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The idea that intelligence is embedded not only in a single brain network, but instead
in a complex, well-optimized system of complementary networks, has led to the
development of whole brain network analysis. Using graph theory to analyze resting-
state functional MRI data, we investigated the brain graph networks (or brain networks)
of high intelligence quotient (HIQ) children. To this end, we computed the “hub disruption
index κ,” an index sensitive to graph network modifications. We found significant
topological differences in the integration and segregation properties of brain networks
in HIQ compared to standard IQ children, not only for the whole brain graph, but also
for each hemispheric graph, and for the homotopic connectivity. Moreover, two profiles
of HIQ children, homogenous and heterogeneous, based on the differences between
the two main IQ subscales [verbal comprehension index (VCI) and perceptual reasoning
index (PRI)], were compared. Brain network changes were more pronounced in the
heterogeneous than in the homogeneous HIQ subgroups. Finally, we found significant
correlations between the graph networks’ changes and the full-scale IQ (FSIQ), as well
as the subscales VCI and PRI. Specifically, the higher the FSIQ the greater was the brain
organization modification in the whole brain, the left hemisphere, and the homotopic
connectivity. These results shed new light on the relation between functional connectivity
topology and high intelligence, as well as on different intelligence profiles.

Keywords: intelligence, functional MRI, resting state, functional connectivity, brain networks, hub disruption
index, children
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INTRODUCTION

Since the introduction of the “general model” described by
Spearman in 1904 (Spearman, 1904), and the first standardized
psychological tests developed by Binet (1905), the concept
of intelligence has been a challenge in cognitive research
(Haier, 2016). At present, neuropsychological tests, such as the
Wechsler Intelligent scale for Children (WISC) (Wechsler, 2003),
can provide a reliable estimation of the intelligence quotient
(IQ), and help clinically assess children with high intelligence
quotient (HIQ). HIQ children show better cognitive abilities
in reasoning, problem solving, memory, language, visuospatial
perception, and learning (Vaivre-Douret, 2011). These abilities
are usually revealed by the four WISC subscales: the verbal
comprehension index (VCI), the perceptual reasoning index
(PRI), the working memory index (WMI), and the processing
speed index (PSI), all of which provide a measurement of
the full-scale IQ (FSIQ) (Berk, 1982). However, some HIQ
children may present associative learning troubles, attention
deficits, and emotional and social maladjustments – described
as the “di-synchrony syndrome” (Silverman, 1997; Terrassier,
2009) and usually detected as a significant difference between
VCI and PRI values. These clinical and neuropsychological
observations have led us to define two profiles of HIQ children:
the homogeneous HIQ (Hom-HIQ) and the heterogeneous HIQ
(Het-HIQ), the latter characterized by a significant difference
between VCI and PRI.

Different brain functions have been investigated in
intellectually gifted children and adolescents using task-based
functional MRI (fMRI). Increased activations in correlation with
general intelligence have been reported in the fronto-parietal
network (FPN), the bilateral posterior–parietal regions (Lee et al.,
2006), as well as in the prefrontal–dorsolateral regions associated
with reasoning (Noveck et al., 2004) and memory (Gray et al.,
2003). However, neural efficiency may vary as a function of
task difficulty (Neubauer and Fink, 2009). These findings led
Jung and Haier (2007) to propose the parieto-frontal integration
theory (P-FIT), which posits that intelligence is correlated with
the connectivity between parietal and frontal as well as temporal
regions with a predominance in the left hemisphere. This model
was recently updated and extended to encompass other cerebral
regions and subcortical structures (Basten et al., 2015).

Resting-state fMRI (rs-fMRI) allows the measurement of
functional connectivity (FC) in large-scale brain networks
dedicated either to specific cognitive processing demands (Shirer
et al., 2012) or to intrinsic brain activity (Fox et al., 2005). Based
on these approaches, Sherman et al. (2016) reported a correlation
with intelligence in the default mode network (DMN) and the
central executive network (CEN) of early adolescents. In a cohort
of young children, Langeslag et al. (2013) reported associations
between high nonverbal intelligence and increased FC between
parietal and frontal, and parietal and anterior cingulate regions.
Based on an exploratory mapping of the literature, and a
network analysis of the Human Connectome Project (HCP)
data, Hearne et al. (2016) showed that both the DMN and
the FPN were strongly correlated with high intelligence scores
in young adults. Moreover, the cognitive functions related to

adult intelligence (measured using IQ) seemed to correlate with
the FC of homotopic regions, which was reported reduced in
the primary sensorimotor cortex (Santarnecchi et al., 2015).
Exploration of homotopic connectivity is currently gaining
interest, as it has been demonstrated to robustly increase
with advancing gestational age in the fetus (Thomason et al.,
2013), and be highly consistent within and across subjects
(Finn et al., 2015).

