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Abstract: Matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin 

(NGAL) have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 

(pro-MMP-9) also exists as a disulphide-linked heterodimer bound to NGAL in humans. 

Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical 

behavior and pathophysiology. In this review, we summarize the current literature on the 

expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also 

report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the 

roles of (pro)-MMP-9 (active and latent forms) and NGAL in tumour development,  

and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of 

(pro)-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the 

biology of (pro)-MMP-9, NGAL and their complex in cancer including leukaemia may 

improve treatment outcomes. 
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1. Introduction 

Of the matrix metalloproteinases (MMPs) thought to be involved in cancer, attention has focused 

on MMP-9 because of its deregulated expression in cancer and its association with tumours’ invasive 

potential [1,2]. In most cancers, MMP-9 is found expressed as pro-MMP-9 which is the inactive 
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zymogen form of the enzyme. Neutrophil gelatinase-associated lipocalin (NGAL) was first purified  

from human neutrophils because of its ability to fix pro-MMP-9 by forming a disulphide-linked 

heterodimer [3,4]. Both NGAL and MMP-9 (active and latent) have already emerged as useful 

biomarkers in a wide array of malignant diseases including breast, brain, ovarian, pancreas, colorectal, 

bladder, prostate and lung and skin cancers [2,5–8]. On-going studies are investigating the value of  

the pro-MMP-9/NGAL complex as a marker of disease status in cancer. For example, the levels of 

pro-MMP-9/NGAL can be detected in tissues, urine and blood in breast, brain and gastric tumours and 

are significantly correlated with disease severity and poor survival [9,10]. 

Leukaemias are clonal disorders resulting from the neoplastic transformation of hematopoietic 

progenitor cells, associated with abnormal tumour cell growth, survival and dissemination from the 

bone marrow into blood and peripheral lymphoid tissues. The deregulated expression of pro-MMP-9 is 

observed in leukaemias [11–14]. However there are sparse data on the expression patterns of NGAL 

and/or the pro-MMP-9/NGAL complex in these diseases. This review is aimed at (i) providing an 

overview of the current literature on the expression profiles of pro-MMP-9, NGAL and their complex 

in leukaemias and (ii) highlighting the recent advances in understanding the roles of (pro)-MMP-9, 

NGAL and pro-MMP-9/NGAL in cancer including leukaemia. 

2. Introducing (Pro)-MMP-9, NGAL and the Pro-MMP-9/NGAL Complex 

Functional and structural components of MMP-9 include a hydrophobic signal peptide for secretion, a 

propeptide domain for enzyme latency, a catalytic domain with a highly conserved zinc-binding site, a 

collagen-binding domain within its catalytic domain and a hemopexin-like C-terminal domain (PEX) 

linked to the catalytic domain via a flexible O-glycosylated domain [1,2]. The enzyme is secreted as an 

inactive zymogen (pro-MMP-9, 92 kDa), with cleavage of the propeptide domain yielding the active 

MMP-9 (82 kDa). Plasmin, trypsin-2, MMP-2, MMP-13, MMP-3, serine elastase and kalikrein are 

amongst the many proteolytic activators of pro-MMP-9 [1,2]. The PEX domain is a four-bladed 

propeller structure within which each blade consists of four antiparallel β-sheets and one α-helix [2].  

It contains three cysteine residues (at positions 516, 674 and 704), with one disulphide bond bridging 

Cys-516 in blade I and Cys-704 in blade IV [15]. Various soluble proteins are found to be bound 

(covalently or non-covalently) to PEX, including tissue inhibitor of metalloproteinase (TIMP)-1 and 

TIMP-3, extracellular matrix components, β-hematin, NGAL and pro-MMP-9 itself [1,2,16].  

