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Abstract: We combine a statistical learning-based global optimization strategy with a high
order 3D Discontinuous Galerkin Time-Domain (DGTD) solver to design a compact and highly
efficient graded index photonic metalens. The metalens is composed of silicon (Si) strips of
varying widths (in the transverse direction) and lengths (in the propagation direction) and operates
at the telecommunication wavelength. In our work, we tackle the challenging Transverse Electric
case (TE) where the incident electric field is polarized perpendicular to strips direction. We
reveal that the focusing efficiency approaches 80% for the traditional design with fixed strip
lengths and varying widths. Nevertheless, we demonstrate numerically that the efficiency is as
high as 87% for a design with varying strip lengths along the propagation direction.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Integrated photonics plays an indispensable role in optical communication, computing, and
sensing. Historically, integrated optics uses opto-geometric parameters in order to optimize the
performances of the devices, based-on of either analytical [1] or numerical models [2,3]. With
the constant growth of data traffic between the consumers and remote data centers, the use optical
transceivers is now well established, which will lead in one way or another to an increase of the
photonics device density on chip. Thus, reducing the footprint of integrated optics will become a
further challenge in the next decade, which brings to the vast concept of nanophotonics, taking
place when the dimension of the photonic component, or a part of it, becomes smaller compared
to the wavelength (<λ/2n) [4]. While nanophotonics devices exhibiting a single longitudinal or
transversal period subwavelength pattern can be optimized with a parametric scanning, most
of the optimization work in this domain rely on shape or topology optimization, also known as
inverse design techniques [5–11]. Such methods, lead to efficient designs with non-intuitive
shapes for which the manufacturing processes remains challenging. Furthermore, these methods
are based on the computation of the gradient of the objective function. Consequently, they might
be stuck in local minima/maxima rather than achieving the best design in the search parameter
space. In this work, we concentrate on optimizing a silicon mode converter which has been
identified as a critical component being realized in all the integrated photonic systems, while
playing a fundamental role in wave division multiplexing and demultiplexer systems [12–17].

Here, we apply a global optimization method based on a statistical learning strategy in order to
design a compact metamaterial mode converter structure at the telecommunication wavelength.
Our optimization method is related to the class of Bayesian optimization methods and is known
as Efficient Global Optimization (EGO) [18,19]. Contrary to the traditional common global
optimization strategies like Genetic Algorithms (GAs) [20], EGO is not based on adaptive
sampling, but on a surrogate model constructed on the basis of available objective function
evaluations. This surrogate model utilizes statistical learning criteria related to the optimization
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target (usually called merit function) in order to identify which design (set of parameters) should
be tested in the next iteration that would provide better results close to the predefined goal.

In general, the EGO is based on two phases. The first one is the Design Of Experiment (DOE),
which aims at generating an initial database of designs. In essence, a uniform sampling strategy
(e.g. the Latin Hypercube Sampling) [21] is deployed in order to generate different designs. Each
of these designs is evaluated using an electromagnetic solver, and the value of a cost function is
deduced from the numerical EM field. In the second phase, using the data obtained from the
DOE, a Gaussian Process (GP) model is constructed to fit these data. This GP model allows
us to predict the values of the cost function in the parameter space without the need to perform
additional electromagnetic simulations. Once this GP model is determined, one can estimate at
any point of the design space, the objective function (mean of the GP model) and an uncertainty
value (variance of the GP model). The mean and the variance are used together to determine a
statistical merit function. In our case, we rely on the expected improvement, which is a function
whose maximum defines the next design parameters set to be evaluated. That is to say, in the
search parameter space where this function is maximized, we extract the corresponding parameter
values, and the corresponding design will be simulated using our electromagnetic solver. Then
the database is updated accounting for this new observation (construction of a new GP model
based on the updated database). We repeat this process until a predefined convergence criterion
is reached, or when the expected improvement is sufficiently small. The reader can refer to Ref.
[19] for more details about our EGO method where we provide an analytical example to show the
performance of the method and compare it with a state of the art stochastic global optimization
method. We emphasize that EGO is a global optimization method, which means that it will not
be stuck in a local minima/maxima like the classical gradient methods [5,6,22,23]. Besides, in
many cases, this method is computationally cheaper than classical global evolutionary strategies
like GAs [20,24]. We also note that it has been recently shown that Bayesian based optimization
techniques outperform most of the classical optimization methods [19,25].
Besides, it is worth discussing the main differences between EGO and the Artificial Neural

