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Abstract

The study of cell aggregation in vitro has a tremendous importance these days. In cancer

biology, aggregates and spheroids serve as model systems and are considered as pseudo-

tumors that are more realistic than 2D cell cultures. Recently, in the context of brain tumors

(gliomas), we developed a new poly(ethylene glycol) (PEG)-based hydrogel, with adhesive

properties that can be controlled by the addition of poly(L-lysine) (PLL), and a stiffness close

to the brain’s. This substrate allows the motion of individual cells and the formation of cell

aggregates (within one day), and we showed that on a non-adhesive substrate (PEG without

PLL is inert for cells), the aggregates are bigger and less numerous than on an adhesive

substrate (with PLL). In this article, we present new experimental results on the follow-up of

the formation of aggregates on our hydrogels, from the early stages (individual cells) to the

late stages (aggregate compaction), in order to compare, for two cell lines (F98 and U87),

the aggregation process on the adhesive and non-adhesive substrates. We first show that a

spaceless model of perikinetic aggregation can reproduce the experimental evolution of the

number of aggregates, but not of the mean area of the aggregates. We thus develop a mini-

mal off-lattice agent-based model, with a few simple rules reproducing the main processes

that are at stack during aggregation. Our spatial model can reproduce very well the experi-

mental temporal evolution of both the number of aggregates and their mean area, on adhe-

sive and non-adhesive soft gels and for the two different cell lines. From the fit of the

experimental data, we were able to infer the quantitative values of the speed of motion of

each cell line, its rate of proliferation in aggregates and its ability to organize in 3D. We also

found qualitative differences between the two cell lines regarding the ability of aggregates to

compact. These parameters could be inferred for any cell line, and correlated with clinical

properties such as aggressiveness and invasiveness.

1 Introduction

The formation of stable aggregates is very common in nature. For example, long-range attrac-

tion through chemotaxis can lead to aggregation of Dictyostelium cells [1] or eukaryotic cells
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during development to form organs and blood vessels [2]). But the formation of aggregates

can also arise from Brownian motion and contact adhesion. Numerous examples can be cited,

from inert particles such as colloids [3] to living cells, but also in ecology where animals like

mussels produce stable patterns by clustering [4]. It has been shown that the living entities can,

through this process, optimize at the same time protection against predation and access to

food. In cancer, tumor cells circulating in the blood stream form aggregates that will become a

metastatic tumor when settling in an organ [5, 6]. The merging of metastatic lumps, forming a

larger aggregate, can also occur [7, 8].

It is now recognized that cells cultured in 2D at the bottom of a plastic Petri dish do not

behave as they would do in their natural environment. For example, in vitro, an organization

in 3D-clusters makes the aggregates more resistant to treatments compared to the same cells

plated in 2D, in a Petri dish [9]. Several factors can explain these different behaviors [10]: first,

the fact that the dimensionality is not the same (2D versus 3D) is important; second, cell-plas-

tic interactions are often very strong and prevail over cell-cell interactions; finally, the plastic

dish has a very high stiffness, often non realistic (for brain cells for example).

Therefore, new approaches that allow cells to grow in 3D aggregates in vitro are being pur-

sued. Aggregates and spheroids in vitro, formed on non-adhesive substrates, are considered as

pseudo-tumors that can be used to study tumor development in more realistic conditions.

Recently, in the context of brain tumors (gliomas), we developed a new PEG-based hydrogel

that allows the formation of a tumor-like structure, which can be used to study the effect of

drugs in conditions more realistic than those of a 2D Petri dish. In some of those gels, we

grafted poly(L-lysine) (PLL), because of its ability to promote unspecific cell adhesion via elec-

trostatic interactions between the polyanionic cell surfaces and the polycationic layer of

adsorbed polylysine. Addition of PLL in the gels allows us to modulated cell-substrate adhe-

sion. The stiffness of the gel can also be tuned, in order to mimic the stiffness of the natural

matrix (in our case, the brain) corresponding to a specific cell line. In [9], we chose to study

the behavior of two glioblastoma (which is the most aggressive type of gliomas) cell lines. Glio-

blastomas are currently non-curable and the development of an in vitro system that could

mimic the development of these tumors could be used in order to test new drugs or radiother-

apeutic strategies. Compared to other tissues, the stiffness of the brain is low (lower than 1 kPa