Neutrophil gelatinase-associated lipocalin is a secreted 25 kDa protein which exhibits a single, eight-

stranded antiparallel β-barrel surrounding a central pocket that is capable of binding low-molecular-

weight ligands (such as N-formylmethionyl-leucyl-phenylalanine, retinoids, steroids and fatty acids) 

and of capturing siderophores (such as bacterial enterochelin and mammalian endogenous catechols) 

that bind iron with high affinity [7]. NGAL also exists as: (i) a 46 kDa disulphide-linked homodimer; 

(ii) a homotrimer of 70 kDa; and (iii) a 130 kDa disulphide-linked heterodimer bound to pro-MMP-9 [7]. 

The Cys-87 in NGAL forms a disulphide bond with an as yet unidentified cysteine residue in  

MMP-9’s PEX domain [7]. 
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3. Pro-MMP-9, NGAL and Pro-MMP-9/NGAL as Leukaemia Biomarkers 

In the normal and tumoral hematopoietic compartment, MMP-9 is released as pro-MMP-9.  

As determined by ELISAs, detectable levels of MMP-9 (total; 92 kDa pro and 82 kDa active forms) 

(median level 67 ng/mL), NGAL (median level 72 ng/mL) and pro-MMP-9/NGAL (median level  

40 ng/mL) are observed in the systemic circulation of healthy subjects [4,17–19]. Normal immature 

(CD34
+
) bone marrow progenitor cells express NGAL [20] but not (pro)MMP-9 [21]. During 

maturation of granulocyte precursors in the bone marrow, NGAL is synthesized almost exclusively by 

myelocytes and metamyelocytes [22]. NGAL is also expressed in human erythroid cells [20]. 

Expression of NGAL, pro-MMP-9 and the 130 kDa pro-MMP-9/NGAL complex is observed in 

activated monocytes and neutrophils [4,20,23]. Resting T and B lymphocytes express the mRNAs for 

NGAL and MMP-9 [20,24,25]. The production of pro-MMP-9 protein appears to be dependent on the 

activation status of T- and B-cells and to be regulated by cytokines [24,26]. Although the transcription 

factor NF-κB is expressed in an inactive state in normal leukocytes, leukaemia cells express activated  

NF-κB [27]. The NF-κB signalling pathway regulates the transcription of both MMP-9 and NGAL [7,15]. 

This may explain the abnormal expression of pro-MMP-9 and NGAL in leukaemias. 

3.1. MMP-9 as a Prognostic Factor in Chronic Lymphocytic Leukaemia (CLL) 

Chronic lymphocytic leukaemia is characterized by accumulation in the blood of clonal expansions 

of CD5
+
/CD23

+
 B lymphocytes [28]. The accumulated leukemic cells (which are mostly quiescent) 

result mainly from their inability to develop an apoptotic program—although proliferating pools are 

found in the bone marrow and lymph nodes [28]. In contrast to resting B lymphocytes, CLL cells 

(stage A according to Binet’s classification) synthesize and secrete pro-MMP-9 [18,29]. Accordingly, 

serum MMP-9 concentrations are significantly higher in untreated early-CLL patients (stage A) than in 

healthy controls [18,30,31] and decrease to near-control levels in patients in remission [31]. Moreover, 

higher levels of intracellular MMP-9 are associated with advanced (stage C) disease and with poor 

overall survival [29]. These MMP-9 findings could help to screen patients with CLL to determine their 

risk of disease progression. The pro-MMP-9/NGAL complex is found released by CLL blood cells and 

expressed in CLL blood cell lysates [29] (Figure 1), strongly suggesting that NGAL and pro-MMP-9 

could form a complex within the cell prior to secretion. 

3.2. MMP-9 as a Prognostic Factor in Acute Lymphoblastic Leukaemia (ALL) 

Acute lymphoblastic leukaemia (ALL) is a heterogeneous disease that includes B and T-ALL 

cancers. B-ALL is characterized by an accumulation of early B blood cells, which can infiltrate lymph 

nodes, liver, spleen and lung [32]. T-ALL cells arise from the malignant transformation of 

hematopoietic progenitors primed for T cell development [32]. Although T-ALL develops mostly in 

the thymus, it tends to spread throughout the body (including infiltration of the bone marrow and the 

central nervous system) [32]. Blood mononuclear cells from T-ALL and B-ALL patients express  

pro-MMP-9 [13,14,33,34]. Our group reported pro-MMP-9/NGAL expression in B-ALL cells (Figure 1). 