Networks (ANNs) given the increasing popularity of ANN-based modeling approaches in the
photonics research community. In fact, ANNs are not really designed for optimization, but for
the construction of surrogate models, which can be then employed for different tasks. In general,
the main difficulty with ANNs is related to the large amount of input data needed to train the
network in order to be accurate for all possible configurations. In general, this limits strongly the
number of parameters.
In contrast, the EGO algorithm is a metamodel-based optimization method, which focuses

the search in promising regions for the minimizing a cost function. As a consequence, it is less
sensitive to the dimension than ANNs. However, for EGO, there is anyway a limitation due to the
fact that it relies on the construction of an internal Gaussian Process model, to decide which new
point should be evaluated. This limitation is difficult to define precisely in general, because it
depends on the studied problem. In the literature, it is reported that EGO should in general not be
employed when dealing with more than one hundred parameters. Nevertheless, high dimensional
Bayesian optimization is a very active research topic. In particular, preconditioning methods are
studied, in order to reduce the number of active parameters effectively used during optimization.
Here we exploit a in-house fullwave 3D electromagnetic solver based on the Discontinuous

Galerkin Time-Domain (DGTD) method from the DIOGENeS [26] software suite. This solver
has been specifically designed for modelling and simulating nanoscale light-matter interaction
problems [27] with complex geometrical shapes. Shortly, the DGTD method [28] can be seen as
a mixture of a classical (continuous) Finite Element Time-Domain (FETD) and Finite Volume
Time-Domain (FVTD) method. Consequently, the DGTD method combines attractive features of
FETD and FVTD methods. In particular, a DGTD method relies on a high order approximation
of the unknown field with a polynomial interpolation method (Pp where p is the interpolation
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degree). It is formulated on a fully unstructured tetrahedral mesh allowing for a local refinement
of the mesh and the possibility of using curvilinear cells for a high order approximation of
sophisticated geometry features with strong discontinuity. These modelling features of the DGTD
makes it an ideal electromagnetic solver for nanophotonic devices. For more details about our
solver, the reader can refer to Refs. [26,27].

2. Design and results

In Fig. 1, we present a 3D schematic view of the structure under consideration. We consider a
graded index configuration acting as a mode converter from a multimode waveguide of width W
excited on its fundamental mode towards a single-mode waveguide of width w at wavelength
λ = 1310 nm. In the end, one can consider such a device as a metalens, mimicking the behavior
of a lens at the nanophotonics scale, and applied to an optical mode. This metalens consists
of several Si strips of varying widths with the same length L along the propagation direction
z. The height of the strips is fixed as h = 310 nm (in y direction). The Si regions (green color)
is placed on top of a semi-infinite substrate made of SiO2 (red color) and is coated from above
by a semi-infinite air region (not shown here). The structure is terminated from all sides by
Perfectly Matched Layers (PMLs) (not shown). The permittivities of the Si and SiO2 regions at
the operating wavelength are 3.5062 and 1.44682, respectively. The principal aim of this design
is to convert the fundamental mode injected from the surface Sin (solution to the 2D waveguide
problem with Si width W = 3000 nm) to a single-mode waveguide at surface Sout (solution to
the 2D waveguide problem with Si width w = 300 nm) with maximum efficiency. Certainly,
in order to accomplish this target, one needs to optimize the widths, and the length L of the Si
strips simultaneously. In other words, we search for the optimal configuration to maximize the
following Figure Of Merit (FOM)

