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Abstract

In the last decades, few mechanistically novel therapeutic agents have been developed to treat mental and
neurodegenerative disorders. Numerous studies suggest that targeting BDNF and its TrkB receptor could be a promising
therapeutic strategy for the treatment of brain disorders. However, the development of potent small ligands for the TrkB
receptor has proven to be difficult. By using a peptidomimetic approach, we developed a highly potent and selective TrkB
inhibitor, cyclotraxin-B, capable of altering TrkB-dependent molecular and physiological processes such as synaptic
plasticity, neuronal differentiation and BDNF-induced neurotoxicity. Cyclotraxin-B allosterically alters the conformation of
TrkB, which leads to the inhibition of both BDNF-dependent and -independent (basal) activities. Finally, systemic
administration of cyclotraxin-B to mice results in TrkB inhibition in the brain with specific anxiolytic-like behavioral effects
and no antidepressant-like activity. This study demonstrates that cyclotraxin-B might not only be a powerful tool to
investigate the role of BDNF and TrkB in physiology and pathology, but also represents a lead compound for the
development of new therapeutic strategies to treat brain disorders.
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Introduction

Brain-Derived Neurotrophic Factor (BDNF) belongs to the

neurotrophin family that regulates neuronal development and

survival by interacting with two classes of cell surface receptors,

TrkB receptor and the non-selective p75NTR receptor [1]. Binding

of BDNF to TrkB triggers receptor dimerization and subsequent

autophosphorylation on tyrosine residues. In addition, TrkB

receptors can be activated in absence of BDNF either through

spontaneous dimerizations or through different signal transduction

systems, including dopamine, adenosine, Pituitary Adenylate

Cyclase-Activating Polypeptides (PACAP), endocannabinoids,

glucocorticoids or the inorganic ion Zinc [2,3,4,5,6,7]. Although

BDNF was initially considered to be involved in the development

and maintenance of central and peripheral nervous systems, more

recent evidence have implicated BDNF in the regulation of

synaptic strength and long-term memory processes [8].

Given its trophic effects on neurons and its central role in high-

order cognitive functions, BDNF has rapidly emerged as a key

element in the pathophysiology of numerous brain disorders,

including neurological disorders [e.g. epileptogenesis [9]], neuro-

degenerative diseases [e.g. amyotrophic lateral sclerosis [10],

Huntington [11], Alzheimer’s and Parkinson’s diseases [12]] and

psychiatric disorders [e.g. anxiety/depression [13,14], addiction

[15] and schizophrenic psychosis [16]]. Altogether, these obser-

vations present BDNF and TrkB as a promising new therapeutic

target. However, due to the lack of specific modulators, the

behavioral consequences of a systemic intervention on the BDNF/

TrkB system in these pathologies and in high-order cognitive

functions still remain elusive.

Since no structural data are available for the BDNF/TrkB

complex, the development of specific ligands has been difficult to

address. Moreover, the large surface of the putative binding

domain for BDNF makes the design of small molecules more

complex. Numerous studies have implicated the solvent-exposed

loops of BDNF in mediating their biological effects. Site-directed

mutagenesis analyses, production of chimeric neurotrophins and

mimetic peptides have highlighted specific and variable regions

among neurotrophins that are important for the binding specificity

and/or activation of their cognate Trk receptors [for reviews, see

[17,18,19]]. Moreover, other groups have designed functionally

active peptidomimetics of neurotrophins [see examples in

[20,21,22,23,24,25,26,27]], demonstrating the feasibility of this

strategy. Therefore, to develop a potent TrkB ligand active in vivo,

we took advantage of these seminal studies and we designed

several BDNF-derived mimetic peptides, which were tested for

their ability to modulate the activity of the human TrkB receptor.

Here, we describe the properties of a small inhibitor peptide
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mimicking the reverse turn structure of the variable region III that

protrudes from the core of BDNF, which we named cyclotraxin-B.

Results

Strategy for the design of cyclotraxin-B
To design small modulators of the TrkB receptor, we used a

strategy that rapidly produces and isolates mimetic peptides by

direct proteolysis of mature BDNF. Among several proteases,

endoproteinase Glu-C V8 appeared best suited at producing

sequences of interest distributed along the BDNF sequence (Fig. 1
and Table 1). Proteolytic fragments were purified and identified

using a HPLC system connected to a mass spectrometer. Since the

main purpose of this study was to develop modulators active on

human TrkB receptor, fragments were then assessed in presence of

BDNF on the human TrkB receptor, which was expressed in

CHO cells in an inducible-manner (TetOn-rhTrkB). For that

purpose, we developed a modified version of the previously

described KIRA-ELISA [28], a rapid, sensitive and high-capacity

assay that quantifies TrkB activation in ELISA microtiter plates by

measuring phosphorylation of its tyrosine residues [see Data S1
and Fig. S1,S2]. Four fractions were found to significantly

decrease BDNF-induced TrkB activity (Fig. 1C), including

Fragment #(05), corresponding to region III. This fragment was

of major interest compared to others because of its very low

molecular weight (,1,200 Da) and highly specific sequence in

BDNF. We therefore used both sequence and structure of region

III as a basis for the design of cyclotraxin-B, which has been

cyclized via terminal cysteine residues to mimic the native

structure of this region in BDNF (See Fig. 2A).

Cyclotraxin-B binds TrkB and alters both basal and BDNF-
induced activity with high potency

In a first set of experiments, cyclotraxin-B was assayed on

human TrkB receptors using the recombinant TetOn-rhTrkB

system. Cyclotraxin-B was found to inhibit BDNF-induced TrkB

activity through a non-competitive mechanism with a high

potency (IC50 = 0.3060.07 nM; Fig. 2B,D). When compared to

peptide L2-8, a BDNF-mimetic peptide previously described by

others [22], cyclotraxin-B proved to have a potency three-order of

magnitude higher, in KIRA-ELISA (L2-8 IC50 = 108663 nM;

Fig. 2B,D). Binding of [125I]-BDNF was not altered by

cyclotraxin-B (Fig. S3), suggesting further that cyclotraxin-B is

an allosteric modulator of the receptor by acting through TrkB

binding sites that are not critical for the interaction with BDNF

but rather involved in its activation capacity. This hypothesis was

further confirmed by binding studies using biotinylated cyclo-

traxin-B. In fact, to test whether cyclotraxin-B is able to interact

with TrkB, we performed histochemical staining using a

biotinylated version of the peptide on slices issued from either

control or transgenic mice lacking the TrkB receptor in the

forebrain. This transgenic mouse line was created by breeding

CamKIIa-CRE mice [29] to floxed TrkB homozygous mice [30].

The resulting CamKIIa-CRE TrkB flox/flox mice were then

crossed to TrkB flox/flox mice to generate 50% CamKIIa-CRE

TrkB flox/flox mice (mutants) and 50% TrkB flox/flox mice

(control littermates). Because of the selectivity of the expression of

CRE recombinase using the CamKIIa promoter, the TrkB gene is

only inactivated in the forebrain. As shown in Figure 3, whereas

cyclotraxin-B is detected in different structures of the forebrain of

control mice (e.g. dorsal striatum, cortex or hippocampus), no or

very weak staining was observed in the same regions of conditional

TrkB knockout mice. These observations are comparable to the

staining obtained in parallel with a selective TrkB antibody.

Together, these results demonstrate that cyclotraxin-B selectively

interacts with TrkB without altering the binding of BDNF.

The pharmacological properties of cyclotraxin-B were then

tested in native conditions, using primary cultures of mouse

cortical neurons. Contrary to TetOn-rhTrkB cells, cortical neurons

naturally express TrkB receptors and its co-receptor, p75NTR.

p75NTR is known to alter TrkB conformation and provide greater

discrimination for its cognate ligand, BDNF [1], as illustrated by

the difference in both affinity and activity observed between

BDNF and NT-3 in neurons but not in TetOn-rhTrkB cells (Figs.
S2 and S3). Accordingly, when cyclotraxin-B was tested on native

TrkB receptors in cortical neurons, both amplitude of inhibition

and potency were enhanced with a 1.6-fold greater inhibition

(256.768.8% in neurons vs. 234.866.4% in TetOn-rhTrkB cells)

and a one-order of magnitude higher potency than that observed

in TetOn-rhTrkB cells (IC50 = 67.1618.9 pM), while still remain-

ing non-competitive (Fig. 2C,E and Fig. S3). Analysis of the

reversibility of the inhibitory effects elicited by cyclotraxin-B also

demonstrated kinetics differences between TetOn-rhTrkB cells and

neurons. The tK of cyclotraxin-B was ,3 hours in TetOn-rhTrkB

cells and ,6 hours in neurons (Fig. 2F,G), both demonstrating

long-lasting effects of cyclotraxin-B after its withdrawal. These

relative high values may reflect the high affinity of cyclotraxin-B

for recombinant and native TrkB. Similarly, the significant

difference in tK may be explained by the difference in potencies

observed between the two cell types.