At diagnosis, plasma and serum MMP-9 levels are lower in the T- and B-ALL patients than in the 

normal controls [31,35–37]. However, a significant elevation of plasma MMP-9 is observed in T-ALL 
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patients with malignant cell infiltration [34]. Moreover, elevated secretion of pro-MMP-9 by B-ALL 

blood leukocytes is found associated with a lower overall survival rate [14]. These data suggest that 

MMP-9 may act as a prognostic marker for B- and T-ALL progression. 

Figure 1. Detection of pro-MMP-9 and pro-MMP-9/NGAL levels in hematopoietic 

malignant cells. Blood samples were obtained from patients with chronic myelomonocytic 

leukemia/CMML, chronic lymphocytic leukemia/CLL, acute lymphoid leukemia/B-ALL, 

acute myeloid leukemia/AML and Burkitt’s lymphoma. Peripheral blood mononuclear cells 

were separated by Ficoll-Hypaque density gradient centrifugation, washed twice in PBS, 

lysed or cultured as described in [38]. Whole cell lysates were obtained by lysing freshly 

isolated cells in M-PER buffer (4 × 10
6
 cells/30 μL) supplemented with protease and 

phosphatase inhibitor cocktails as described in [38]. As a positive control for pro-MMP-9 

release, U937 cells (ATCC CRL-1593.2), cultured as described in [39] were stimulated 

with 100 U/mL recombinant TNF-α for 48 h (R&D). The 48 h-culture supernatants from 

U937 cells (2 × 10
5
/mL) and primary leukaemia cells (2 × 10

6
/mL) were harvested by 

centrifugation and frozen until zymography. Control medium alone was incubated under 

the same conditions. Analysis of (pro)MMP-9 and NGAL presence in culture supernatants 

(30 μL) and whole cell lysates (30 μL) was carried out in 7.5% (w/v) SDS-PAGE containing 

0.1% gelatin (w/v) as described elsewhere [18]. Zymograms showed two major bands of 

130 kDa and 92 kDa corresponding respectively to pro-MMP-9/NGAL and pro-MMP-9. 

The sizes were determined by interpolation from a standard curve of Rf values of known 

molecular weight markers. 

 

3.3. Link between NGAL and BCR-ABL in Chronic Myeloid Leukaemia (CML) 

Chronic myeloid leukaemia is a clonal myeloproliferative disorder that originates from a pluripotent 

stem cell expressing the Ph chromosome (t(9;22) chromosomal translocation) with the constitutively 

active BCR-ABL fusion gene, which leads to the production of the p210 BCR-ABL protein [40]. 

During the progression of CML, leukemic cells gradually replace normal bone marrow mononuclear 

cells and overpopulate the spleen and liver, resulting in anaemia and a high number of white blood 

cells in the peripheral blood. Hyperproliferation of white blood cells is the direct result of the 

constitutive tyrosine kinase activity of p210 BCR-ABL which activates major signal transduction 

pathways [40]. Inhibition of this kinase with the drug imatinib (approved by the U.S. Food and Drug 
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Administration in 2001) leads to alleviation of hyperproliferative symptoms [41,42]. Bone marrow and 

blood mononuclear cells from CML patients express pro-MMP-9 and NGAL proteins [12,43–45]. 

NGAL expression correlates with that of BCR-ABL [46,47]. Serum/plasma levels of MMP-9 and 

NGAL are significantly higher in CML patients than in healthy individuals [36,46–48]. If CML 

patients achieve complete molecular remission after imatinib therapy, NGAL serum levels fall and are 

significantly lower than the disease-state value [47,48]. These findings suggest a potential role of 

NGAL in monitoring the efficacy of the treatment of CML. 