[11]), so we chose to design soft gels. We observed a significant difference in cell growth

between PLL-containing (adhesive substrate) and PLL-free soft PEG hydrogels (non-adhesive

substrate), showing the role of non-specific adhesion factors such as PLL in the migration, pro-

liferation and aggregation in two glioblastoma cell line cultures. More precisely, we showed

that on a non-adhesive substrate, the aggregates are larger and less numerous than on an adhe-

sive substrate.

The formation of aggregates has been studied theoretically with a perikinetic equation, first

in the context of colloid aggregation [12–15]. In [16], the same concepts are used to study and

fit the evolution of the number of cell aggregates on a non adherent substrate. The evolution of

the mean projected aggregate area is more difficult to model, especially when aggregates are

composed of cells that can deform, modulate their cell-cell adhesion and reorganize in 3D. For

example, it has been observed that after their formation, cell aggregates often go through a

compaction phase [10, 17, 18] that reduces their projected area.

Other theoretical approaches consider the formation of aggregates under the point of view

of phase separation: like two immiscible liquids, when mixed in a liquid medium cells move

and seek a lower energy state through adhesion with other cells. The evolution of a system

from a state where the concentration of particles is uniform to a final state where patterns

appear is a spontaneous phase transition driven by motion of particules, the latter being either

passive by diffusion (for example, in colloids), or active (as for mussels or cells) and adhesion.
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This phase separation corresponding to the formation of aggregates has been described by

mean-field models, based on the Cahn-Hilliard [19, 20]. With chemotaxis, Keller-Segel equa-

tions can also be used to describe pattern formation [21]. In development biology, discrete

approaches, in particular with cellular Potts models [22] have been used to model the forma-

tion of patterns or the segregation of two cell types in aggregates.

However, to our knowledge, a model that describes the formation of aggregates from the

early stages of a population of individual migrating cells to their aggregation and the late aggre-

gate compaction, does not exist. For instance, in [16], the decrease of the mean aggregate area

is modeled with an exponential function, but there is no direct connection with processes at

the cellular level. In order to be able to describe the individual cells, an agent-based model

should be chosen. One advantage of agent-based models is that one can easily implement the

local rules of cell-cell interaction ([23–26], for a good review, see [27]).

In [9], we presented the snapshots of already formed aggregates. Here, we add new experi-

mental results by following the whole process, from the early stage where the cell population is

composed only of individual cells, to their aggregation, and later to the compaction of the

aggregates. We confirm the differential migration and aggregation of cells on the substrates

with different adhesivity and for two different cell lines.

We combine these experimental results with a theoretical study based on two models: first,

we show that a spaceless model of perikinetic aggregation can reproduce the experimental evo-

lution of the number of aggregates. Second, we developed a minimal off-lattice agent-based

model, whose rules are defined in order to reproduce the important phenomena that drive the

behavior of cell assemblies: cell and aggregate motion, cell-cell adhesion, cell proliferation and

aggregate compaction. We show that this model reproduces very well the experimental tempo-

ral evolution of both the number of aggregates and their area, on adhesive and non-adhesive

soft gels, for the two cell lines and that it gives access to quantitative values of three parameters.