The concept of intelligence being embedded not only in a
single brain network, but rather in a complex organization of
communicating brain networks has recently emerged (Ponsoda
et al., 2016). Graph theory (Watts and Strogatz, 1998) is
particularly relevant for modeling brain FC as a global efficient
network, supporting both segregated and distributed information
processing (Sporns and Zwi, 2004) that is modeled by a “small-
world” topology (Achard and Bullmore, 2007). This approach
was recently applied to characterize the neuronal substrate
of intelligence attributable to both structural and FC, using
diffusion tensor imaging (DTI) (Kim et al., 2016; Kocevar
et al., 2019) and rs-fMRI (Van den Heuvel et al., 2009;
Hilger et al., 2017a; Kruschwitz et al., 2018). These studies
investigated specific metrics reflecting network integration
properties [global efficiency (GE) and degree (D)], segregation
properties [local efficiency (LE) and clustering coefficient (CC)],
and hubness properties [betweenness centrality (BC)]. Van
den Heuvel et al. (2009) reported a significant correlation
between GE and intelligence, though this finding was not
reproduced in the larger HCP cohort (Kruschwitz et al.,
2018). Furthermore, LE was demonstrated to be positively
correlated with FSIQ in regions of the salience network and
negatively in the temporo-parietal junction (Hilger et al.,
2017a). Taken together, these results suggest a possible HIQ-
related global modification of network topology. This was
recently conceptualized by Barbey (2018) who suggested that
“intelligence depends on the dynamic organization of brain
networks, modifying their topology and community structure in
the service of system-wide flexibility and adaptation.” Therefore,
we propose to investigate the relationship between intelligence
and brain network FC using a graph organization measure,
the “hub disruption index κ.” This approach has been applied
to several brain pathologies demonstrating significant brain
network reorganizations, such as coma (Achard et al., 2012),
epilepsy (Gendon et al., 2015), and stroke (Termenon et al.,
2016a). Moreover, the hub disruption index has been shown
to be more reliable and sensitive than global graph metrics to
detect group differences between patients and healthy controls
(Termenon et al., 2016b).

In this work, we assessed the topological modification of brain
networks organization in HIQ children using the κ index to
characterize the neural substrate of intelligence. Graph analyses
were performed in different networks: the whole brain, both
cerebral hemispheres (given the asymmetry of brain functions),
and between homotopic regions. Whether FC changes relate to
FSIQ and/or to its subscales was also investigated by correlational
analysis. This approach will allow for better understanding of
the differences in FC substrate between high and standard IQ
children, as well as between the two HIQ profiles.
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MATERIALS AND METHODS

Participants
Fifty-eight children (44 males and 14 females) ages 8–12 (mean
age 10.1± 1.2) years were recruited from the children psychiatry
department of Lyon’s Neurological Hospital, the PSYRENE
Center, a psychological center for high IQ children and adults,
and via advertisement in schools for controls. Children with
neurological diseases, learning disabilities, and psychotropic
treatments were excluded from this study. Children underwent
the fourth edition of WISC (WISC-IV) test and their FSIQ was
established from the results of its four subscales (VCI, PRI, WMI,
and PSI). Children with a high Intelligence Quotient (FSIQ> 130
or VCI> 130) were labeled as HIQ children and two HIQ profiles
were defined based on score difference between VCI and PRI
(Table 1). This prospective study was approved by the local ethics
committee (CPP Sud-Est IV) and the French National Agency for
Medicine and Health Products Safety (ANSM). Written informed
consent was obtained from the parents of all participants.

MRI Acquisitions
Magnetic resonance imaging (MRI) examinations were
performed on a 1.5T Siemens Sonata MRI system (Erlangen,
Germany) with an eight-channel head-coil at the MRI
Department of CERMEP – Imagerie du Vivant. A structural
3D T1-weighted MPRAGE sequence was first acquired in
the sagittal plane with a 1-mm isotropic spatial resolution
(TI/TE/TR = 1100/3.93/1970 ms, FOV: 256 × 256 × 176 mm,
8 min acquisition duration). Then a full examination with
task fMRI, DTI, and rs-fMRI was conducted. rs-fMRI data were
recorded using an EPI BOLD sequence (250 scans, TR = 2500 ms,
TE = 50 ms, voxel size = 3.4 × 3.4 × 3 mm) while subjects lay
quietly at rest with eyes open and fixating on a projected cross
for 10.3 min. For this study only the rs-fMRI (at the end of the
exam) is reported.