Contrary to L2-8, cyclotraxin-B also decreased a BDNF-

independent (basal) TrkB activity in both recombinant cells and

neurons with the same relative inhibition as in presence of BDNF

(TetOn-rhTrkB cells, 232.568.0% and IC50 = 0.2860.08 nM;

neurons, 253.065.8% and IC50 = 65.7621.7 pM; Fig. 2B-E).

Endogenously synthesized BDNF was not involved in this

apparent basal activity since neutralizing anti-BDNF antibody

did not alter cyclotraxin-B effects (Fig. S4A) and no BDNF was

detectable by ELISA. This spontaneous activity may result from

transactivations by G-protein coupled receptors (GPCR) [2,3],

zinc [5], endocannabinoids [6] but also from increases in receptor

density that lead to spontaneous autophosphorylation [31]. This

basal activation of TrkB may selectively occur in densely packed

area throughout soma, dendrites and axons, at the plasma

membrane but also in intracellular vesicles [32,33]. Taking

advantage of the inducible heterologous TetOn-rhTrkB system,

we investigated the effect of cyclotraxin-B at different TrkB

densities. As expected, a threshold in TrkB expression was needed

to detect a basal TrkB activity (Fig. S4B) and the relative

inhibition of cyclotraxin-B was stable at all TrkB densities, either

in presence or in absence of BDNF (Fig. 4A). In cortical neurons,

it has been shown that glucorticoids such as dexamethasone can

indirectly activate TrkB receptors [7]. As shown in Figure 4B,

dexamethasone significantly triggered TrkB phosphorylation in

our cortical neurons cultures. This activation via glucorticoids

signaling pathways was fully prevented by cyclotraxin-B, contrary

to a functional anti-TrkB antibody capable of inhibiting BDNF-

dependent TrkB activity only. These results suggest that not only

cyclotraxin-B blocks the effects of BDNF on TrkB but also any

direct or indirect processes capable of activating TrkB.

Cyclotraxin-B alters TrkB-related physiological and
pathophysiological cellular events

We next extended the evaluation of the functions of cyclotraxin-

B to TrkB-regulated cellular processes. BDNF is known to

promote neurite outgrowth, notably in nnr5 PC12-TrkB cells,

through MAP-Kinase (MAPK) signaling pathway activation.

Addition of BDNF to TrkB/p75NTR co-expressing nnr5 PC12-

TrkB Inhibitor Active In Vivo
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Figure 1. Purification and identification of binding determinants of BDNF. (A) Alignment of the amino-acid sequences of rat BDNF, NT-4/5,
NT-3 and NGF (numbered based on BDNF sequence, dashes represent gaps, points represent identities and stars represent strongly similar amino
acids). Variable regions are boxed and labeled (Loops L1, L2, L3 and L4). (inset) Three-dimensional structure of a BDNF monomer (PDB entry, 1bnd).

TrkB Inhibitor Active In Vivo
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TrkB cells resulted in increases in neurite length and number of

branch points (Fig. 5A). The BDNF-induced neurite outgrowth

was dose-dependently prevented by cyclotraxin-B with similar

pharmacological properties to that of cortical neurons in KIRA-

ELISA assays (249.360.5%; IC50 = 12.268.5 pM) (Fig. 5A,B).

Application of cyclotraxin-B to nnr5 PC12-TrkB cells dramatically

decreased the BDNF-induced phosphorylation of MAPK, pro-

portionally to its effect on neurite outgrowth (Fig. 5C). Note that

neither spontaneous neurite outgrowth nor basal phospho-MAPK

levels could be detected in absence of BDNF, so that no

cyclotraxin-B effect could be assessed in this experimental

condition. Cyclotraxin-B was selective to TrkB receptors since

concentrations up to 1 mM did not affect NGF- nor NT-3-induced

neurite outgrowth in nnr5 PC12-TrkA and -TrkC, respectively

(Fig. 5D). Moreover, morphological analysis ruled out toxicity

effects of cyclotraxin-B and no cell death was observed even

72 hours after exposure to 10 mM cyclotraxin-B.

Reports have proposed that a sustained activation of

TrkB receptors by BDNF or through GPCR transactivations

could lead to enhanced neuronal vulnerability to toxic insults

[10,34,35,36,37]. Although the underlying mechanisms are poorly

known, studies performed on cultured cortical neurons have

shown that excess BDNF can induce neuronal death through

activation of TrkB but not p75NTR [34,37]. In this context, we

tested the effect of cyclotraxin-B in a model of BDNF-induced

neuronal necrosis. While repeated exposure to high concentrations

of BDNF induced cortical neurons necrosis, treatment with

cyclotraxin-B fully prevented BDNF-induced cell death without

altering normal neuron survival (Fig. 5E). These results

demonstrate the neuroprotective effects of cyclotraxin-B in this

experimental paradigm. Similar conclusions were drawn from cell

survival experiments using MTT (methylthiazolyldiphenyl-tetra-

zolium bromide) method (Fig. S5).

BDNF and TrkB also play a central role in the long-term

modulation of synaptic plasticity [8]. We thus tested cyclotraxin-B

on BDNF-induced protein synthesis in neurons, a process that is

linked to induction and maintenance of the late events of long-

term potentiation (LTP). As shown in Figure 5F, the BDNF-

induced increase in newly synthesized protein level was signifi-

cantly reduced by cyclotraxin-B. Of interest is the decrease in

basal rate of protein synthesis by cyclotraxin-B, which reproduced

half of the inhibition induced by the non-selective Trk inhibitor

K252a. This suggests that a part of basal rate of protein synthesis

depends on basal TrkB activity in neurons. Neither BDNF nor

cyclotraxin-B showed any effect on non-induced TetOn-rhTrkB

cells (data not shown). The phosphorylation of the eukaryotic

initiation factor 4E (eIF4E) is known to underlie the TrkB-

dependent protein synthesis that occurs during synaptic modula-

tion by BDNF, as shown in Figure 5F (see also Fig. S6).
Cyclotraxin-B significantly reduced the level of phosphorylated

eIF4E protein both in the absence and in the presence of the

neurotrophin. Remarkably, these effects were linearly correlated

to those observed on protein synthesis, thus suggesting a direct link

between these two cellular events and TrkB modulation. Since

LTP at the Schaffer collateral-CA1 synapses is known to require

BDNF derived from presynaptic CA3 neurons [29], attempts were

made to determine whether cyclotraxin-B was able to affect

tetanus-induced LTP in this neural network. As shown in

Figure 6A, while HFS applied to hippocampal slices induced

LTP in both control and cyclotraxin-B-treated slices (169615%,

P,0.001, and 13466%, P,0.01, respectively; 50–60 min after

HFS), this potentiation was significantly decreased in presence of

cyclotraxin-B (P,0.01, 50–60 min after HFS). As previously

observed by Kang and colleagues using function-blocking TrkB

antiserum [38], cyclotraxin-B did not alter either synaptic strength

or presynaptic functions (Fig. 6B,C). These results indicate that

Table 1.

Fragment Corresponding region m/z [M+H]+ (+Cys-CAM)a Position Peptide sequence

#(01) N-Terminus 1024.6 1–9 HSDPARRGE

(-)

#(02) - 952.04 10–18 LSVCDSISE

(1009.45)

#(03) Loop L1 2279.59 19–40 WVTAADKKTAVDMSGGTVTVLE

(-)

#(04) Loop L2 1814.11 41–55 KVPVSKGQLKQYFYE

(-)

#(05) Region III 1271.47 56–66 TKCNPMGYTKE

(1328.59)

#(06) Loop L4 6220.31 67–119 GCRGIDKRHWNSQCRTTQSYVR

+ C-Terminus (6485.32) ALTMDSKKRIGWRFIRIDTSCVCTLTIKRGR

aAll cysteine residues have been treated with iodoacetamide to form carbamidomethyl-cysteine (Cys-CAM)
doi:10.1371/journal.pone.0009777.t001

Isolation of these regions by endoproteinase Glu-C V8 (black arrows) resulted in the production of six fragments (#(01) to #(06)). (B) Fragments were
purified by HPLC using a non-linear gradient (dashed line) and identified by ESI-MS (solid line). All expected fragments and fragments resulting from
miscleavage of BDNF were found. Only the four fragments capable of inhibiting the BDNF-induced TrkB activity in (C) are noted. (C) Representative
KIRA-ELISA inhibition profile of 80 HPLC fractions. Fractions (,0.3 mM final) were assayed in the presence of 1 nM BDNF. Most fractions did not
produce significant inhibitions (#) except four fractions (N single fragments, m miscleavage fragments). Mean 6 s.e.m. of values obtained in
triplicate in 8 independent experiments are noted in brackets.
doi:10.1371/journal.pone.0009777.g001

TrkB Inhibitor Active In Vivo

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9777



TrkB Inhibitor Active In Vivo

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9777



cyclotraxin-B counteracts TrkB-dependent LTP without affecting

normal synaptic transmission at Schaffer collateral-CA1 synapses.