2 Materials and methods

2.1 Preparation of the hydrogels and glioma cell lines

In [9], we showed that the PEG concentration of our artificial substrate optimal for the survival

and growth of the two glioma cell lines is around 3% PEG. This concentration corresponds to

an elastic modulus around 300 Pa, close to the value measured for brain tissue [28]. We use

this concentration in all the following experiments. All the experimental methods can be

found in [9]. Briefly: poly(L-lysine) hydrobromide (PLL-HBr 30,000 Da, Sigma-Aldrich, Saint-

Quentin Fallavier, France) was first functionalized with an acrylate residue. Hydrogels were

prepared from 3% (w/v) PEG-DA 6 kDa precursor (Sigma-Aldrich), dissolved in DPBS with

0.01% (w/v) of DMPA solubilized in VP. Precursor solutions were photopolymerized under

UV (UV-LED LC-L1; Hamamatsu, 2 W/cm2, λ = 365 nm) for 40 s in homemade cylindrical

dishes. Photopolymerized hydrogels were then incubated during 1 day in a high volume of

DMEM for the hydrogel structure to be hydrated and thermodynamically stable before cell

seeding. After this day of hydration and two rinsings with fresh medium, cells were seeded

upon hydrogels at 2 105 cells/well (or 106 for the high-density experiments). To avoid cell

medium acidification, the cell culture medium was replaced by fresh medium every day.

The two glioma cell lines, F98 from rat model and U87-MG from human glioma, were pro-

vided by ATCC (CRL 2397 and HTB-14, respectively). Cells were maintained in Dulbecco’s

Modified Eagle’s Medium (DMEM; Life Technologies, Courtabœuf, France) added with phe-

nol red as pH indicator, supplemented with 4.5 g/L of D-glucose and pyruvate, 10% (v/v) fetal

bovine serum (Life Technologies), and 1% (v/v) of penicillin and streptomycin antibiotics

(Pen-Strep, Life Technologies). Cells were disposed into sterile culture flasks with anti-fungal
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filters to limit contamination and maintained in culture at 37˚C, under a humidified atmo-

sphere of 95% relative humidity with 5%CO2. Cells were replicated when they attained

80%–90% cell confluence.

In what follows, we call “non adhesive gels” gels composed of PEG only and “adhesive gels”

gels containing PEG and PLL.

2.2 Microscopy and image processing

Microscopy image acquisition was performed using a 10x Nikon water-immersion objective

placed on an Eclipse 80i Nikon microscope (Scop Pro, Marolles-en-Hurepoix, France) which

was equipped with Differential Interference Contrast (DIC) device. The sample, the stage and

the objective were completely enclosed in a chamber that allows the fine control of tempera-

ture, humidity and CO2 pressure on the living sample (Box and Cube system by Life Imaging

Services, Basel, Switzerland). Cells were deposited on the gel surface and rapidly placed under

the microscope. We performed time-lapse imaging (1 picture every minute) to follow the for-

mation of the aggregates. Micrographs series were obtained using a Zyla 5.5 MPX Andor

SCMOS cooled camera (Scop Pro, France) and MetaMorph acquisition software (Molecular

Devices, Sunnyvale, CA).

Image processing (from experiments and simulations) was performed with the Fiji soft-

ware. Customized Fiji macros were developed to detect cells and aggregates in experiments

and simulations. We used Python for further analysis of the data. More details are available in

the S1 Appendix.

2.3 The spaceless model

The number of aggregates during a perikinetic aggregation process can be predicted by the

model of Smoluchowski [12]:

dNk

dt
ðtÞ ¼

1

2

Xk� 1

i¼1

Ki;k� iNiðtÞNk� iðtÞ �
X1

i¼1

KikNiðtÞNkðtÞ ð1Þ

where Nk is the number of aggregates of size k, (Kij) is the kernel aggregation rate, where the

element Kij is the aggregation rate between clusters of size i and clusters of size j. We tried two

different scenarii for the aggregation process. In the first scenario, all the aggregates move and

interact with other aggregates with the same constant rate K. In this case, the model is solvable

analytically and the evolution of the total number of aggregates at time t, N(t), is described by

the equation: dN
dt ðtÞ ¼ � KNðtÞ

2
, and thus N(t) = N0/(1 + K N0 t). This model was used in [16]

to fit the evolution of aggregate number on a non-adhesive substrate.