3.4. MMP-9 and NGAL as Markers for Prognosis in Acute Myeloid Leukaemia (AML) 

Acute myeloid leukaemia (AML) is a clinically and genetically heterogeneous haematopoietic 

cancer characterized by the clonal expansion and accumulation of immature myeloid precursors in the 

bone marrow and blood [49,50]. Distinct AML subfamilies (French/American/British (FAB) subtypes) 

are defined by the development stage at which the cells are arrested [49,50]. AML cells disseminate 

from the bone marrow into peripheral tissues. Most patients with AML have poor rates of survival 

associated with a plethora of mutations such as internal tandem duplication (ITD) in the FLT3  

gene [50]. Blood and bone marrow AML blasts express and secrete pro-MMP-9 (independently of 

their FAB subtype) [21,51]. The pro-MMP-9/NGAL complex is found in AML cells that contain very 

large amounts of pro-MMP-9 (Figure 1). Serum levels of MMP-9 are markedly lower in AML patients 

than in healthy individuals [36]. Accordingly, bone marrow pro-MMP-9 levels are also significantly 

lower in AML patients than in normal controls; the levels recover to normal values following complete 

remission and decline again at relapse [35]. Moreover, bone marrow MMP-9 levels are significantly 

higher in patients with extramedullary infiltration than in patients without infiltration - suggesting that 

MMP-9 production by leukemic cells might contribute to the latter’s dissemination from the bone 

marrow [52]. Similarly, NGAL expression in the bone marrow is lower in AML patients than in 

normal controls [53]. Likewise, NGAL expression increased in patients achieving complete remission 

and falls in patients with refractory disease [53]. In addition, a combination of FLT3-ID mutation 

status and high NGAL levels is predictive of the best survival rates in patients with AML [53]. These 

data suggest that MMP-9 and NGAL might be surrogate markers of disease status in patients with AML. 

4. Roles of MMP-9, Pro-MMP-9 and NGAL in Cancer 

Extensive research of MMP-9 and NGAL has demonstrated their involvement in fundamental 

biological processes including inflammation and cancer [7,9,10,15,54]. Moreover, inflammation can 

affect tumor development and progression [55]. Indeed, the tumor microenvironment contains immune 

and inflammatory cells in addition to the cancer cells and their surrounding stroma (which consists of 

fibroblasts, endothelial cells, pericytes and mesenchymal cells) [55,56]. These diverse cells produce a 

wide variety of inflammatory cytokines, chemokines, reactive oxygen species and secreted proteases 

(such as MMP-9), which in autocrine and paracrine manners control tumor progression [55–57]. These 

evidences further support the multiple roles of MMP-9 observed in cancer and summarized below. 
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4.1. MMP-9 and pro-MMP-9 

The role of MMP-9 through its hydrolytic activity has been discussed in excellent reviews [1,2,15]. 

By cleaving many different targets (extracellular matrix, cytokines, growth factors, chemokines, 

growth factor receptors), active MMP-9 releases or generates bioactive molecules that in turn bind to 

specific receptors known to regulate key signalling pathways associated with cell growth, migration, 

invasion and angiogenesis [1,2,15] (Figure 2). For example, MMP-9 can release factors such as 

vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1 and fibroblast growth 

factor (FGF)-2 sequestered in the extracellular matrix which stimulate tumour associated-endothelial 

cells and thus promote angiogenesis and tumor growth. In contrast, tumstatin and endostatin generated 

by the MMP-9-mediated proteolysis of type IV collagen and type XVIII collagen, respectively, are 

active inhibitors of angiogenesis. Moreover, MMP-9 sheds and activates pro-tumour necrosis factor 

(TNF)-α, proTGF-β1 and Kit-ligand which are intimately involved in the regulation of cell growth and 

angiogenesis. MMP-9 suppresses the proliferation of T lymphocytes through disruption of the IL-2R 

signalling that may constitute a mechanism of cancer-mediated immunosuppression [58]. By cleaving 