FOM =
|
∫
Sout
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)
. n dS +
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(
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4
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In Eq. (1), Ein and Hin represent the input mode, which is the solution of a 2D waveguide of
width W = 3000 nm at the input surface Sin. Similarly, Eout and Hout represent the solution of
a 2D waveguide with w = 300 nm at the output plane Sout, while E and H are the solution we
obtain after the propagation through the strips. The FOM in Eq. (1) combines the maximization
of the total transmission and the maximization of the overlap between the solution E, H and the
given output solution Eout, Hout at the output surface Sout.
In order to maximize the FOM provided in Eq. (1), we utilize the EGO mutually with our

DGTD solver. In the optimization problem we consider 8 parameters that represent the length
of the strips L and their widths ei, i ∈ {0, 6} as shown in Fig. 1. We respect the fabrication
constraints in the search parameter space, such that the widths of the strips are allowed to vary
from 50 nm to 200 nm, and the period is fixed to be 250 nm. Besides, the length L is ranging from
1µm to 4µm in order to realize a compact mode converter device. The optimization results are
shown in Fig. 2. In Fig. 2(a), the blue points represent the first phase of the optimization, i.e., the
design of experiments (DOEs); here we examined only 50 designs. As we have outlined above,
based on this initial database, a surrogate model is then constructed, and the second optimization
phase (represented by the black points in Fig. 2(a)) is performed. During the second phase, the
current point is compared to the previous point, and the best point is kept (see green curve). As it
can be noticed, the optimizer obtains several interesting points during the first ten iterations of the
second phase (first ten black points). After that the green curve remains constant meaning that no
further improvement can be anticipated in this region. This illustration can also be inferred in
Fig. 2(b) where the merit function is plotted as a function of the iterations of the second phase
(starting from 50). One notices that the merit function remains close to zero after iteration 85.
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Fig. 1. Schematic view of the 3D photonic metalens. The structure consists of Si region
(green part) on top of subtrate made of SiO2 (red part). The Si region is divided into three
parts; the input port with width W = 3000 nm, the output port with width w = 300 nm,
and in-between, several Si strips with lenght L and height h = 310 nm. The input mode is
injected from the surface Sin and the FOM (see Eq. (1)) is computed at the output surface
Sout. The widths of the strips are denoted by ei, i ∈ {0, 6}.

This is an indication that no major improvement is expected and that the optimization process
can be resumed.

Fig. 2. Optimization results: (a): represents the 1 - FOM (to maximize the FOM given by
Eq. (1)) as a function of the solver calls. The blue points represent the DOE (50 points),
the black ones represent the optimization iterations, and the green curve indicates the best
results obtained along the optimization process. (b): the merit function versus the number of
solver calls (for the optimization iterations, i.e, after 50 iterations as indicated by the green
curve in (a)).
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As it can be seen in Fig. 2(a), the best design obtained provides nearly 80.2% of efficiency.
Yet, the two preceding points yield almost the same value of the objective function. In Table 1,
we extract the parameters of the two interesting designs (provideing approximately 80% of
efficiency). We observe from the two first rows in Table 1 that the widths of the central strips
are approximately the same for the two designs. Nevertheless, the two designs exhibit different
values of L. This suggests that the EGO obtained at least two global optimal designs in the search
parameter space, which give nearly the same value of the objective function. This feature has
already been illustrated in our previous work [19], using an analytical example, where we have
shown that the EGO is able to capture effectively almost all the global minima/maxima in the
search parameter space. It is worth stating that during the optimization process, a high order
polynomial order P4 is used in our DGTD solver to approximate the unknown field, together with
a coarse mesh (around 45 000 cells), which is enough to obtain accurate results and obtain the
optimization results in a reasonable time (typically with 48 cores, one fullwave solver requires
almost 40 minutes). However, more precise results are presented in Table 2 for the best optimized
design (first row in Table 1) as a function of the mesh size and polynomial order. In this table, we
note that the efficiency of the device is approximately 80%. The corresponding field map in x − z
plane is given in Fig. 3(a), where the focusing is clearly demonstrated. For the second design
(the second row in Table 1), and using a refined mesh with 177 000 cells, we obtain 78.5% of
efficiency, which is slightly smaller than the best design that was obtained previously using the
coarse mesh (see Table 3). This illustrates the accuracy of our optimization results.