In the second scenario, only individual cells move and can interact with other individual

cells or with aggregates (K1j = Kj1 = K1i = Ki1 = K1 8i, j and Kij = 0 if i> 1 and j> 1). The total

number of aggregates, N(t) is given by the following equations, that we solved numerically:

dN
dt
¼ K1N1

1

2
N1 � N

� �

ð2Þ

dN1

dt
¼ � K1c1N ð3Þ

dN2

dt
¼ K1 �

1

2
N1

2 � N1N2

� �

ð4Þ
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dNi

dt
¼ K1N1ðNi� 1 � NiÞ for i � 3: ð5Þ

where N is the total number of aggregates.

2.4 The spatial model

We define an agent-based model that involves a collection of agents evolving in a continuous

2D surface. Each agent is a cell, modeled by a disk. The disk radius is the same for all cells in a

given simulation and its value stays constant during the simulation. The simulation space is

lattice-free, i.e. the position of each cell is an ordered pair of real numbers corresponding to

the coordinates of the center of the sphere.

In experiments, the field of view is a rectangle of size 1280 per 1080 pixels (each pixel is a

square of side length 0.658 μm). In the simulations, we choose a square as 2D surface by sim-

plicity. Since the experimental field of view represents a small part of the whole surface of the

substrate, it is devoided of boundary effects; therefore, we choose periodic boundary condi-

tions in the simulations (walls or other closed boundaries would induce strong artefacts). The

unit of length in simulations is set so that the side of the square has the same length as the

length of the region observed in experiments (842.24 μm).

At each iteration, all the cells are updated, one by one and in a random order in order to

avoid undesirable correlations. At each iteration, each cell participates in the following pro-

cesses: motion, both individual and collective, influenced by cell-cell adhesion and aggregate

compaction, and proliferation. One iteration corresponds to one minute.

For the sake of clarity, in the following, we call “individual cells” cells that are not part of an

aggregate (individual cells have no neighbors). An aggregate is thus an assembly of at least two

cells.

2.5 Rules of the spatial model

2.5.1 Cell motion. At each iteration, individual cells choose a direction uniformly at ran-

dom and move by a step a0 in that direction. For a given simulation, this step length is constant

during time and is the same for all the cells. Once cells are part of an aggregate, they continue

to move, and their motion is the composition of two motions, the motion of each cell inside

the aggregate and the motion of the whole aggregate.

The diffusion coefficient of a spherical particle of size r in a viscous medium is proportional

to 1/r; thus, for a 2D aggregate comprising N cells, it is proportional to 1=
ffiffiffiffi
N
p

. We keep the

same dependency here: the motion of the whole aggregate is assumed to be random and the

step of this motion is chosen so as to decrease as 1=
ffiffiffiffi
N
p

.

Regarding the motion of each cells inside the aggregate, the length of the step is chosen as a

decreasing function of the number of neighbors n: a = a0/(1 + n2). The choice of this function

is purely phenomenological. Another choice could have been that of [29] where the probability

of migration decreases with the number of neighbors, being proportional to (1 − q)n, where

0< q< 1 is the adhesion parameter and n is the number of neighbors. It turns out that the

precise choice is irrelevent, since the results do not depend on the exact dependence of the

step length on the number of neighbors (for reasonable choices of the corresponding

expression).

In the non-adhesive case, individual cells are sometimes subject to a hydrodynamic flux

(due to gel local heterogeneity) that can bias the cell motion: when the flux is “on” in the
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simulation, the direction of the motion in the simulation is limited to a half plane (defined by

the direction of the flux), both for individual cells and aggregates.

2.5.2 Superimposition. In order to model the fact that cells are deformable and can be

organized in three dimensions in aggregates, cells are allowed to partially superimpose in the

model. The maximum superimposition is quantified by a parameter αmax that is defined as the

ratio of the overlapping length (i.e. the difference between the diameter of a cell and the mini-

mum possible distance between two cell centers) to the diameter of a cell. If αmax is close to 1,

two cells can superimpose almost completely, whereas if αmax is close to 0, the cells stay well-

separated. The value of this parameter is constant during a given simulation but can vary from

one simulation to the other, in order to model different cell lines. This parameter is similar to

the stacking index used in [13] to indicate the formation of aggregates with some vertical

stacking, forming multilayered clumps.