Data Preprocessing
The rs-fMRI data were preprocessed using SPM12 software1. For
each subject, functional images were corrected for delay between
slice acquisitions, motion, and co-registered to the anatomical
image. Time series data were not spatially smoothed because the
smoothing step introduces spurious spatial correlations between
adjacent regions (Fornito et al., 2010). Using Art toolbox that
evaluates the scans affected by scan-to-scan motion, we scrubbed
the data carefully. When scans with movements >3 mm or with
an exceptionally high variation (signal >4 standard deviations
from mean) were found, a corresponding artifact regressor was
constructed. A participant’s data were excluded if >20% of the
available scans were affected by head motion. Motion parameters
for each group were measured and compared among the groups
to verify that the correlation results were not influenced by inter-
group motion differences (Power et al., 2012). The anatomical
MRI from each participant was segmented into six different
brain and non-brain tissues according to prior tissue probability
maps. This step generates gray matter (GM), white matter

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12

TABLE 1 | Population characteristics (mean ± SD): age, full-scale IQ (FSIQ), verbal
comprehension index (VCI), perceptual reasoning index (PRI), processing speed
index (PSI), and working memory index (WMI) for standard intelligence quotient
(SIQ), high intelligence quotient (HIQ) groups, and HIQ subgroups: homogeneous
(Hom-HIQ) and heterogeneous (Het-HIQ).

SIQ HIQ Hom-HIQ Het-HIQ
(n = 12) (n = 37) (n = 15) (n = 22)

Age 10.0 ± 1.1 10.0 ± 1.1 9.8 ± 0.8 10.1 ± 1.3

FSIQ 104.1 ± 8.5 134.1 ± 12.3∗∗∗ 141.6 ± 11.8 129.3 ± 10.2#

VCI 108.1 ± 6.8 143.0 ± 9.8∗∗∗ 141.6 ± 12.5 143.9 ± 8.0

PRI 97.7 ± 6.9 124.1 ± 13.8∗∗∗ 136.4 ± 9.2 116.8 ± 10.5##

WMI 95.6 ± 10.3 117.2 ± 15.3∗∗∗ 125.3 ± 15.5 112.0 ± 13.0#

PSI 102.3 ± 15.1 107.8 ± 16.8 114.3 ± 18.4 103.8 ± 14.9

∗∗∗p < 0.001 when comparing HIQ and SIQ using a Wilcoxon test. ##p < 0.01;
###p < 0.001 when comparing Hom-HIQ and Het-HIQ using Dunn’s post hoc test
after the comparison of SIQ, Hom-HIQ, and Het-HIQ using Kruskal–Wallis test.

(WM), and cerebrospinal fluid (CSF) probability maps that will
be eventually be used to extract time series to compute the
graph. These maps were further normalized to the MNI152
template using DARTEL, a diffeomorphic registration method
that accurately align brains within the MNI space (Ashburner,
2007). This registration provides a deformation field that was
then applied to functional and anatomical images to be later
used to extract the time series to compute the graphs. The
structural images were parcellated into 84 cortical, subcortical,
and cerebellar areas according to the Desikan atlas (Desikan et al.,
2006). Regional mean time series were estimated by averaging
the fMRI time series over all voxels in each parcel weighted
by GM probability map using the Conn Toolbox2. Finally, time
series were regressed by the residual contamination from WM,
CSF signals, motion parameters, and outliers detected using
the ART toolbox and band-pass filtering was applied using
wavelets transforms.

Wavelets Decomposition
Following the approach proposed by Achard et al. (2006), time
series were decomposed using dyadic wavelet transforms that
partitions the total energy of a signal over a set of compactly
supported basis functions, each of which is uniquely scaled
in frequency and located in time. The pairwise interregional
correlations between wavelets coefficients of fMRI time series
extracted from each individual data set were estimated for
four wavelet scales. Because frequencies below 0.1 Hz contain
relevant information in rs-fMRI, we restricted our analysis
to two wavelet scales: the scale 2 from f = 1/(8 TR) to
f = 1/(4 TR), that represents the frequency interval 0.05–
0.1 Hz, and the scale 3 from f = 1/(16 TR) to f = 1/(8 TR),
that represents the frequency interval 0.025–0.05 Hz. At this
stage, we measured the percentage of significant correlations
obtained from the two scales. Since the wavelet scale 2 presents
a higher percentage of significant correlations, we chose to
proceed with the graph computation using the correlation
matrices of this scale.

