq

i (vb) can be obtained from continuous estimations as

h

∫ vb+∆vb/2

vb−∆vb/2
s̄i(v)dv ≈ s̄i(vb)h∆vb,� (11)

and continuous estimations can be approximated from cumulative bin estimations as

s̄i(vb −∆vb/2 � v < vb +∆vb/2) ≈ s̄ib/∆vb.� (12)

Figure 3. 
∑

b wijb for all voxels j  along the horizontal LOR passing through the center of the scanner, for different implementation 
approaches with truncation of the Gaussian function at 3σ.

Phys. Med. Biol. 64 (2019) 23NT01 (8pp)
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3.  Comparison of TOF implementations

3.1.  Method
All the approaches mentioned in this paper have been implemented in the CASToR platform and will be included 
in the CASToR version 3. Hence, TOF weights for TOF bins can be computed using (10a) (integral computation on 
the fly using erf), (10b) (precomputed convolution sampled on the fly) and (10c) (either precomputed function 
sampled on the fly or computation on the fly using exp). TOF weights for continuous TOF measurements can be 
computed on the fly or precomputed. The reconstruction of list-mode data with quantized TOF measurements 
is implemented using (6) only, which is equivalent to (4). The Gaussian distribution can be truncated to a given 
number of standard deviations σ. Different implementations are referred to as equation (10)t number of σ for 
truncation if present, for instance Ha_t3 for histogram reconstruction with (10a) and truncation to 3σ.

Whole body scans of two patients with high body mass index (BMI) were selected from the GE Signa PET/
MR scanner (GE Healthcare, Milwaukee, WI, USA). The scanner TOF characteristics were: 13.02 ps (1.95 mm) 
quantization TOF bin, 169.26 ps (25.37 mm) cumulative TOF bin, and 420 ps (62.96 mm) nominal TOF resolu-
tion (FWHM). The data were formatted into a TOF histogram and a list-mode with quantized TOF measure-
ments. The reconstruction parameters were similar to parameters in clinical routine: OSEM reconstruction with 
two iterations and 27 subsets, voxel size 2.34 × 2.34 × 2.78 mm3, sieve reconstruction with kernel equal to the 
scanner resolution PSF (Snyder et al 1987, Stute and Comtat 2013).

It should be noted that there are differences in computation of voxel sensitivities for different data formats. 
For list-mode data, sensitivity is precomputed using all the LORs and using system matrix elements without TOF 
weights, because of (8). Hence, inconsistencies may occur between the sensitivity and the system matrix elements 
when approximations to TOF weights are used. For histogram data, there are no such inconcistencies because the 
sensitivity is computed on the fly for each OSEM subset using approximated TOF weights.

We tested all the approaches to the computation of TOF bin weights (10a)–(10c), without and with Gauss-
ian truncation at 3σ. All the approaches for a data format were compared to the reference approach for that data 
format, which was (10a) without truncation. Differences were evaluated using the root-mean-square error pre-
sented as a % of the mean value in the image, using difference images and using SUV quantification in tumoral 
regions of interest (SUV mean, max, peak).

3.2.  Results
Figure 3 shows an illustration of the effect of Gaussian truncation on the sum consistency (7). The implementation 
Ha_t3 presents a sum lower than 1 (∼0.9973), stable along the LOR. The implementation Hb_t3 presents slight 

Table 1.  Differences between implementations.

Hc versus Ha Ha_t3 versus Ha Lc versus La La_t3 versus La

RMSE (%) ∼3 ∼0.1 ∼0.01 ∼0.1

ROI SUV measures (%) ∼−1 ∼−0.01 ∼−0.001 ∼−0.1

Figure 4.  (a) Histogram reference reconstruction Ha, (b) difference image for approximated TOF bins weights (Hc versus Ha), (c) 
difference image for Gaussian truncation (Ha_t3 versus Ha) and (d) (La_t3 versus La); the unit of color scales is SUV.

Phys. Med. Biol. 64 (2019) 23NT01 (8pp)
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fluctuations due to the precision of the precomputed convolution (here set to 0.01 mm to make the effect visible), 
and Hc_t3 presents larger fluctuations due to the approximations.

Here we expose only some noteworthy differences resulting from the comparison of images reconstructed 
using different implementations. The order of magnitude of differences is presented in table 1 and relevant 

images of differences are presented in figure 4.
For histogram data, the approximation of (cumulative) TOF bin weights (Hc versus Ha) resulted in the larg-

est differences and in contrast loss (see figure 4(b)). Truncating the Gaussian (Ha_t3 versus Ha) produced lower 
differences, partially due to the fact that the sensitivity is consistent with the computed truncated TOF weights. 
For list-mode data, the approximation of (quantization) TOF bins (Lc versus La) produced the same effect as 
for histogram data, but with much lower differences, because the TOF bin is one order of magnitude smaller. 
Truncating the Gaussian (La_t3 versus La) resulted in comparatively larger differences and in a general loss of 
intensity (see figure 4(d)), due to the inconsistencies between the voxel sensitivity and the computed truncated 
TOF weights.

Direct comparison between the histogram and the list-mode reconstruction is not shown, because the differ-
ence depends on several factors, not necessarily related to TOF. In order to perform a fair comparison, the num-
ber of subsets should be 1, the voxel sensitivity factors strictly identical, the TOF bin identical, and (4) used for 
list-mode reconstruction. The main reason for using approximations is reducing the implementation complex-
ity and the computation time. These depend strongly on the software framework and on computer architecture. 
In CASToR implementation, the approximations do accelerate computations up to a factor of 4, but a detailed 
analysis of computation time was not an aim of this paper. For the scanner and setup used in this study, the order 
of magnitude of differences between implementations (less than a couple of percents) is not larger than the order 
of magnitude of typical bias in standard clinical OSEM reconstructions (Schöder et al 2004). The differences are 
in accordance with the presented theoretical and practical implementation details.

4.  Conclusion

We provide theoretical and practical details for implementing TOF in PET reconstruction. Several approaches 
have been implemented in the CASToR platform and shall be available in the next release (version 3). The 
differences between approaches are shown to be of low importance for standard reconstructions of clinical data.
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