2.5.3 Cell-cell adhesion. If during its motion, the position of a moving cell would break

the superimposition rule, the motion is prematurely stopped and the two cells adhere to

each other. There is no break-up mechanism and so cells cannot detach from their neigh-

bors (except if its step leads it to a position where it has at least the same number of neigh-

bors). Therefore, if the cell chooses a direction of motion that would lead to a smaller

number of neighbors after performing the step, this step is canceled and the cell does not

move.

2.5.4 Compaction. We do not have precise details on what happens inside aggregates dur-

ing compaction, so we chose to model the effect of cell compaction and 3D organization with a

simple yet efficient empirical rule: we bias the individual cell motion in an aggregate towards

the center of mass of the aggregate. Since this reorganization is much more visible for larger

aggregates, we decided to modify accordingly the cell motion. When the aggregate is very

small, its cells may move towards any direction. However, when the aggregate becomes more

massive, the cell motion is biased towards the center of mass of the ensemble. At the limit of a

very massive aggregate, the motion is possible only in a ± 90˚ sector around the line joining

the cell with the center of mass. In practice, at each iteration and for each cell, a random angle

for the cell motion is drawn in the angular sector ±90(1 + e−n/40) (in ˚) with n being the num-

ber of cells in the aggregate. The overall effect does not depend crucially on the precise form of

the function. This bias in the direction is similar to the one in [30] where the direction choice

is biased towards the direction with the higher number of cells within a distance correspond-

ing to several cell diameters.

2.5.5 Proliferation. We model the cell division by the following process: after the cell has

moved it has a certain probability to try to proliferate. That probability per iteration is later on

referred as “proliferation rate”. If the cell division process is engaged, a random position

around the dividing cell is chosen. If that position is compatible with the superimposition rule

(meaning that the distance between the daughter cell and all the other cells should be larger

than the minimum distance allowed by the superimposition coefficient), the daughter cell is

created. If not, the division process is aborted.

2.6 Typical workflow

Simulations yield the positions of the cells, that are used to produce images representing the

same observed area as in experiments. The size of individual cells in simulations is chosen

equal to the mean size of cells in the experiments, so that the simulation results can be analyzed

the same way as the experimental results, and we can then directly compare the dynamics of

the mean area and of the numbers of aggregates in the two approaches. More details are avail-

able in the S1 Appendix.
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3 Results

3.1 Experimental observations

On Fig 1 top and on the different movies of aggregation, we observed several phases in the

aggregation process (S1 Video for F98 and S2 Video for U87).

The first phase is the random motion of individual cells. Cells remain round, do not polar-

ize, and do not adhere strongly to the substrate. However, they move, extend small filopodia,

and perform a random motion (see S1 and S2 Videos). After analyzing the motion of 25 cells

(F98) during one hour, we plotted the mean square distance covered versus time and we

deduced that the cells have a diffusion coefficient of 1.6 ± 0.58μm2 min−1 on the adhesive sub-

strate (see S3 Fig), close to the value found in [31].

The second phase is the formation of aggregates: during this random motion, individual

cells encounter other cells or already formed aggregates and new aggregates begin to form.

When this happens, the individual cells stick to the other cells or to the aggregates; becoming

unstuck is so rare that we neglected this phenomenon.

Fig 1. Aggregation process. Images at different times, during the process of aggregation, for the F98 cell line (a) and

the U87 cell line (b). The scale bars represent 20 μm.

https://doi.org/10.1371/journal.pone.0222371.g001
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The third phase corresponds to the dynamics of formed aggregates: they move as a whole,

with small aggregates exhibiting a global motion larger than bigger ones. Moreover, the inside

of the aggregates is also dynamic: the cells inside move and reorganize constantly (see S1 and

S2 Videos). During the aggregation phase, which lasts around 2 hours, a few events of prolifer-

ation are visible among individual cells. This proliferation continues within aggregates,

increasing their size continuously [9].