Altogether, these results demonstrate that cyclotraxin-B alters

signaling pathways associated to both BDNF-induced and basal

TrkB activities, in normal and/or deleterious conditions.

Systemic injections of cyclotraxin-B to mice result in TrkB
inhibition in the brain and alters anxiety-related behavior

The overall purpose of the present study was to develop a TrkB

modulator that can be administered by systemic injection and then

to assess the resulting behavioral central effects. In order to allow

its delivery to the brain after intravenous injections, we fused the

non-toxic transduction domain of the tat protein from the HIV

type 1 [39] to cyclotraxin-B (tat-cyclotraxin-B). KIRA-ELISA

showed that the fusion with tat did not alter the pharmacological

properties of cyclotraxin-B (Fig. S7). In contrast, the fusion with

tat even enhanced the efficacy of cyclotraxin-B to inhibit TrkB in

brain slices (cyclotraxin-B, 229.865.6%, n = 9; tat-cyclotraxin-B,

251.263.6%, n = 12; P,0.05), while tat-empty (a tat peptide

lacking the cyclotraxin-B sequence) did not produce any effect.

This enhancement may reflect the plasma membrane permeability

of the tat-fused cyclotraxin-B that facilitates its penetration into the

slice and/or targeting of intracellular active TrkB receptors. We

then treated adult mice with tat-cyclotraxin-B or tat-empty

following a double-injection procedure (see protocol in Fig. S8).

Four hours after the last intravenous injection, tat-cyclotraxin-B

was detected in many brain structures that normally express TrkB

(cortex, hippocampus, striatum, nucleus accumbens; Fig 7A),

demonstrating the stability of the compound in vivo. More

interestingly, the total level of TrkB phosphorylation in tat-

cyclotraxin-B-treated mice was dramatically decreased as com-

pared to saline or tat-empty-treated animals (Fig. 7B). Similar

results were obtained amongst all these brain regions (not
illustrated). Western blot analysis using phospho(Y816)-TrkB

antibody showed comparable effects with a reduction of

37.764.7% in band intensity (Fig. S8B), suggesting that

cyclotraxin-B inhibits both PLCc and Shc binding sites.

Remarkably, even with very different administration kinetics

(minutes for incubation; hours for injection), the decrease in TrkB

activity was not significantly different when tat-cyclotraxin-B was

injected to animals or directly added to the slice (injection,

50.963.1%; slice incubation, 52.063.9%; Fig. 7B). This latter

observation thus illustrates the long-lasting effects of tat-cyclo-

traxin-B in vivo.

BDNF and TrkB have been shown to regulate develop-

ment of depression-like phenotypes and anxiety-related behaviors

[14,40,41,42], depicting TrkB as a promising target for the

development of new therapeutic compounds [13,43]. In this

context, we focused the study of adult mice injected with tat-

cyclotraxin-B on depression-like and anxiety-like behaviors. First,

mice were subjected to the forced swim test (FST), a test that is

commonly used for its predictive validity regarding antidepressant

compounds. In this test, tat-cyclotraxin-B was compared to

paroxetine, a well-characterized antidepressant compound. As

for many antidepressant compounds, mice acutely treated with

paroxetine demonstrated significant decreased time of immobility

and increased climbing attempts (Fig. 7C). This escape behavior

was not observed for mice that received saline solution or tat-

cyclotraxin-B, suggesting that cyclotraxin-B does not possess any

antidepressant-like properties when injected acutely. Noteworthy,

swimming capabilities were not affected in mice treated with tat-

cyclotraxin-B, suggesting no locomotor alterations. In a second set

of experiments, tat-cyclotraxin-B was assessed for its potential

anxiolytic-like properties. Treated mice were tested in the open

field and in the elevated-plus maze (EPM), two tests used for their

predictive validity regarding anxiolytic compounds. In the open

field, mice injected with tat-cyclotraxin-B did not show any

alterations in locomotor activity, confirming our previous

observations (Fig. 7D). Moreover, tat-cyclotraxin-B-injected mice

spent significantly more time in the center compartment compared

to saline controls, suggesting anxiolytic effects of the compound.

To confirm this putative anxiolytic property, effects of acute

treatment with tat-cyclotraxin-B were then assessed using EPM

and compared to diazepam, a benzodiazepine commonly used to

treat anxiety in humans. Remarkably, mice that received tat-

cyclotraxin-B exhibited an anxiolytic profile similar to that of

diazepam. In fact, both compounds significantly increased the

number of entries and the time spent in open arms with

comparable amplitude of effects (Fig. 7E). Overall, these

behavioral studies further demonstrated the specificity of central

effects elicited by tat-cyclotraxin-B after intravenous injections and

confirmed its pharmacological potential in vivo, for its use in animal

models of brain disorders.

Discussion

Since the discovery of the first antidepressant and antipsychotic

medications fifty years ago, few novel therapeutic agents have been

developed for the treatment of psychiatric diseases. Most of the

time, new treatments are based on improving existing treatment

strategies rather than targeting new molecular pathways. There is

an increasing literature that proposes TrkB receptor signaling as a

promising target for the treatment of psychiatric disorders

[13,14,15,16], but also epilepsy [9], neurodegenerative diseases

[10,11,44], and even cancer [45]. In consequence, as the first

potent and specific modulator of TrkB receptors that can be easily

administered in vivo, cyclotraxin-B opens new avenues for

therapeutic interventions.

The proposed involvement of BDNF or TrkB in diseases is

mostly based on an excess or a lack of the BDNF/TrkB coupling

that was measured either in human post-mortem tissue or in

Figure 2. Cyclotraxin-B is a highly potent allosteric inhibitor of TrkB receptor with long-lasting effects. (A) Design of cyclotraxin-B. (Left)
Sequence alignment of the four neurotrophins on the highly variable region III (gray box). The two cysteine residues used for cyclization are in red.
Point, conserved residues; asterisk, highly similar residues. (Right) 3-D structure of a BDNF monomer (adapted from PDB entry 1bnd) and sequence of
cyclotraxin-B. Variable regions are indicated and higher magnification of region III is boxed. The position of the disulfide bond is shown as a dashed
line. (B-E) Characterization of TrkB inhibition by cyclotraxin-B using KIRA-ELISA assays in TetOn-rhTrkB cells (B,C) and in cortical neurons (D,E). (B,D)
Increasing concentrations of cyclotraxin-B (B, n = 6; D, n = 5) or L2-8 (n = 3) were added to the cells with or without BDNF. (C,E) BDNF concentration-
response experiments with or without cyclotraxin-B (C, 1 mM, n = 6; E, 100 nM, n = 6). Addition of cyclotraxin-B resulted in a significant uncompetitive
antagonism (C, F1,285 = 88.0, P,0.0001; E, F1,279 = 199.9, P,0.0001) and did not change BDNF EC50 (C, BDNF 672692 pM, + cyclotraxin-B 749691 pM;
E, BDNF 186650 pM, + cyclotraxin-B 178652 pM), as shown by Eadie-Hofstee plotting of the data (insets). Results are expressed as the ratio
between phospho- and total-TrkB in percentage of basal value. Data are mean 6 s.e.m. (triplicates, n = 6), except for insets where data are mean. (F)
Slow reversibility of cyclotraxin-B inhibition in TetOn-rhTrkB cells and in cultured neurons. After 30-min exposure to cyclotraxin-B, cells were rapidly
washed and incubated in KIRA-ELISA medium for increasing times before the addition of BDNF. Data are mean 6 s.e.m. (triplicates, n = 4) and are
expressed in percentage of inhibition. (G) Means 6 s.e.m. of half times obtained in (F). * P = 0.02.
doi:10.1371/journal.pone.0009777.g002
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genetic animal models. The conclusions drawn from these data are

not always coherent, especially for those regarding psychiatric

diseases, such as schizophrenic psychoses for instance [16].