2https://www.nitrc.org/projects/conn
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Graph Construction
To construct the binarized graph, two steps are necessary.
Following Alexander-Bloch et al. (2012), we kept the graph
fully connected, using the minimum spanning tree based on the
absolute correlation matrix. This creates a preliminary graph
that contains a number of edges equal to the number of
nodes minus one. In the second step, the remaining absolute
values of the correlation matrices were thresholded to create an
adjacency matrix that defines, for each subject, an unweighted
and undirected graph using two graph costs: 15 and 20%. The
choice of these values was guided by the results of a test–retest
study of graph metrics derived from graph analysis of rs-fMRI
dataset, where the cost of about 20% provides a good reliability
of all graph metrics (Termenon et al., 2016b). Since our results
obtained with the two costs were concordant, we reported in
this study those related to 15%, allowing a larger inclusion of
subjects and a greater robustness of the correlations. After having
verified that the small-world property was satisfied for each
subject and that the topology of the three groups was the same,
four topological metrics were estimated for each node using Brain
Connectivity Toolbox3: D, BC, LE, and CC. When the graph was
computed with the 84 regions from the Desikan atlas, we referred
to it as the “whole brain networks” in the manuscript. When the
graph was computed with the 42 regions of the right (or left)
hemisphere, we referred to it as the “right hemispheric networks”
(or the “left hemispheric networks”). Finally, we considered the
connectivity related to the homotopic regions: 42 nodes in each
hemisphere as the “homotopic connectivity.”

Hub Disruption Index (κ) Estimation
Introduced by Achard et al. (2012), the “Hub Disruption Index”
describes the topological changes of an individual subject brain
networks with respect to a referential networks topology from
a group of reference subjects. To understand how this index is
defined, consider a nodal metric, for example the degree (D),
and plot the D value of each node for a SIQ subject against the
average D values of the corresponding nodes in the SIQ group
(Figure 1A). Since for a SIQ subject the nodal metric values are
close to the average value for the same node computed in the
SIQ group, the distribution of the points falls approximately on
a positive slope line (y = x). Constructing the same plot for a
HIQ subject, we can observe that the point cloud does not scatter
around the same slope (Figure 1B), so they are not well predicted
by the SIQ average D. For each nodal metric κ is defined following
several steps. The SIQ group mean metric of each node was
first subtracted from the metric of the corresponding node in an
individual subject. This difference was further plotted against the
SIQ group mean for all the nodes and the gradient of the linear
regression that models this points cloud represents κ. According
to this definition, data of a SIQ subject will scatter around a
horizontal line (κ ∼ 0) (Figure 1C), while for a HIQ subject
data will follow a negative slope (κ < 0) (Figure 1D). κ index
was calculated for D, BC, LE, and CC in whole brain networks
(κD, κBC, κLE, and κCC) and in both left (κL

D,κL
BC,κL

LE, and κL
CC)

3http://www.brain-connectivity-toolbox.net/

and right (κR
D,κR

BC,κR
LE, and κR

CC) networks, and for functional
homotopic connectivity (κHC).

Statistical Analysis
First, statistical differences between κ indices of each group
were computed using permutation tests, by randomly reassigning
subjects to three groups: 12 children played the role of the
SIQ group, 15 of Hom-HIQ group, and 22 of Het-HIQ group.
For each subject, κ was computed following its definition. This
process was repeated for 1000 permutations of the data to
sample the null distribution of κ. The p-value was computed
counting how many times the κ-values were higher than the
one obtained using the true SIQ and HIQ groups. As the κ

definition is based on the reference group (SIQ), its homogeneity
was controlled using the Grubbs’ test. One outlier was identified
and excluded from the SIQ group. Furthermore, as nodes could
play different roles in brain networks organization, we tested
for metric differences in graph’s nodes between each HIQ group
and SIQ. A statistical analysis was performed at each node using
a non-parametric Wilcoxon test and a Benjamini–Hochberg
correction for multiple comparisons.