β-dystroglycan, MMP-9 (in concert with MMP-2) allows the entry of leukocytes into the outer 

parenchymal barrier, that may facilitate leukocyte infiltration into the CNS [59]. Finally, MMP-9 

generates either inactivated chemokine fragments (e.g., growth-regulated protein (GRO)-α, platelet 

factor (PF)-4, stromal-cell derived factor (SDF)-1, monokine induced by interferon-γMIG)) or 

truncated chemokines with enhanced activity (interleukin (IL)-8, IFN-γ-induced T cell-activated 

chemokine (I-TAC)). The MMP-mediated proteolysis of chemokines might have direct consequences 

on tumor growth (e.g., I-TAC), migration (e.g., SDF-1) and angiogenesis (e.g., IL-8, PF-4, MIG and 

SDF-1) (reviewed in [1,2,15]). 

Several research groups have shown that (pro)-MMP-9 interacts with the cell surfaces of leukocytes 

and epithelial and endothelial cells by binding to various integral membrane proteins such as integrins 

(αVβ/αβ1/αβ2), CD44, Ku protein and the low-density lipoprotein receptor-related proteins (LRP-1 

and LRP-2) [60–62]. In chronic lymphocytic leukaemia (CLL) cells, CD44, integrin α4 (also known as 

CD49d) and pro-MMP-9 are physically linked to CD38 in a supramolecular cell surface complex [63]. 

There is now growing evidence pointing the ability of pro-MMP-9 to directly activate classical 

signalling pathways involved in cell growth, survival migration and angiogenesis [62] (Figure 2). For 

example, the binding of pro-MMP-9 to αMβ2 and CD44 induces the migration of monocytes and 

dendritic cells [64]. Similarly, the binding of pro-MMP-9 to the integrins αLβ2 and αMβ2 integrins 

induces the migration of human acute myeloid leukaemia (AML) cell lines and tumor-associated 

neutrophils [65]. The binding of pro-MMP-9 to its docking receptors α4β1 integrin and CD44 induces 

an intracellular signalling pathway that favours the growth and survival of CLL primary blood cells [66]. 

This pathway consists of Lyn kinase activation, STAT3 phosphorylation and activation of the  

pro-survival protein Mcl-1 (a member of the Bcl-2 family) [66]. 

4.2. NGAL 

Human NGAL exhibits little similarity to the mouse homologue lipocalin-2 (Lcn-2) (62%) and 

contains an unpaired cysteine that can form the MMP-9/NGAL complex [7]. In contrast, the complex 
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is not found in mice since Lcn-2 lacks the cysteine prerequisite for this binding [7]. These facts are 

crucial in the analysis of the attributed roles of NGAL (free or bound to MMP-9) in humans which 

might be distinct from that of Lcn-2 in mice. Therefore, we summarize here what is currently known 

of the biological activities of NGAL in the human system. 

Figure 2. Schematic diagram of the roles of (pro)MMP-9, NGAL and pro-MMP-9/NGAL 

in cancer. Active MMP-9 degrades structural components within the ECM, facilitating 

tumor cell invasion and metastasis and thus releasing bioactive factors (growth factors, 

cytokines and angiogenic factors) embedded in the ECM. MMP-9 also generates 

angiogenesis inhibitors, such as endostatin and tumstatin. MMP-9 processes and activates 

or inactivates signalling molecules (cytokines, chemokines, growth factors, receptors) that 

target tumor cells (cell growth, survival, migration, invasion and metastasis) and 

surrounding endothelial cells (tumour-associated angiogenesis). NGAL (whether bound to 

siderophore/iron or not) and pro-MMP-9 bind to integral membrane proteins on tumour 

cells leading to pro- ( ) or anti- ( ) tumour effects on growth, survival, migration, invasion 

and angiogenesis. The possible actions of the pro-MMP-9/NGAL complex on cell events 

remain to be identified (.....). 