Therefore, it will be difficult to predict the effect of a modulator

of TrkB activity in such cases. Cyclotraxin-B represents a great

tool to evaluate the consequences of systemic pharmacological

interventions on TrkB receptors in pathologies with altered

BDNF/TrkB signaling. An example of such consequences is

Figure 3. Cyclotraxin-B interacts with TrkB. Fixed slices from adult
control and transgenic CamKIIa-CRE x TrkB flox/flox (TrkB-CRE) mice
were incubated overnight with biotinylated cyclotraxin-B or anti-TrkB
antibody. Regions of the forebrain in which the expression of TrkB is
knocked out in the transgenic mice are shown (Left to right: dentate
gyrus of hippocampus, prefrontal cortex, dorsal striatum; 406
magnification). Data presented for biotinylated cyclotraxin-B are those
obtained with 0.1 mM of but are similar with concentrations up to 1 mM.
Scale bar, 200 mm.
doi:10.1371/journal.pone.0009777.g003

Figure 4. Cyclotraxin-B inhibits both BDNF-dependent and -
independent TrkB activity. (A) Cyclotraxin-B inhibition of density-
related TrkB activity. Cells were induced with doxycycline (see Fig. S4B)
and were treated with BDNF (4 nM), cyclotraxin-B (1 mM) and K252a
(1 mM) before KIRA-ELISA analysis (N BDNF, # BDNF+cyclotraxin-B, m
basal, D cyclotraxin-B, & K252a, % K252a+cyclotraxin-B). Inset shows
amplitude of inhibition of BDNF-induced and basal activities. Data are
mean 6 s.e.m. (triplicates, n = 3). Results are expressed in percentage of
values obtained in non-induced cells. (B) Cyclotraxin-B inhibition of
glucocorticoid-dependent TrkB activity in neurons. Cortical neurons
were treated with control medium, dexamethasone (1 mM, 2 h) or BDNF
(4 nM), in presence or not of cyclotraxin-B (1 mM) or a monoclonal anti-
TrkB antibody (30 mg/ml). Data are mean 6 s.e.m. (triplicates, n = 6) and
are expressed in percentage of basal values; ** P,0.01, *** P,0.001,
compared to basal/control condition; 111 P,0.001, compared to
dexamethasone alone; ### P,0.001, compared to BDNF condition.
doi:10.1371/journal.pone.0009777.g004
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shown here: global targeting of brain TrkB receptors by

intravenous injections of cyclotraxin-B has effects on anxiety-

but not depression-related behaviors. Our observations are in line

with two recent studies demonstrating that mice susceptible to

stress-related disorders after chronic social defeat have an

overactivity of BDNF/TrkB signaling in their reward system

[40,41]. This suggests that acute systemic interventions using

cyclotraxin-B may preferentially act on the reward system in the

brain, resulting at the behavioral level in anxiolytic-like activities

rather than on the stress axis and its antidepressive effects [13].

Such specificity in the behavioral effects of cyclotraxin-B may be

explained by its capacity to alter the basal activity of TrkB

receptors. Brain regions that possess a high basal activation level

will thus be more sensitive to cyclotraxin-B. Our results are also

consistent with previous studies using transgenic mice lacking

TrkB receptors for which no alteration in depressive-like behaviors

could be observed [46,47]. In addition, the anxiolytic- but not

antidepressant-like profile may reflect the difference in the kinetics

of treatment for both conditions, with acute effects for anxiolytic

compounds versus chronic effects for antidepressant molecules.

Overall, this study gives a first insight to the predictive

pharmacological class of cyclotraxin-B, which appears to behave

as an anxiolytic drug similar to other benzodiazepines rather than

as an antidepressant compound.

The sustained effect elicited by cyclotraxin-B after transient

application both in vitro and in vivo is a result of the high affinity and

slow reversibility of the interaction with the receptor. It may also

be due to its small size that reduces protease-sensitivity. However,

long-term treatments with TrkB modulators may have unexpected

consequences on receptor internalization and recycling. In fact,

such modulation may alter the plasma membrane-bound TrkB

receptor level, making it difficult to predict the long-term effects of

cyclotraxin-B. As well, cyclotraxin-B proved to behave differen-

tially on TrkB if p75NTR is co-expressed or not. Numerous reports

demonstrated that the functional cooperation between p75NTR

and Trk receptors is responsible for a better discrimination in

binding for a specific neurotrophin and higher amplitude of

response. In a same way, in presence of p75NTR, cyclotraxin-B,

like BDNF, gains in binding affinity, amplitude of inhibition and

kinetics of action. It has been proposed that coexpression of

p75NTR and Trk receptors may induce receptors aggregation in

lipid rafts, convergence of signaling pathways or recruitments of

different intracellular adaptors [48,49]. Since cells in the central

nervous system express TrkB alone or together with p75NTR, one

can expect differential amplitude of effects of cyclotraxin-B

depending on the targeted region. As a partial allosteric inhibitor,

cyclotraxin-B should avoid the deleterious effects of a full inhibitor.

Indeed, BDNF and its receptor have important trophic and

protective effects on neuronal cells so that a minimal level of TrkB

activity must be preserved, which is warranted if cyclotraxin-B is to

be used therapeutically. Moreover, it is noteworthy that under

some circumstances BDNF promotes cell death. For instance,

reports have demonstrated that necrosis of cultured cortical

neurons can be induced by BDNF, a process abolished by

inhibiting TrkB with antisense oligonucleotides or K252a [34] and

absent in cultures made from cortices of TrkB-null mice [35].

Therefore, in conditions in which hyperactivity of the BDNF/

TrkB system increases the vulnerability of neurons to excitotoxic

insults [10,34,35,36], cyclotraxin-B can be used as a neuroprotec-

tive agent by maintaining the receptors in a minimal active state.

Pharmacological studies performed with KIRA-ELISA demon-

strate that cyclotraxin-B not only blocks the effects of BDNF on

TrkB but also any direct or indirect processes capable of activating

TrkB (e.g. spontaneous dimerization or glucocorticoids, respec-

tively). Therefore, cyclotraxin-B may allosterically interfere with

TrkB optimal conformation, thereby preventing its proper

activation, independently of the mechanism of activation (Fig. 8).

This specific property makes cyclotraxin-B a great tool for

investigating TrkB transactivation mechanisms as well as sponta-

neous TrkB dimerizations in physiology and pathology. TrkB

transactivation processes have been linked to crucial physiological

events such as synaptic plasticity [5], neuron migration and

morphogenesis [6] and neuroprotection [7]. In addition, basal

more than BDNF-dependent TrkB activity may play a critical role

in the etiology of some pathologies such as epileptogenesis [9],

amyotrophic lateral sclerosis [10] and cancer metastases [50]. An

example of the importance of the basal TrkB activity in physiology

as revealed by cyclotraxin-B is reported in Figure 6. Surprisingly,

the effect on the LTP reduction appeared high (from about 170 to

135%) relative to the partial inhibition of cyclotraxin-B. In

comparison, Korte et al. have reported a reduction within the same

range, from about 190% to 135%, using BDNF knockout mice

[51]. This high effect could be due to the fact that TrkB inhibition

is more general since cyclotraxin-B inhibits not only the effect of

BDNF on TrkB but also the basal TrkB activation. These results

suggest an important component of the BDNF-independent

activity of TrkB receptors in the regulation of synaptic plasticity,

as proposed by others [5]. Finally, cyclotraxin-B inhibits the two

main signaling pathways downstream TrkB with similar amplitude

of effects. In fact, activation of TrkB triggers the phosphorylation

of two Tyrosine residues that form binding sites for Shc (Y515) and

PLCc (Y816). KIRA-ELISA assays performed with a pan-

phospho-tyrosine antibody first demonstrated that cyclotraxin-B

inhibits the overall phosphorylation level of TrkB. Then, we

showed that cyclotraxin-B inhibits the activation of the MAPK

pathway as well as subsequent neurite outgrowth, two signaling

downstream the binding of protein Shc to phosphorylated Y515.

Finally, western blots performed with a specific phospho(Y816)-

TrkB antibody demonstrated that cyclotraxin-B also inhibits the

activation of the PLCc binding site and subsequent processes such

Figure 5. Cyclotraxin-B inhibits normal and deleterious cellular signaling events associated with TrkB but not TrkA nor TrkC. (A-D)
Cyclotraxin-B inhibits TrkB- but not TrkA- nor TrkC-dependent neurite outgrowth. (A) Representative photomicrographs of nnr5 PC12-TrkB cells
treated for 48 h with cyclotraxin-B and/or BDNF. 206 magnification. (B) Quantitative analysis of BDNF-induced neurite outgrowth in presence of
increasing concentrations of cyclotraxin-B. Data are mean 6 s.e.m. (sixplicates; n = 5). (C) Quantitative analysis and representative western blot of
total and phospho-MAPK in nnr5 PC12-TrkB cells treated as indicated. Data are mean 6 s.e.m. (n = 4) and are expressed in percentage of basal
condition; *** P,0.001 compared to control; 111 P,0.001, compared to BDNF. (D) nnr5 PC12-TrkA and -TrkC cells were incubated with cyclotraxin-B
(1 mM) in presence or not of NGF or NT-3, respectively. (E) Cyclotraxin-B prevents BDNF-induced neurons death. Cortical neurons were treated with
cyclotraxin-B or BDNF, as described in methods. Data are mean 6 s.e.m. (sixplicates, n = 5) expressed in percentage of control. *** P,0.001 compared
to control; 111 P,0.001, compared to BDNF. (F) Cyclotraxin-B inhibits cap-dependent protein translation in cortical neurons. [35S]-methionine
incorporation into proteins (white bars) was measured in cortical neurons exposed to cyclotraxin-B, K252a and BDNF, as indicated. Phosphorylation of
eIF4E was quantified by immunoblots (black bars). Data are mean 6 s.e.m. (triplicates, n = 5) and are expressed in percentage of basal condition; *
P,0.05, ** P,0.01, *** P,0.001, compared to respective basal condition; 1 P,0.05, 11 P,0.01, compared to respective BDNF condition. Inset shows
correlations between TrkB-dependent protein synthesis and eIF4E phosphorylation. (1) K252a, (2) cyclotraxin-B, (3) basal, (4) BDNF + cyclotraxin-B, (5)
BDNF.
doi:10.1371/journal.pone.0009777.g005
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as the modulation of LTP. Therefore, this study shows that

cyclotraxin-B is able to inhibit the two active sites of TrkB (p-

Y816/PLCc and p-Y515/Shc) as well as downstream processes

associated to these pathways (Shc/MAPK/neurite outgrowth and

PLCc/synaptic plasticity).