Second, the correlations between intelligence scores (FSIQ,
VCI, PRI) and hub disruption index (κ) were analyzed using a
non-parametric Spearman correlation coefficient (ρ) controlling
for sex. Correlation significance level was evaluated replicating
a permutation test, by randomly reassigning WISC-IV scores
to the subjects, for 1000 iterations. The p-value was computed
counting how many times the ρ-values were higher than the
one obtained with our true intelligence scores and corrected for
multiple comparisons using the Benjamini–Hochberg correction.

All statistical analyses were computed on R4 and since the
groups were matched in age, with small standard deviation
values. No regression of age effect was applied.

RESULTS

Modification of FC Organization With
Intelligence
In the whole brain networks, HIQ children showed significant
differences in hub disruption indices of several graph metrics,
namely κD (p < 0.01), κCC (p < 0.05), and κLE (p < 0.05),
compared to SIQ children (Table 2A). These results suggest
significant topological modifications in the graph’s integration
and segregation properties. Locally, D was significantly decreased
in the left dorsolateral prefrontal cortex (BA 9-10-46) (p < 0.01),
indicating decreased prefrontal FC in HIQ children. These
networks changes were further assessed in the two HIQ
subgroups separately, relative to the SIQ group. The Hom-HIQ
group didn’t show any significant changes, whereas the Het-HIQ
group showed significant changes in integration and segregation
properties related to all graph metrics (Table 2A). A significant
D reduction was also locally observed in the left dorsolateral
prefrontal node (p < 0.01) of the Het-HIQ group, while a trend

4http://www.R-project.org/
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FIGURE 1 | Hub disruption index κ computation for a graph metric. Given a set of nodes from an atlas Ni , i ∈ [1, n], and a nodal metric M, each node i presents a
value Mi , i ∈ [1, n] for a given subject. Across a set of reference subjects Rj , j ∈ [1, m], the averaged nodal metric can be computed <Mi>R. For each individual Ik ,
k ∈ [1, p], whatever its status (patient, HIQ child, or healthy subject), its metric in each node is Mi,Ik and the difference in nodal metric with the reference group is Mi,Ik
– <Mi>R. The scatterplot with all nodes is computed with <Mi>R in abscissa and Mi,Ik – <Mi>R in ordinates. For each node i, if the nodal metric is close to the
reference’s nodal metric, then the linear trend of this plot is about 0. Conversely, if the nodal metrics are reduced in some nodes and increased in others, then the
linear trend will differ from 0. κ is the slope of the regression line computed on this scatter plot. Example for the nodal degree (D) as metric of interest. Di,I vs. <Di>R

for a standard intelligence quotient (SIQ) child (A) and for a high intelligence quotient (HIQ) child (B), Di,I – <Di>R vs. <Di>R for a SIQ child (C) is scattered around a
horizontal line (κ ∼ 0), whereas for a HIQ child (D) is scattered around a negatively sloping line (κ < 0).

toward a decreased D was measured in the left inferior parietal
cortex (p< 0.1).

Since the neural substrate of high intelligence may be
related to hemispheric characteristics (Hearne et al., 2016;
Nusbaum et al., 2017), we additionally explored the topological
changes of brain FC organization by computing the κ

values of intra-hemispheric networks connectivity (ignoring
inter-hemispheric connectivity). In the left hemisphere, only
integration properties measured by κD (p < 0.01) were
significantly reorganized in the HIQ group, compared to the
SIQ group (Table 2B). Specifically, nodal analysis showed a
significant D reduction (p < 0.01) in the left dorsolateral
prefrontal node (BA 9-10-46). No significant changes were
found in the right hemisphere (Table 2C). When exploring
the intra-hemisphere graph networks of each HIQ subgroup,
significant modifications of integration properties were found
in the left hemisphere of both Hom-HIQ (p < 0.05) and
Het-HIQ groups (p < 0.01), relative to SIQ (Table 2B). This
difference was locally highlighted by a D reduction in the left

dorsolateral prefrontal cortex of the Het-HIQ group. While
right hemisphere networks were not significantly modified in
the Hom-HIQ group, integration and segregation properties,
measured by D (p < 0.05) and LE (p < 0.05), were significantly
changed in the Het-HIQ group (Tables 2C, 3). In sum, both
HIQ groups showed modifications of integration properties in
the left hemisphere, while only the Het-HIQ profile showed
changes of integration and segregation properties in the
right hemisphere.