The last phase corresponds to the compaction of the already formed aggregates: a few hours

after the formation of aggregates, they compact and reorganize into a three-dimensional

shape. The projection of this shape in 2D is close to a disk. Experimentally, compaction occurs

only for the F98 cell line. For the U87 cell line, this aggregate compaction does not occur and

aggregates stay in a 2D configuration, see Fig 1.

We measured, in the experimental field of view, the mean area of the aggregates and their

number as a function of time, for adhesive and non-adhesive substrates, for the F98 and the

U87 cell lines. We define the normalized number of aggregates as the raw number of aggre-

gates divided by the number of individual cells at initial time. In Fig 2, the normalized number

of aggregates (top) and the mean area of aggregates (bottom) are represented as a function of

time, for non-adhesive (blue curves) and adhesive (brown curves) substrates, for the F98 cell

line. The number of aggregates (respectively mean aggregate area) decreases (resp. increases)

faster in the case of the non-adhesive substrate.

3.2 Comparison between experimental data and the spaceless model

We compared our experimental results with the theoretical model for aggregation developed

by Smoluchowski [12]. In the case of a non-adhesive substrate, we found that the best fit was

obtained with a constant aggregation kernel Kij = K. From the fitting procedure, we found

K = 2.6 10−13 m2s−1, see Fig 1, top (the dashed blue curve is obviously a better fit of the experi-

mental data than the dotted blue curve).

In the case of an adhesive substrate, we found that the best fit is obtained with the solution

of the equations corresponding to the scenario where only individual cells can move and inter-

act with the other aggregates. In this case, we found K = 6.4 10−14 m2s−1 = 3,8 μm2min−1, see

Fig 2, top (the dotted brown curve is obviously a better fit of the experimental data than the

dashed brown curve). This value is of the same order of magnitude as the cell’s diffusion coeffi-

cient on adhesive substrate calculated above.

3.3 Comparison between experimental data and the spatial model

We model two cell lines: F98 cells (13.2 μm mean diameter) and U87 cells (21.1 μm mean

diameter).

3.3.1 Qualitative comparison. The rules of our model (sketched in Fig 3(a) have been

defined in order to mimic what happens in the experiments: therefore, in the model, cells can

move, adhere to other cells, form aggregates that can compact subsequently, and proliferate.

In S1 Video, it is clear that cells move inside an aggregate, and since aggregates also have a

motion on their own, the motion of each cell should be a composition of the two motions, see

Fig 3(a), left.

It is well known that aggregation limited by diffusion only, without any surface tension,

leads to clusters with fractal shape [14, 15, 32]. In our case the number of cells is not large

enough to lead to fractals, but without any rule of compaction, especially in simulations with a

high initial cell density, aggregates have the shape of long and branched thick filaments and do

not organize themselves into more compact shapes. But in experiments at high cell densities,

after about 12 hours after the beginning of the aggregation process, the aggregates compact
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and become more circular (in 2D) (see Fig 4(a), middle). The effect of the compaction rule in

the case of a high initial cell density is visible on Fig 4 and leads to aggregates that have a com-

pact shape, close to the experiments.

The qualitative comparison of the experimental and the simulation results can be per-

formed from Fig 5, which shows side by side an experiment and a typical simulation result,

obtained with our model.

3.4 Quantitative comparison between experimental data and the results of

the spatial model

The experimental results consist of 9 24-hour experiments: 6 experiments for the F98 cell line

(3 in the adhesive and 3 in the non-adhesive condition), and 3 experiments for the U87 cell

Fig 2. Temporal evolution of the number and area of aggregates. Normalized number of aggregates (top) and mean

aggregate area (bottom) as a function of time, for the F98 cell line, in the case of adhesive substrate (brown triangles) and

non-adhesive substrate (blue circles). The mean value is calculated from three experiments in each condition, error bars

represent the standard deviation. The brown and the cyan dotted lines correspond to the best fit of the experimental data

with the numerical solution of the spaceless model based on Smoluchowski equations in the case where only individual

cells move. The brown and the cyan dashed lines correspond to the best fit of the experimental data with numerical

solution of the spaceless model based on Smoluchowski equations in the cas where the aggregation kernel is a constant.

https://doi.org/10.1371/journal.pone.0222371.g002
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line (one in the adhesive and two in the non-adhesive condition). We decided to fit each exper-

imental curve (not only the mean), so the parameters were independently set for each

experiment.