Altogether, these observations suggest that cyclotraxin-B

represents a promising tool for the study of the BDNF/TrkB

signaling in pathological and physiological processes and could

serve as a lead compound for the development of novel

therapeutic strategies.

Figure 6. Cyclotraxin-B impairs HFS-induced LTP without affecting basal synaptic transmission. (A) Effect of prior exposure to
cyclotraxin-B on tetanus-induced LTP in the CA1 area. Grouped recordings are shown before and after tetanic stimulation (arrow) for control and
cyclotraxin-B-treated hippocampal slices. Representative fEPSPs recorded 5 min before (a) and 60 min after (b) LTP induction are shown. Results are
expressed in percentage of baseline response and are the mean 6 s.e.m. (n = 829 slices). (B) Input-output curves plotting of fEPSP slopes against
presynaptic fiber volley (PSFV) slope in control (r2 = 0.84; n = 7) and cyclotraxin-B-treated slices (r2 = 0.92; n = 10). Individual traces obtained for control
and cyclotraxin-B-treated slices are shown. (C) Scatter plot depicting the facilitation ratio obtained in control (n = 7) and cyclotraxin-B-treated slices
(n = 10). Mean 6 s.e.m. is indicated by the large symbol with the error bars while smaller symbols represent data obtained in each experiment.
Representative sweeps obtained with control and cyclotraxin-B-treated slices are shown.
doi:10.1371/journal.pone.0009777.g006
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Materials and Methods

Ethics statement
All experimental procedures were carried out in accordance

with the INSERM committee guidelines and European Commu-

nities Council Directive (86/609/EEC, 24 November 1986)

regarding the care and use of animals.

Plasmid constructs and cell lines
Plasmid constructs were generated by using standard cloning

techniques and were confirmed by sequencing. The human

recombinant TrkB receptor was fluorescently tagged at its C-

terminus with the Enhanced cyan fluorescent protein (rhTrkB-

ECFP) by cloning the full human TrkB sequence [52] (kindly

provided by G. M. Brodeur) into the pECFP-N1 expression vector

(Clontech). For inducible expression, rhTrkB-ECFP was subcloned

into the tetracycline-responsive (TetOn) vector pTRE2 (Clontech).

Chinese Hamster Ovary cells stably expressing rhTrkB-ECFP

(TetOn-rhTrkB cells), were produced by transfection of the

pTRE2-rhTrkB-ECFP plasmid into CHO-K1 TetOn cells (Clon-

tech) followed by clone selection in 0.25 mg/ml hygromycin B

(Invitrogen) and 0.1 mg/ml geneticin (G418; Invitrogen). Resis-

tant cells were selected based on both fluorescence intensity and

KIRA-ELISA profile after an overnight incubation in presence of

1000 ng/ml doxycycline (Clontech). Cortical neurons were

prepared and cultured from E16 mouse embryos as described

previously [53]. The nnr5 PC12-TrkA, nnr5 PC12-TrkB and nnr5

PC12-TrkC cells (kindly provided by M. V. Chao) are NGF non-

responding mutant PC12 cells stably transfected with TrkA, TrkB

and TrkC cDNA, respectively [54].

Figure 8. Proposed mechanism of cyclotraxin-B inhibition depending on TrkB activation state. (1) Inactive receptor monomer, (2) BDNF-
induced activation, (3) High density-induced activation. (4) Src kinase-mediated transactivation. Cyclotraxin-B binds to TrkB sites different from those
of BDNF and induces a less-active transconformation state of the receptor, as schematized by the shape of activation loops and the number of
phosphorylated residues (circled P, global phosphorylation level) on the intracellular kinase domain. This results in a decrease in activation of TrkB
downstream signaling cascades, as schematized by the size of descending arrows.
doi:10.1371/journal.pone.0009777.g008

Figure 7. Cyclotraxin-B is active in vivo after systemic injections and demonstrates anxiolytic-like but not antidepressant-like
effects. (A) Brain localization of biotinylated tat-cyclotraxin-B after intravenous injections. Cx, cortex; St, striatum; NAc, Nucleus Accumbens;
Hip, hippocampus. (B) KIRA-ELISA analysis of brain TrkB receptors from mice treated with saline (sal), tat-empty (empty) or tat-cyclotraxin-B
(cyclo) as described in Figure S8. Results are expressed in percentage of control condition. Data are mean 6 s.e.m. (sixplicates, n = 18 from 6
mice). *** P,0.001, compared to saline. (C) No antidepressant-like action of tat-cyclotraxin-B. Mice treated with saline solution (n = 11), tat-
cyclotraxin-B (n = 6) or paroxetine (n = 8) were tested for anti-depressive behaviors using FST. Results are mean 6 s.e.m. ** P,0.01, compared to
saline. (D) Anxiolytic-like effect of tat-cyclotraxin-B with no effect on locomotor activity in the open field. Mice treated with either saline (n = 10)
or tat-cyclotraxin-B (n = 10) were subjected to an open field. (Up) The total distance traveled in the periphery and in the center was measured
during 30 min. (Inset) Cumulative distance measured during the 30-min trial does not show any locomotor alterations. (Down) The normalized
distance traveled in the bright center is expressed as a ratio between the distance traveled in the center and the total distance. For the
normalized distance in center, there was a significant effect of treatment (F1,108 = 0.337, P,0.001) and time (F5,108 = 0.068, P = 0.01). Results are
mean 6 s.e.m. (E) Anxiolytic-like effect of tat-cyclotraxin-B comparable to that of diazepam. Mice that received saline solution (n = 7), tat-
cyclotraxin-B (n = 10) or diazepam (n = 7) were assessed for anxiety-like behaviors in the EPM procedure. Data are expressed as a ratio between
entries in open arms over total number of entries and ratio between time in center over total time. Results are mean 6 s.e.m. * P,0.05, **
P,0.01, compared to saline.
doi:10.1371/journal.pone.0009777.g007
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Enzymatic cleavage of BDNF and purification/
characterization of fragments

Ten micrograms (0.37 nmoles) of mature recombinant human

BDNF (Peprotech) were dissolved in 400 mM ammonium

bicarbonate buffer (pH 8.0) and cysteine bridges were reduced

by adding 10 mM DTT for 15 min at 50uC and alkylated by

15 mM iodoacetamide for 15 min at room temperature. Digestion

buffer was diluted to 100 mM ammonium bicarbonate buffer

before adding endoproteinase Glu-C (type V8; Sigma) in a 1:100

(enzyme:protein) ratio for 24 h at 37uC. Digestion mixture was

dried, reconstituted in 50 ml water and divided in two samples.

The first sample (10 ml, ,74 pmole) was used for the separation

and identification of fragments using Liquid Chromatography/

ElectroSpray Ionization-Mass Spectrometry (LC/ESI-MS). Mass

spectra were acquired on a LCQ Advantage ion trap mass

spectrometer (Thermo Electron). On-line HPLC separation

of the fragments was accomplished with an Atlantis column

(2.16150 mm, Waters) packed with dC18 adsorbent (5 mM,

300 Å) (mobile phase A, 0.1% formic acid; mobile phase B,

80% acetonitrile, 0.1% formic acid). The first 2.5 min at 0%

mobile phase B were derivatized to waste. The following non-

linear gradient was then used: 0–15% B over 4.5 min, 15–30% B

over 23 min, 30–50% B over 10 min, 50–100% B over 2 min,

100% B over 3 min, 100-0% B over 1 min (flow rate: 250 ml/min).