Since homotopic FC has been shown to correlate with
IQ (Santarnecchi et al., 2015), we analyzed the FC between
homotopic regions in each HIQ group by measuring their κ

indices. Significant changes (p< 0.05) in homotopic connectivity
were found in the HIQ group compared to the SIQ group
(Table 2D). Exploring the two HIQ subgroups separately,
significant changes (p< 0.05) of the homotopic FC were found in
both Hom-HIQ and Het-HIQ groups (Table 2D). At a regional
level, a trend toward increased homotopic FC was found in the
amygdala nodes of the Het-HIQ group (p< 0.1).
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TABLE 2 | Hub disruption indices (κ) in HIQ, homogeneous HIQ (Hom-HIQ), and
heterogeneous HIQ (Het-HIQ) groups measured in whole brain networks (A), left
and right hemispheres networks (B and C), and between homotopic regions (D).

Networks κ HIQ Hom-HIQ Het-HIQ
(n = 37) (n = 15) (n = 22)

(A) Whole brain κBC −0.472 −0.475 −0.470

κD −0.317∗∗ −0.228 −0.378∗∗

κLE −0.291∗ −0.201 −0.352∗

κCC −0.350∗ −0.259 −0.413∗

(B) Left hemisphere κL
BC −0.399 −0.396 −0.402

κL
D −0.299∗∗ −0.306∗ −0.294∗∗

κL
LE −0.340 −0.299 −0.369

κL
CC −0.399 −0.342 −0.438

(C) Right hemisphere κR
BC −0.311 −0.292 −0.324

κR
D −0.228 −0.070 −0.336∗

κR
LE −0.364 −0.209 −0.471∗

κR
CC −0.406 −0.264 −0.502

(D) Homotopic κHC
−0.198∗ −0.214∗ −0.187∗

∗p < 0.05; ∗∗p < 0.01; when testing significance of κ-values in HIQ, Hom-HIQ,
or Het-HIQ groups compared to SIQ group using permutation test (number of
permutations = 1000).

TABLE 3 | Coefficients of non-parametric correlations (ρ) between the hub
disruption index (κ) of different nodal metrics [betweenness centrality (BC), degree
(D), local efficiency (LE), clustering coefficient (CC), and homotopic connectivity
(HC)] with intelligence scores [FSIQ, VCI, and PRI] at different network levels:
whole brain (A), left and right hemispheres (B and C), and homotopic regions (D).

Networks κ FSIQ VCI PRI

(A) Whole brain κBC −0.344∗ −0.316∗ −0.306∗

κD −0.277∗ −0.310∗ −0.218

κLE −0.153 −0.250∗ −0.138

κCC −0.133 −0.253∗ −0.131

(B) Left hemisphere κL
BC −0.250 −0.138 −0.107

κL
D −0.267∗ −0.213 −0.295∗

κL
LE −0.290∗ −0.305∗ −0.255∗

κL
CC −0.250 −0.279∗ −0.228

(C) Right hemisphere κR
BC −0.143 −0.171 −0.100

κR
D −0.172 −0.223 −0.028

κR
LE −0.209 −0.261∗ −0.115

κR
CC −0.226 −0.260∗ −0.135

(D) Homotopic κHC
−0.396∗∗ −0.431∗∗ −0.379∗∗

∗p < 0.05; ∗∗p < 0.01 when testing significance level of correlations using
permutation testing (number of permutations = 1000).

Correlation Between FC Organization
and Intelligence
We further investigated how these topological organization
changes could be related to the high abilities of HIQ
children. A correlation analysis between the previously measured
κ indices and the different IQ scales was performed in
different brain networks.

In the whole brain networks, significant negative correlations
were found between the hub disruption indexes, related to
integration (κD) or hubness (κBC) properties, and the FSIQ and
VCI (Table 3A). As shown in Figure 2, the higher the FSIQ,

the greater the hub disruption index, thereby reflecting a high
sensitivity of κBC to highlight the differences in FSIQ. κBC was
also correlated (p < 0.05) with PRI and WMI (Figures 4, 5).
In addition, VCI significantly (p < 0.05) correlated with all
the hub disruption indices (κBC, κD, κLE, and κCC) (Table 3A
and Figure 3). When separately exploring the networks in the
left hemisphere, FSIQ and PRI were negatively correlated with
modifications of integration and segregation metrics (κL

D and κL
LE)

(p < 0.05), while VCI was correlated only with the modifications
of segregation metrics (κL

CC and κL
LE) (p < 0.05). In the right

hemisphere, only the segregation metrics changes (κR
CCand κR

LE)
were significantly correlated (p < 0.05) with VCI (Figure 3).
Finally, the strongest correlations (p < 0.01) were observed
between the hub disruption index in homotopic regions (κHC)
and the three major intelligence subscales, namely FSIQ, VCI,
and PRI (Figures 3–5).