 

Like pro-MMP-9, NGAL is shown to interact as ligand with integral membrane proteins and this 

may induce a receptor-mediated effect on signalling pathways involved in biological events (Figure 2). 

So far, two cell surface receptors have been identified for NGAL, i.e., LRP-2 (also known as megalin) 

and the solute carrier SLC22A17 (also known as 24p3R) [67–69]. Both of these receptors are able to 

bind NGAL alone or bound to a siderophore and iron [7]. 

NGAL is a recognized anti-bacterial factor of natural immunity through its ability to capture 

siderophores causing iron depletion and blocking bacterial cell growth [10]. Mounting evidence points 

towards growth factor effects of NGAL that modulate major cellular processes associated to tumoral 

development [7,9,70] (Figure 2). NGAL appears to exhibit either pro- or anti-tumour effects, 

depending on the type of cancer in question. NGAL facilitates the survival of human lung and breast 

carcinoma cells and can provide protection from the apoptosis induced by phosphoinositide-dependent 

kinase (PDK)-1 inhibitors [71]. NGAL increases the motility and invasion of human colon carcinoma 
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cell lines by affecting the subcellular localization of E-cadherin and Rac1 (one of the Rho small 

GTPases) through an iron-dependent mechanism [72]. These data are consistent with those of 

Nuntagowat et al. where NGAL silencing suppresses human cell cholangiocarcinoma migration and 

invasion [73]. NGAL overexpression in human breast cancer cells leads to increased breast tumor 

proliferation [74]. Paradoxically, NGAL’s inhibition of the proliferation and invasion of human 

hepatocellular carcinoma cells is associated with the blockade of the c-Jun N-terminal kinase (JNK) 

and phosphoinositide 3-kinase (PI3)/AKT signalling pathways [75]. Similarly, NGAL reduces 

invasion by suppressing focal adhesion kinase (FAK) activation and inhibits angiogenesis by blocking 

VEGF production in a model of advanced pancreatic cancer [76]. In human lung carcinoma cells, 

NGAL might exert a protective role against oxidative stress by inducing the expression of heme 

oxygenase-1 and superoxide dismutase 1,2 [77]. Three investigations have already analyzed the role of 

NGAL in multidrug resistance [78–80]. While NGAL does not interfere with doxorubicin resistance in 

breast cancer cells [78], it might contribute to erlotinib (a tyrosine kinase inhibitor of the epidermal 

growth factor (EGF) receptor) resistance in non-small cell lung cancer cells [80]. In contrast, NGAL 

could favor the intracellular accumulation of Rhodamine-123 in chronic myeloid leukaemia (CML) 

and breast cancer cell lines [79]. In all these studies described above, the NGAL receptor involved in 

the cellular events and the protein’s iron status have not been characterized and could explain NGAL’s 

divergent effects. 

5. Possible Roles of the Pro-MMP-9/NGAL Complex 

The expression of the pro-MMP-9/NGAL complex often correlates with the aggressive behavior of 

neoplastic cells and their invasive properties [74,81–83]. A few studies suggested that the complex 

could increase pro-MMP-9’s enzyme activity via an autocatalytic process [83–85] thus favoring the 

invasion of cancer cells through the basement membrane [86]. An in vitro study showed that activation 

of pro-MMP-9 can be mediated by entrapping the remaining N-terminal sequence residues of the 

partially truncated proenzyme into the hydrophobic binding pocket of NGAL [84]. Whether  

pro-MMP-9 bound to NGAL retains an enzyme activity in vivo has to be definitely established.  