Fig. 3. (a): Field map of<e(Hy) for the optimized design in the x − z plane obtained from
our DGTD solver using P4 interpolation and a mesh with 334 000 cells. The parameters
are given in the first row in Table 1. (b): numerical convergence assessment for the TE
case using the values provided in Table 3 as a function of the length of the strips L using
different polynomial orders, and different mesh sizes. As it can be seen from the shaded
region, there are three global points similar to what we have found in Table 1 and the best
FOM is obtained at L = 3700 nm.

Table 1. Optimized deigns obtained from the EGO (L and ei in nm). The results show that there are
two global points in our design with nearly the same FOM ≈ 80%, however, the parameters are
slightly different. Here, we considered PML thickness of 500 nm, which is proved to be enough.

FOM L e0 e1 e2 e3 e4 e5 e6
80.12% 3713 200 199 194 187 176 160 122

79.53% 3409 199 198 191 184 169 155 127

In order to render further physical insights on the results achieved from the optimization
method, we provide an estimation of the widths of the strips using the graded index lens profile
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Table 2. The convergence of the optimized design using EGO (first row in Table 1) as a function of
the mesh size and the polynomial order in the DGTD solver for the total transmission T (third

column) and for the FOM (last column).

Number of cells Polynomial order T FOM

418 000 P2 0.8070 0.7851

57 000 P4 0.8201 0.7987

334 000 P4 0.8246 0.8015

Table 3. Values of the strip widths to obtain a gradient index lens profile for TE polarization (ei in
nm). These widths are determined by computing the effective mode index for each strip [14], see

the text for more details.

e0 e1 e2 e3 e4 e5 e6
200 199 194 186 176 162 138

[14]. Following the same strategy presented in our former work for the TM case [14], the widths
of the strips are roughly estimated by calculating the effective mode index for each strip, by
considering a single strip placed in a periodic configuration, with period 250 nm. Changing the
width of this single strip and computing the corresponding effective mode index creates a library
for effective mode indices as a function of the corresponding widths. Afterwards, only strips that
provide a graded index lens profile [14] will be chosen from the library. In Table 3, we present the
values based on this approximated technique [14], which are similar to the best design obtained
from our optimization approach (see the first row in Table 2). Nevertheless, the graded index
profile approach does not give any information about the optimal length along the propagation
direction. Therefore, one has to sweep over the length L in order to obtain the optimal length and
maximize the FOM depicted in Eq. (1). Using the values given in Table 3, we sweep over the
length L to obtain the maximum FOM. Interestingly, we found that there are at least two values
of the length L that yield the same value of the FOM around L = 3700 nm and L = 3400 nm
(see the highlighted region in Fig. 3(b)). This result validates the outcome from the optimization
method (see Table 1) and infers that we rigorously obtained the best parameters that provide the
maximum FOM as described in Eq. (1) for the mode converter metamaterial depicted in Fig. 1
with fixed length L. We would like to emphasize that due to the feature of the TE mode (electric
field polarized perpendicular to the strips), the near field coupling must be taken into account in
the calculations. Furthermore, most of the electromagnetic energy is located inside the small
gaps between the strips (the smallest gap between strips is in the centre, and it is approximately
50.5 nm) as it is indicated in Fi. 3(a). Consequently, a high order polynomial order is required to
capture the strong discontinuity between the strips, as it can be seen in Fig. 3(a). Accordingly,
numerical methods that rely on low order approximations like Finite Difference Time-Domain
(FDTD) might encounter serious problems in achieving the convergence, as it is indicated in
Fig. 4(a), where the FDTD method does not converge even with a uniform mesh size as small as
10 nm (approximately 30 million cells) for the TE case (we refer to Fig. 3(b) for the demonstration
of the numerical convergence of the DGTD method using different mesh sizes, different mesh
types, and different polynomial orders). It is worth mentioning that for the TM case (parameters
are given in Ref. [14]), where the electric field is polarized along the same direction of the
strips, the results obtained with the FDTD method globally agree with the ones acquired from
the DGTD solver (the maximum FOM is almost around L = 2000 nm as it is shown in Fig. 4(b)).
The DGTD method outperforms the FDTD method in particular because we use a fourth order
interpolation of the electromagnetic field in each mesh cell to achieve a high accuracy using a
relatively coarse mesh. In Fig. 3(b) we can see the global validation of DGTD solver on one
hand, and the importance of the high accuracy even in the simple TM case on the other hand.