The column was washed within 4 min with 100% solvent B before

reequilibration with mobile phase A. Digestion fragments were

sequentially fragmented into the ion trap by collision-induced

dissociation using an isolation width of 2 and a relative collision

energy of 35%. Mass spectrometry and mass spectrometry

fragmentation data allowed an unambiguous identification of the

different fragments using predictive m/z and the Bioworks

software. The second sample (,30 ml) was used for separation

and isolation of fragments into aliquots. Using exactly the same

HPLC parameters than previously, we saw to it that one fragment

was distributed in only one fraction and reciprocally, that one

fraction contained only one fragment at a time. Fractions were

dried, washed two times, reconstituted in 50 ml water and stored at

-20uC. Fractions (,1 mM final) were then tested in competition

with BDNF (20 ng/ml) using KIRA-ELISA. Four distinct BDNF

digestions reproducing the same LC/ESI-MS profile were

performed. Each fraction was tested in triplicate in six different

KIRA-ELISA assays.

Peptides design and synthesis
See SI for methods for the production of mimetic peptides.

Cyclotraxin-B, L2-8, tat-cyclotraxin-B and tat-empty were

purchased from BioS&T. Peptide sequences were as fol-

lows: cyclotraxin-B, CNPMGYTKEGC (cyclized by disulfide

bridge); L2-8, CVPVSKGQLC [22]; tat-cyclotraxin-B, YGRK-

KRRQRRRCNPMGYTKEGC; biotinylated tat-cyclotraxin-B,

Biotin-YGRKKRRQRRRCNPMGYTKEGC; tat-empty, YGR-

KKRRQRRR. Peptides were purified to the highest grade by

reverse-phase HPLC (.98.5%).

KIRA-ELISA
TrkB activity was quantified using the previously described

KIRA-ELISA assay [28] with slight modifications. Cortical

neurons were seeded on polyornithin-coated flat-bottom 96-well

culture plates (126104 cells per well) and cultured eight days at

37uC in 5% CO2. TetOn-rhTrkB cells were seeded on flat-bottom

96-well culture plates (46104 cells per well) and incubated

overnight with 1000 ng/ml doxycycline (Figs. S1,S2) except

when indicated. Fluorescence levels in TetOn-rhTrkB cells were

verified before each assay. Both cell types were carefully washed

four times with Dulbecco’s modified Eagle’s medium (DMEM,

Invitrogen) before being pre-treated for 30 min with ligands and

stimulated for 20 min with 4 nM BDNF, except when indicated in

the figures, in DMEM containing 0.5% BSA and 25 mM Hepes

(pH 7.4). Assay was stopped by removing the medium on ice and

membranes were solubilized using KIRA-ELISA solubilization

buffer (NaCl 150 mM, Hepes 50 mM, Triton X-100 0.5%,

thimerosal 0.01%, sodium orthovanadate 2 mM, supplemented

with a cocktail of protease inhibitors) for 1 h at room temperature.

Solubilized membranes were transferred for 2 h at room

temperature onto ELISA microtiter plate (Nunc Maxisorp) pre-

coated overnight at 4uC with appropriate antibodies [polyclonal

anti-GFP (1:5000, Clontech) for TetOn-rhTrkB, polyclonal anti-

TrkB (1 mg/ml, Upstate) for cultured neurons and brain slices, for

phosphorylation assays; monoclonal anti-GFP (1:3000, Chemicon)

for TetOn-rhTrkB, monoclonal anti-TrkB (1:1000, BD Bioscienc-

es) for cultured neurons and brain slices, for total TrkB

quantification]. Tyrosine phosphorylation was revealed by a 2 h

incubation with biotinylated anti-phosphotyrosine (4G10, 0.5 mg/

ml; Upstate) and a streptavidin-peroxydase system (1:4000;

Amersham Biosciences). Total TrkB was revealed by a 2 h

incubation with polyclonal anti-GFP (1:5000, Clontech) for

TetOn-rhTrkB, or polyclonal anti-TrkB (1 mg/ml, Upstate) for

cultured neurons and brain slices, followed by appropriate

secondary antibodies and a peroxydase system. Absorbance was

read at 450 nm after addition of 3,39,59,5-tetramethyl-benzidine

substrate (Sigma) and acidification with 1N hydrochloric acid.

Background signal was defined as indicated in Fig. S2.

BDNF quantification
Endogenous BDNF was quantified in cortical neuron cultures

by using the BDNF Emax immunoassay system (Promega).

Fluorescence
ECFP fluorescence quantification was read at 485 nm using a

Mithras LB 940 counter (Berthold Technologies).

[125I]-BDNF binding studies
Two micrograms of recombinant human BDNF (Peprotech)

were dissolved in 50 mM phosphate buffer (pH 7.0). Iodination

was allowed by incubation with 0.5 mCi [125I] and chloramine T

and reaction was stopped by addition of sodium disulfite. The

labeled BDNF was purified by PD-10 desalting columns

(Amersham Biosciences) and fractions containing the [125I]-BDNF

were pooled (63.3 mCi/mg). Competition binding studies were

done mainly as previously described [55]. Briefly, 2.5236105 cells

or neurons were carefully washed with ice-cold binding buffer

(DMEM containing 0.5% BSA and 25 mM Hepes) before being

treated as indicated in the figures. Cells were then washed four

times with ice-cold binding buffer and lyzed with 1N NaOH.

Radioactivity was counted in a 1260 MultiGammaII counter

(LKB Wallac).

Immunoblot analysis
Cell lysates were prepared in boiling SDS (2%, w/v) as

described previously [56] and subjected to SDS-PAGE. Detection

and analysis of eIF4E, MAPK and Akt phosphorylation were done

using anti-total and -phospho-eIF4E antibodies (1:1000, Cell

Signaling), anti-total and -phospho-MAPK antibodies (1:1000,

Cell Signaling) or anti-total and–phospho (Ser473) Akt antibodies

(1:1000, Santa Cruz; 1:1000, Cell Signaling, respectively),

respectively. For TrkB expression analysis, cortical neurons were
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cultured for eight days and TetOn-rhTrkB cells were incubated

overnight with doxycycline. Cells were solubilized as for KIRA-

ELISA assays and lysates were centrifuged at 14,0006g for 20 min

at 4uC. Cleared supernatant was collected and proteins were

subjected to SDS-PAGE. Detection of rhTrkB-ECFP and

neuronal mouse TrkB were performed using anti-GFP polyclonal

antibody (1:5000, Clontech) and anti-rodent TrkB polyclonal

antibody (1 mg/ml, Upstate), respectively. TrkB phosphorylation

was quantified using anti-phospho-TrkB antibody (kindly provided

by M.V. Chao) [57]. Proteins were visualized using appropriate

HRP-conjugated secondary antibodies and films were quantified

by densitometry.

Immunofluorescence
Cortical neurons seeded on polyornithin-coated cover slips were

fixed in 4% paraformaldehyde for 20 min and washed in glycine

buffer (0.1 M, pH 7.4). Detection was performed using anti-rodent

TrkB polyclonal antibody (1 mg/ml, Upstate) or anti-rodent MAP-

2 monoclonal antibody (1:500, Millipore) in Saponine buffer

(0.05%) supplemented with 0.2% BSA and 10% heat-inactivated

fetal bovine serum and revealed using Alexa488-conjugated

(1:100, Interchim) or Cy3-conjugated (1:200, Jackson) appropriate

secondary antibodies.

Immunohistochemistry
Mice were injected twice with 200 mg of biotinylated tat-

cyclotraxin-B. Three hours after the first injection, animals were

deeply anesthetized with pentobarbital and perfused intracardia-

cally with a solution of saline followed by 4% paraformaldehyde.

Brains were postfixed for 1 h in 4% paraformaldehyde and cut in

40-mm sections with a vibratome. Sections obtained at the same

levels as for in vivo KIRA-ELISA analysis (see Fig. S8) were rinsed

in PBS and incubated in TBS containing 0.05% Tween-20 with

VectaStain ABC Elite kit (Vector Laboratories). Signal was

revealed using 3,39 diaminobenzidine (DAB). Non-injected mice

were used as negative controls for endogenous biotin.

Histochemistry using biotinylated cyclotraxin-B
Control and CamKIIa-Cre TrkB fl/fl adult mice (see below)

.12 weeks-old were transcardially perfused with 4% paraformal-

dehyde. Brains were post-fixed overnight in 4% PFA, cryopre-

served in 30% sucrose and cryosectioned into 40 mm sagittal

sections. Sections were stored in PBS with azide. Biotinylated

cyclotraxin-B was incubated at 0.1 or 1 mM overnight at 4uC.

Sections were rinsed in PBS and signal was revealed using

VectaStain ABC Elite kit (Vector Laboratories). Signal was

revealed using 3,39 diaminobenzidine (DAB). In parallel, adjacent

sections were blocked in normal mouse serum and incubated with

monoclonal mouse anti-TrkB (1:250; BD Bioscience) overnight at

4uC. Signal was revealed as for biotinylated cyclotraxin-B. In both

conditions (biotinylated cyclotraxin-B and anti-TrkB), a slight

staining could be sometimes observed for some slices (only at 1 mM

for cyclotraxin-B). This signal is consistent with other studies using

the similar transgenic mice [30] and may be attributed to TrkB-

expressing glial cells and/or a not total knockout.