Binding of pro-MMP-9 to a gelatin- or type IV collagen-coated surface could lead to reversible 

activation of MMP-9 via disengagement of the propeptide from the active site [87]. Interaction of 

hemin or β-hematin with the pro-MMP-9 PEX domain primes MMP-9 activation via an autocatalytic 

process [88]. Whether a similar mechanism occurs with the pro-MMP-9/NGAL complex remains to be 

demonstrated. Finally, a growing body of evidence suggests that by binding cell surface receptors,  

pro-MMP-9 and NGAL can initiate signal transducing events that control tumour cell processes. It is 

therefore legitimate to suggest that the pro-MMP-9/NGAL complex could interfere with the binding of 

NGAL and/or pro-MMP-9 to their respective receptors, thus modulating signalling events induced by 

pro-MMP-9 and/or NGAL (Figure 2). 

6. Conclusions and Perspectives 

The above mentioned data on pro-MMP-9 and NGAL in leukaemia indicate their differential 

expression between malignant and normal hematopoietic cells. During the initial stages of the 

leukaemic process, elevated serum levels of both MMP-9 and NGAL are observed in CML patients, 
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while those who respond to treatment with imatinib show a significant decrease in serum NGAL 

levels. Overexpression of pro-MMP-9 correlates with a poor clinical outcome for patients with AML, 

ALL and CLL, whereas NGAL expression has not yet been measured in these contexts. The 

expression of pro-MMP-9 and NGAL has also been detected in other haematological malignancies. 

Multiple myeloma cells produce pro-MMP-9 and pro-MMP-9/NGAL [89–92]. In patients with 

Hodgkin’s and non-Hodgkin’s lymphoma, serum MMP-9 levels are significantly elevated and are 

associated with poor survival rates [12,93]. It remains to be seen whether the pro-MMP-9/NGAL 

complex can be detected in the plasma or serum from patients with these hematologic malignancies 

and whether levels of the complex might be predictive of disease status. 

MMP-9 indirectly regulates signalling pathways that control cell growth, survival, invasion and 

angiogenesis (Figure 2). A growing body of evidence suggests that by binding cell surface receptors 

(including integrins, CD44, LRP-1/-2 and SLC22A17), pro-MMP-9 and NGAL can directly initiate 

signal transducing events that control tumour cell processes (Figure 2). The signalling pathways by 

which these receptors induce cellular responses may be distinct or similar but are thought to rely on the 

activation of key signalling pathways in tumour cell events. In the normal hematopoietic system, all 

these receptors are expressed (with different expression profiles) by erythroid, lymphoid and 

granulocyte/macrophage lineages [7,20,67,94,95]. In contrast to the well-characterized expression 

patterns of CD44 and integrins in leukaemias [96,97], LRPs and SLC22A17 have not been studied in 

these diseases and thus require investigation. Whether the pro-MMP-9/NGAL complex, like MMP-9, 

could display an enzymatic activity and/or influence the signalling actions of pro-MMP-9 and NGAL 

remains to be unambiguously demonstrated. 

Antiproteolytic therapies have sought to target MMP-9s’ catalytic activity and thus inhibit tumor 

progression [62,98,99]. The failure of MMP-9 inhibitors in phase III clinical trials may be explained 

by their lack of selectivity towards MMP-9 [62,98,99]. There is now evidence that MMP-9  

has complex functions, and that the enzyme inhibitor approach may no longer be sufficient because it 

does not address pro-MMP-9’s interaction with its ―receptors‖ and the subsequent cell signalling. 

Hence, novel therapeutic strategies involve newly designed inhibitors, such as peptides that block  

pro-MMP-9-cell surface interactions and function-blocking anti-MMP-9 antibodies [100–103].  

At present, no specific NGAL inhibitors are available. It remains to be seen whether treatment with 

specific anti-NGAL or anti-pro-MMP-9/NGAL antibodies might counter the malignant process. 

In conclusion, randomized studies are needed for definitely and simultaneously validating  

pro-MMP-9, NGAL and pro-MMP-9/NGAL as reliable biomarkers in leukaemias and other 

hematological malignancies. There is also a need for much more work on the triad’s cellular activities 

in order to develop novel inhibitors for potential use in combination with conventional treatments for 

hematopoietic as well as solid tumors. 
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