Research Article Vol. 3, No. 6 / 15 June 2020 / OSA Continuum 1727

Fig. 4. FDTD convergence study (a): TE case where the parameters are identical to the
ones used in Fig. 3(b) for the DGTD solver. (b): TM case considered in Ref. [14], where all
the opto-geometrical parameters are identical to the ones used in Ref. [14].

Having demonstrated the capacity of our optimization method together with the importance of
our DGTD solver in obtaining a converged solution for the TE case, we go one step further by
investigating the influence of varying the lengths of the strips on the FOM. We start from the
optimized widths given in the first row in Table 1, while changing the length of each individual
strip and keeping the lengths of the three central ones as in Table 1 (see Fig. 5). In this case, we
have only five optimization parameters, which correspond to the lengths of the five outer strips
(symmetry properties are applied). Interestingly, using our EGO method, we found that changing
the length of the strips yields an enhanced efficiency of the device as high as 87% as indicated in
Table 4 and Fig. 5. As it may be noticed, we have a gradient change in the length of the strips
from the centre to the edges, which ensures the change of the phase and enhancing the focusing
efficiency as it is demonstrated in Fig. 5.

Fig. 5. (a): 3D mesh for the optimized design with different lengths for the strips. (b): Field
map of<e(Hy) for the optimized design with changing length in the x − z plane obtained
from our DGTD solver using P4 interpolation and mesh with 334 000 cells. The strips width
parameters are given in the first row in Table 1.
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Table 4. Optimized values of the strip lengths obtained from the EGO method (Li in nm) with1
FOM= 87%. The values of the strip widths are similar to the ones in the first row in Table 1. Here we

fix the the three length of the center strips (value shown in first row in Table 1) and change the
lengths of the five outer strips (symmetry is applied).

L2 L3 L4 L5 L6

3404 3382 3191 2716 2353

3. Conclusion

By combining a global optimization method and a high order fullwave solver, we achieved
optimal designs for a 3D photonic graded index mode converter. We tackled the most demanding
situation where the strips are perpendicular to the incident electric field polarization. In this case,
the strong near field coupling between the strips must be considered, and the small gaps between
the strips need to be optimized in order to provide high efficient designs. Our 3D fullwave solver
based on the DGTD method is an ideal solver to tackle this problem, due to the possibility to use
a high order polynomial interpolation for the numerical field approximation, and to deal with
structures with strong variatiobn sof space scales. We considered two cases. The first one when
all the Si strips are sharing the same length, but with different widths. In this classical case we
have shown that our statistical learning-based optimization technique EGO is able to capture
nearly all the global designs in our parameter space (all the designs that provide the maximum
efficiency, even if the parameters are different) and the efficiency can reach 80%. Secondly, based
on the widths of the strips obtained, we investigated the impact of varying the length of the strips
on the focusing efficiency. We have shown that maximum efficiency of 87% can be obtained
using fully CMOS compatible and easily fabricated design.
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