DISCUSSION

The hub disruption index κ was used in this study, on the one
hand to uncover the topological organization modification of
brain networks in children with high intelligence, and on the
other hand, to investigate whether these changes could be related
to their specific cognitive profiles.

Brain Networks Changes With High
Intelligence
Our study provided evidence that FC networks in HIQ
children undergo modifications of integration and segregation
properties, in comparison to SIQ children. Indeed, κD (related
to integration properties) as well as κLE and κCC (related
to networks segregation properties) were modified in the
whole brain networks, while only κD was changed in the left
hemisphere of HIQ children. This last result was observed in
both subgroups of HIQ children, showing common integration
properties changes in the left hemisphere. Conversely, in the
right hemisphere, modifications of integration and segregation
properties were only highlighted in the Het-HIQ subgroup. These
changes in integration properties support the hypothesis that
intelligence is based on better neural efficiency, which promotes
better information transmission. Our results are in concordance
with previous observations of greater FC associated with high
intelligence in certain regions of the fronto-parietal and DMNs
(Jung and Haier, 2007; Basten et al., 2015; Hearne et al., 2016),
two nodes of the salience network, and one node of the DMN
(Hilger et al., 2017a).

The WISC-IV test provides a global index (FSIQ), as well
as four subscales including verbal (VCI) and non-verbal (PRI)
indices, that are sensitive to different cognitive capabilities.
Based on a significant difference between these two subscales,
two profiles of HIQ children were identified, namely the
Hom-HIQ and the Het-HIQ (Table 1). It is interesting
to underline that we found a significant modification of
brain networks organization common to both Hom-HIQ and
Het-HIQ subgroups. Additionally, we also observed specific
changes in the Het-HIQ subgroup. These results support
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FIGURE 2 | Correlations between full-scale intelligence quotient (FSIQ) and hub disruption indices (κ) of graph metrics measured in: (A) the whole brain networks,
(B) the left hemisphere networks, (C) the right hemisphere networks, and (D) the homotopic nodes. Significant correlations were measured for κ describing hubs
(κBC) and integration properties (κD) in the whole brain networks, for integration and segregation properties in the left hemisphere networks (κL

D and κL
LE) and for

homotopic connectivity (κHC). No significant correlations were found in the right hemisphere networks.

the existence of different intelligence profiles that should
be taken into account during investigations on intelligence.
Moreover, our results showed that high intelligence-associated
functional neural changes occur differently in the left and
right hemispheres. Surprisingly, the neuroimaging literature
does not report such lateralization, except for a rs-fMRI
study by Santarnecchi et al. (2015), a DTI study by Tamnes
et al. (2010), and our previous DTI study of Hom-HIQ
and Het-HIQ children that included subjects described in
the present study (Nusbaum et al., 2017). This last study
found increased structural connectivity (measured using axial
diffusivity) in both Hom- and Het-HIQ groups, with the Het-
HIQ group being more lateralized in the left hemisphere and
the Hom-HIQ group in the right. These findings demonstrated
that brain lateralization of both structural and FC play a

significant role in intelligence. This observation led us to
further investigate the role of homotopic regions in intelligence.
During brain development, homotopic FC was shown to
increase with advancing gestational age (Thomason et al.,
2013). Along the lifespan, sensorimotor regions tend to show
increasing homotopic FC, whereas prefrontal higher-order
processing regions show decreasing connectivity (Zuo et al.,
2010). Santarnecchi et al. (2015) addressed the relation between
homotopic connectivity and intelligence in adults. Reduced
homotopic connectivity was reported in above average-IQ versus
average-IQ subjects in the primary sensory regions, suggesting
that a downgrading of inter-hemispheric transmission at rest
could be associated with higher intelligence for efficiency
purpose. In our study, significant changes of the homotopic
connectivity were found in HIQ children and in both HIQ
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FIGURE 3 | Correlations between verbal comprehension index (VCI) and hub disruption indices (κ) of graph metrics measured in: (A) the whole brain networks, (B)
the left hemisphere networks, (C) the right hemisphere networks, and (D) the homotopical nodes. Significant correlations were measured for κ describing hubs
properties in the whole brain networks (κBC), for integration properties in the whole brain networks (κD), and for segregation properties in the whole brain networks
(κCC and κLE), in the left (κL

CC and κL
LE) and right hemisphere (κR

CC,κR
LE), and for homotopic connectivity (κHC).

subgroups, reflecting decreased connectivity in some node pairs
and an increase in others.