Neurite outgrowth assessment
nnr5 PC12 cells were prepared as described elsewhere [58].

nnr5 PC12-TrkB, -TrkA and -TrkC cells were treated with

cyclotraxin-B (100 nM) and BDNF (1 nM), NGF (2 nM) or NT-3

(10 nM), respectively. The number of cells bearing neurites longer

than 2 cells in diameter was microscopically determined in each

counting field (two fields per well, three wells per condition).

Counting was performed blind each 24 h for three days. Data

presented in the figures are those obtained for 48 h but are similar

at 24 h and 72 h.

Metabolic labeling with [35S]-methionine
Measurement of [35S]-methionine incorporation was mainly

performed as described previously [56] Cortical neurons were

washed twice and incubated with DMEM containing 0.5% BSA

and 25 mM Hepes for 5–6 h. Neurons were incubated for 20 min

with 4 nM BDNF in the presence of 4 mCi/ml of [35S]-methionine

(1000 Ci/mmol, Amersham Biosciences). Cyclotraxin-B (100 nM)

and K252a (10 mM) were added for 30 min prior to BDNF (4 nM)

stimulation. Neurons were washed twice and protein were

precipitated with trichloroacetic acid (TCA; 10%, w/v). Amino

acid uptake into neurons and incorporation into proteins were

estimated by counting the radioactivity in the supernatant and the

pellet, respectively. [35S]-Methionine incorporation was calculated

as the ratio of TCA-precipitable to TCA-soluble radioactivity.

None of the treatments altered [35S]-methionine uptake into

neurons.

Assessment of cell injury
Neurotoxicity experiments were performed on cortical neurons

(256104 cells per well in 24-well plates) cultured in presence of

glial cells in Neurobasal medium supplemented with B27 (Gibco)

for 10–14 days. Mature cultures were then washed carefully and

serum-free medium containing cyclotraxin-B (200 nM) or BDNF

(4 nM), alone or in combination, was added to the cells each 24 h

for 72 h. Neuronal necrosis was determined by measuring the

leakage of LDH with respect to total LDH using the kit of Sigma,

as described by the manufacturer. Necrosis was estimated as a

function of LDH released compared to total LDH. Cell survival

was quantified by measuring the reduction of MTT into a blue

formazan precipitate that is subsequently solubilized in dimethyl

sulphoxide and read at 560 nm.

Animals
Adult male Sprague-Dawley rats and Swiss mice (2–3 months-

old and 4–6 weeks, respectively; Janvier) were used. Forebrain-

specific TrkB transgenic mice (CamKIIa-Cre TrkB fl/fl mice) used

for biotinylated cyclotraxin-B histochemistry have been created by

breeding CamKIIa-Cre mice [29] to floxed TrkB homozygotes

mice [30] to generate CamKIIa-Cre+ TrkB fl/wt mice and then

crossed to TrkB fl/fl mice to generate CamKIIa-Cre TrkB fl/fl

mice. The resulting line had low neonatal survival but surviving

animals matured unremarkably. Animals were maintained on a

controlled light-dark cycle at a constant temperature (2262uC)

with ad libitum access to food and water.

Electrophysiological recordings
Hippocampal slices (400 mm) were prepared as previously

described [59]. Cyclotraxin-B was directly diluted in medium

(1 mM) and slices were incubated for at least 30 min. Slices

were then transferred to a submersion-type recording chamber

equilibrated with 95% O2, 5% CO2, and submerged in a stream of

medium containing 1 mM cyclotraxin-B for ,20 min prior to I/O

curves and PPF recordings or to LTP induction (see below).

Extracellular recordings were performed at room temperature in

apical dendritic layers of CA1 area using glass micropipettes filled

with 2 M NaCl with a resistance of 2–6 MV. Field excitatory

postsynaptic potentials (fEPSPs) were evoked by electrical

stimulation of CA1 afferent Schaffer collaterals and commissural

fibers in the stratum radiatum. Test stimuli (100 ms duration) were
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adjusted to get 30% of maximum fEPSP slope and applied every

15 seconds.

Long-term potentiation (LTP). LTP was induced by

applying high frequency stimulation (HFS) to Schaffer collaterals

(two 1-sec trains at 100 Hz separated by 20 seconds) after baseline

recording (at least 15 minutes or until stable). The magnitude of

fEPSPs was determined by measuring the slope of fEPSPs. Three

successive fEPSPs were averaged (each fEPSP was normalized to

the mean of fEPSPs recorded before tetanus) and plotted across

time using Pclamp9 software (DIPSI). Recording after single pulse

testing was performed for at least 60 minutes following tetanus.

Input/Output (I/O). Curves were constructed to assess the

responsiveness of AMPA/Kainate glutamate receptor subtypes-

dependent responses to electrical stimulation in slices. Slopes of

three averaged presynaptic fibre volleys (PFVs) and fEPSPs were

plotted as a function of stimulation intensity (400–2200 mA).

Paired-pulse facilitation (PPF). PPF of synaptic

transmission induced by paired-pulse stimulation was monitored

at 40 ms inter-stimulus intervals. PPF was quantified by

normalizing the slope of the second fEPSP by the slope of the

first one.

Intravenous delivery of cyclotraxin-B and in vivo KIRA-
ELISA analysis

Adult Swiss mice (20–25 g) received a double 90-min-interval

i.v. injection of saline buffer, tat-cyclotraxin-B (26200 mg) or tat-

empty (26200 mg). Three hours after the first injection, mice were

decapitated, brains quickly removed on ice, 300-mm coronal

sections were prepared with a vibratome at three levels (bregma

0.90 mm: caudate putamen/nucleus accumbens level; bregma

21.60 mm: dorsal hippocampus level; bregma 22.70 mm:

ventral hippocampus level, see SI Fig. 8A) and placed in a

holding chamber for one hour. Slices were then incubated in

Ringer’s solution supplemented with tat-cyclotraxin-B or tat-empty

(1 mM) in holding chamber saturated with 95% O2, 5% CO2.

After 45 min incubation, BDNF (4 nM) was added for 20 min.

Experiments were stopped by quick removing of the medium on

ice. Slices were homogenized in KIRA-ELISA solubilization

buffer (NaCl 150 mM, Hepes 50 mM, Triton X-100 0.5%,

thimerosal 0.01%, sodium orthovanadate 2 mM, supplemented

with a cocktail of protease inhibitors) and membranes were left

solubilized overnight at 4uC. Protein concentrations were

determined and equal amounts of proteins were loaded in each

well for KIRA-ELISA assays (see above). The following antibodies

combination was used for phosphorylation assays: TrkB capture

with polyclonal anti-TrkB (1 mg/ml); tyrosine phosphorylation

quantification with biotinylated anti-phosphotyrosine (4G10,

0.5 mg/ml) and a streptavidin-peroxydase system (1:4000). The

following combination was used for total TrkB quantification:

TrkB capture with monoclonal anti-TrkB (1:1000); total TrkB

quantification with polyclonal anti-TrkB (1 mg/ml). Absorbance at

450 nm was read after addition of TMB and acidification.

Behavioral testing
Mice were treated as described above before being subjected to

behavioral studies. Predictive estimation for anxiolytic properties

of tat-cyclotraxin-B was assessed using open field and elevated

plus-maze (EPM). Antidepressant-like action of tat-cyclotraxin-B

was assessed with the forced-swim test (FST). Effects of acute

treatment with tat-cyclotraxin-B on spontaneous locomotion,

exploration and reactivity to a novel open field was assessed in

plexiglas activity chambers (Med Associates; 45645631 cm). Mice

were placed into the center of the open field, and activity was

recorded for 30 min. Testing took place under bright ambient

light conditions to increase the anxiety component of the center

areas of the field (defined as the central 15615 cm portion). Mice

subjected to EPM received a double 90-interval i.v. injection of tat-

cyclotraxin-B or saline buffer before being placed on the platform

of the EPM and assessed for 5 min (2665636 cm). The diazepam

control group consisted of saline buffer double-treated mice that

further received a 30-min i.p. injection of diazepam (1 mg/kg).

Mice were assessed for number of entries and amount of time

spent in open versus closed arms. The FST procedure was applied

to treated mice as described by Porsolt et al. (see ref. [60]). Mice

were dropped individually into glass cylinder (height, 25 cm;

diameter, 10 cm) containing 10 cm water height, maintained at

23–25uC. Animals were tested for a total of 6 min. The total time

of swimming, the number of climbing attempts and the time of

immobility was recorded during the last 4 min of the session, after

2 min of habituation. The paroxetine control group consisted of

saline buffer double-treated mice that further received a 30-min

i.p. injection of paroxetine (2 mg/kg). Behaviors were recorded on

videotape and scored blind.

Statistical analysis
Concentration-response and competition curves were obtained

using an iterative least-squares method derived from that of Parker

& Waud (1971). Eadie-Hofstee plotting of the data provided

estimates for BDNF EC50 in presence or not of cyclotraxin-B and

IC50 values of peptides L2-8, cyclotraxin-B and tat-cyclotraxin-B.

KIRA-ELISA competition studies, protein synthesis, eIF4E

phosphorylation, HFS-induced LTP and survival assessments

(MTT and LDH release methods) were analyzed using one-way

ANOVA followed by Newmann-Keuls multiple comparison post-

hoc test. Concentration-response curves and Eadie-Hofstee plots

were analyzed using two-way ANOVA. Significance over time in

locomotor activity studies was given using two-way ANOVA

followed by Bonferroni’s post-hoc test. Cyclotraxin-B reversibility

and 30-min cumulative counts in locomotor activity were analyzed

using Student’s t test. One-way ANOVA followed by post-hoc

Dunnett’s test was used to evaluate statistical significance compare

to saline group in EPM and FST procedures. n represents the

number of independent experiments.

Supporting Information

Data S1 Supplementary information

Found at: doi:10.1371/journal.pone.0009777.s001 (0.04 MB

DOC)

Figure S1 Cells systems for the analysis of recombinant and

neuronal TrkB receptors. (A) Representative fluorescence photo-

micrographs of TetOn-rhTrkB inducible cells following an

overnight incubation with (middle panel) or without (left panel)

doxycycline and confocal TrkB immunofluorescence in mouse

cortical neurons (right panel). Scale bar, 55 mm. (B) Western blot

analysis of TrkB expression in TetOn-rhTrkB cells treated with

increasing concentrations of doxycycline and in cultured mouse

cortical neurons. One band was detected ({similar, tilde operator }

170 kDa, closed arrowhead) for recombinant human TrkB fused

to ECFP whereas two distinct bands (95 and 145 kDa, open

arrowhead) were revealed for neuronal TrkB. Doxycycline dose-

dependently induced the expression of rhTrkB-ECFP in TetOn-

rhTrkB cells and was used at the optimal concentration of

1000 ng/ml in all further experiments. (C) Representative western

blot analysis of total and phosphorylated TrkB in TetOn-rhTrkB

cells and neurons, and total and phosphorylated MAPK and Akt

in cortical neurons, after treatment with or without BDNF (1 nM).

Found at: doi:10.1371/journal.pone.0009777.s002 (2.27 MB TIF)
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Figure S2 Pharmacology of recombinant and neuronal TrkB

receptor using KIRA-ELISA. (A,B) KIRA-ELISA concentration-

response curves for BDNF, NT-3 and NGF in TetOn-rhTrkB cells

and in cultured cortical neurons. Results are expressed as mean 6

s.e.m. of raw absorbance read at 450 nm in six independent

experiments performed in triplicate. (C,D) Inhibition of TrkB

phosphorylation by K252a in both TetOn-rhTrkB cells and

cortical neurons. Cells were treated for 20 min with K252a prior

to treatment with (closed circle) or without (closed square) BDNF

(4 nM). K252a was dissolved in dimethyl sulphoxide (DMSO); we

verified that DMSO did not affect TrkB activity. As values

obtained with 10 mM K252a are not different from those obtained

in non-induced TetOn-rhTrkB cells (with BDNF, open circle;

without BDNF, open square; C), background signal was defined as

the value obtained with 10 mM K252a in KIRA-ELISA studies in

both cell types. Data are mean 6 s.e.m. of four experiments

performed in triplicate and results are expressed as a ratio between

phospho-TrkB and total TrkB in percentage of basal. (E) Western

blot analysis of concentration-response curve for BDNF in TetOn-

rhTrkB cells. Representative blots are shown for phospho-TrkB,

TrkB and b-Tubulin (left) as well as quantitative analysis of band

intensity (right). White and black arrows show the active form of

TrkB. Data are mean 6 s.e.m. of three experiments and results are

expressed as a ratio between phospho-TrkB and total TrkB in

percentage of basal.

Found at: doi:10.1371/journal.pone.0009777.s003 (1.05 MB

TIF)

Figure S3 Cyclotraxin-B does not compete with [125I]-BDNF

binding to recombinant nor to neuronal TrkB receptors. Effect of

unlabeled BDNF (closed circle), NT-3 (closed triangle), NGF

(closed square), peptide L2-8 (open triangle) and cyclotraxin-B

(open circle) on [125I]-BDNF binding to recombinant and

neuronal TrkB receptors. Adherent cells were pre-incubated

60 min at 4uC with increasing concentrations of unlabeled BDNF,

NT-3, NGF, peptide L2-8 and cyclotraxin-B before an additional

2 hours incubation at 4uC with 200 pM [125I]-BDNF. Each point

represents the results from two independent experiments per-

formed in triplicate.

Found at: doi:10.1371/journal.pone.0009777.s004 (0.25 MB

TIF)

Figure S4 Basal activity of TrkB receptors in absence of BDNF.

(A) Absence of endogenous BDNF in cultured cortical neurons.

Neuronal cells were incubated 24 hours with a neutralizing anti-

BDNF antibody before treatment with cyclotraxin-B. KIRA-

ELISA analysis revealed no significant difference in cyclotraxin-B

inhibition with or without pretreatment with anti-BDNF. *P,0.01

compared to their respective basal condition. Data are mean 6

s.e.m. (triplicates, n = 3). p.i., preincubation. (B) BDNF-indepen-

dent TrkB activity depends on TrkB density in TetOn-rhTrkB

cells. Cells were incubated overnight with increasing concentra-

tions of doxycycline. Total and phospho-TrkB were then

evaluated using fluorescence quantification and KIRA-ELISA,

respectively.

Found at: doi:10.1371/journal.pone.0009777.s005 (0.26 MB TIF)

Figure S5 BDNF-induced neuronal necrosis is prevented by

cyclotraxin-B. Cyclotraxin-B prevents BDNF-induced neurons

death through a NMDA-independent pathway. Cortical neurons

were treated with cyclotraxin-B (200 nM), BDNF (4 nM), NMDA

(200 mM) or MK-801 (1 mM), as indicated. Data are mean 6

s.e.m. (octuples, n = 6) expressed in percentage of control.

***P,0.001 compared to control; $$$P,0.001, compared to

BDNF; n.s, non significant.

Found at: doi:10.1371/journal.pone.0009777.s006 (0.30 MB

TIF)

Figure S6 Cyclotraxin-B inhibits eIF4E phosphorylation in

cortical neurons. Cortical neurons were exposed to cyclotraxin-

B, K252a and BDNF, as indicated. Phosphorylation of eIF4E was

quantified by immunoblots using anti-phospho and anti-total-

eIF4E antibodies. A representative western-blot is shown here.

Found at: doi:10.1371/journal.pone.0009777.s007 (0.33 MB TIF)

Figure S7 Tat-cyclotraxin-B inhibits both recombinant and

neuronal TrkB receptors similarly to cyclotraxin-B. Characteriza-

tion of TrkB inhibition by tat-cyclotraxin-B using KIRA-ELISA

assays in TetOn-rhTrkB cells and in cortical neurons. Increasing

concentrations of tat-empty and tat-cyclotraxin-B were added to

the cells for 30 min prior to treatment with or without 4 nM

BDNF for 20 min (tat-cyclotraxin-B, closed circle; tat-cyclotraxin-

B + BDNF, open circle; tat-empty, closed triangle; tat-empty +
BDNF, open triangle). Data are mean 6 s.e.m. (triplicates, n = 4,

TetOn-rhTrkB; n = 2, cortical neurons).

Found at: doi:10.1371/journal.pone.0009777.s008 (0.24 MB

TIF)

Figure S8 Protocol for in vivo KIRA-ELISA analysis after

intravenous injection. (A) Adult mice received two i.v. injections

of saline buffer, tat-empty or tat-cyclotraxin-B (1). Brains were then

sliced at three levels (bregma 0.90 mm: caudate putamen/nucleus

accumbens level; bregma 21.60 mm: dorsal hippocampus level;

bregma 22.70 mm: ventral hippocampus level) and each half-slice

was treated with BDNF (4 nM) and either tat-empty or tat-

cyclotraxin-B (1 mM) (2). Slices were then solubilized and subjected

to KIRA-ELISA analyzes (3). (B) Western blot analysis of tat-

cyclotraxin-B effect on TrkB activation in vivo. Concentration-

response curve for BDNF in TetOn-rhTrkB cells. Representative

western blots of brain phospho-TrkB, total-TrkB and b-Tubulin

from mice injected with either tat-empty or tat-cyclotraxin-B are

shown (up). White and black arrows show the active form of TrkB.

Bands intensity have been quantified (down) Data are mean 6

s.e.m. (duplicates, n = 6 mice/group) expressed in percentage of

control. ***P,0.001 compared to control.

Found at: doi:10.1371/journal.pone.0009777.s009 (0.95 MB TIF)
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