Correlation Between Brain Networks
Changes and IQ Subscales
We additionally demonstrated that the reported topological
organization changes were correlated with cognitive abilities,
thus supporting the hypothesis that intelligence relates to
the brain networks functional organization (Table 3). As
illustrated in Figure 1, FSIQ significantly correlated with
the hub’s changes, as measured by κBC in the whole brain
networks. Hubs’ modifications, therefore, occur in children

with high cognitive abilities, as demonstrated by the significant
correlations with VCI, PRI, and WMI subscales (Figures 3–
5). In parallel, integration properties changes were correlated
with FSIQ and VCI in the whole brain networks, and with
FSIQ and PRI in the left hemisphere networks. These findings
support the association of high intelligence with greater network
efficiency throughout the brain, and especially in the left
hemisphere. Our results are in agreement with the study
of Santarnecchi et al. (2014), that highlighted an association
between IQ scores and the GE measures of both strong and
weak connections. Moreover, a recent study introduced the
idea that differences in intelligence are related to different ways
of information processing, with some networks being more
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FIGURE 4 | Correlations between perceptual reasoning index (PRI) and hub disruption indices (κ) of graph metrics measured in: (A) the whole brain networks, (B)
the left hemispheric networks, (C) the right hemispheric networks, and (D) the homotopical nodes. Significant correlations were measured for κ describing hubs
properties in the whole brain networks (κBC), for integration (κL

D) and segregation properties in the left hemisphere (κL
LE), and for homotopic connectivity (κHC).

efficient in integration and propagation of information across the
modules, and others in segregation, i.e., ensuring communication
within the module (Hilger et al., 2017b). In line with this
hypothesis, our study showed that modifications occurred
not only in integration but also in segregation properties,
which were correlated with intelligence scores in both whole
brain and hemispheres networks. Finally, the correlation found
between FC changes of homotopic pairs of regions and FSIQ,
as well as VCI and PRI, confirmed that homotopic FC is
modified in high intelligence, in agreement with the report of
Santarnecchi et al. (2015).

Among all the brain networks differences found in our study,
several regions presented decrease or increase in their nodal
metrics. It is the case for the dorsolateral prefrontal cortex

that showed a significant reduction in D, suggesting less FC.
This observation was found both in the whole brain and in
the left hemisphere networks of HIQ and Het-HIQ groups.
These findings support the hypothesis that this prefrontal region
constitutes a weaker node in HIQ children, which might result
from a late GM maturation, as previously observed in high
intelligence children (Shaw et al., 2006). As the rationale of the
hub disruption index κ is to highlight simultaneous decreases
in some nodes metrics and increases in others (see Figure 1 for
a scheme-based explanation), the D decrease observed in the
prefrontal cortex may suggest potential increases of integration
properties in other brain areas.

Overall, our study demonstrated the sensitivity of rs-
fMRI graph metrics to characterize the specificities in
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FIGURE 5 | Correlations between working memory index (WMI) and hub disruption indices (κ) of graph metrics measured in: (A) the whole brain networks, (B) the
left hemisphere networks, (C) the right hemisphere networks, and (D) the homotopical nodes. Significant correlations were measured for κ describing hubs
properties in the whole brain networks (κBC).

functional brain networks changes of HIQ children, and
particularly of Het-HIQ children. As Het-HIQ children could
be associated with specific social behavioral and learning
difficulties, these findings support our initial hypothesis that
FC measurements may constitute a promising approach for
a better characterization of HIQ brain function and neural
characteristics. Future studies may extend these findings on a
larger cohort of children.

Methodological Limitations
We should underline some limitations related to our dataset. First
of all, this study is a pilot study with a low sample size, and
needs to be replicated in a larger population. Second, since brain
maturation continues during and after childhood, our results

may only hold for our particular age range of 8–12 years old.
Finally, the population was not equally distributed between girls
and boys. Our correlation analysis has, however, been corrected
for the effect of gender in order to overcome this problem.
From a methodological perspective, this study may have been
influenced by the choice of graphs cost. The analysis was thus also
computed with a graph cost of 0.20, obtaining concordant results
(Supplementary Tables 1, 2).
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