3.4.1 Choice of parameters. The number of initial cells N0 was deduced from the first

image taken in each 24-hour experiment and was used as the initial condition of the corre-

sponding simulation, a uniformly random distribution of N0 individual cells. The superimpo-

sition parameter was chosen constant for all the experiments with the same cell line. There is a

net qualitative difference between the behavior of the two cell lines: the aggregates of F98 cells

compact and clearly organize in three dimensions, whereas the U87 cell aggregates keep an

almost two-dimensional organization. So the superimposition parameter αmax should be larger

for the F98 than for the U87 cells, see Figs 1 and 3. We can clearly detect when the parameter is

too small, because then, the mean aggregate area in the simulations is too large, even for very

small aggregates at the beginning of the experiment and even if the evolution of the number of

aggregates is correct, see the red stars with αmax = 0.2 in S1(c) Fig. It is more difficult to detect

Fig 3. Rules of the spatial model. (a) Left: cell motion (black arrow) has two components, the first one (cyan arrow) is common to all cells forming an

aggregate and is decreasing as the aggregate is growing, the second one (red arrow) is the individual motion of each cell, whose length becomes smaller

as the number of neighbors increases. Center: the rule for the aggregate compaction stipulates that the bigger the aggregate the more biased towards the

center of mass of the aggregate (the black circle) the individual cells’ motion is. Right: proliferation; in the upper sketch, the foreseen daughter cell (the

green cell with a dashed border) is really created, whereas in the lower sketch, it is too close to other cells so the daughter cell is not created. (b) Top:

Images of two-cell aggregates, for the F98 cell line (left) and U87 cell line (right), and the values of the corresponding superimposition coefficient α.

Bottom: schematic representations of the two values αmax that were chosen for the F98 cells (αmax = 0.7) and for the U87 cells (αmax = 0.2). The scale

bars represent 10 μm.

https://doi.org/10.1371/journal.pone.0222371.g003
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when the parameter is too large: the difference between the cyan stars with αmax = 0.95 and the

green stars with αmax = 0.7 in S1(c) Fig is not obvious. Suppose that αmax = 1, all the cells in an

aggregate could in theory superimpose and the area of any aggregate could be reduced to the

area of a single cell. But since the motion step length of cells diminishes with the number of

neighbors in aggregates, this process takes a lot of time, and it is not possible to see the com-

plete superimposition of all the cells in an aggregate, during the time of experiments. We thus

decided to infer the value of αmax from images of superimposition of two cells, see Fig 3(b).

From these images, it is clear that F98 cells allow a minimal distance between the cell centers

smaller than the U87 cells, and we chose the value of αmax = 0.7 for the F98 cell line and αmax =

0.2 for the U87 cell line.

Two parameters still need to be set: the step length of individual cells and the proliferation

rate. We determined the step length of individual cells so that the decrease of the number of

aggregates corresponds to experimental data: if cells move too slowly, this number decreases

Fig 4. Compaction at high cell density. (a) experiments, (b) simulations. Top: t = 0; middle: t = 6 h; bottom: t = 12 h.

The black scale bar on the bottom of the image at the top, left, represents 50 μm. Cell color in simulations is a function

of the number of neighbors (the scale is on the right).

https://doi.org/10.1371/journal.pone.0222371.g004
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also too slowly compared to experimental data (see Fig 6, cyan stars). If the step length is too

large, the number of aggregates decreases too fast compared to experimental data (see Fig 6,

red stars). The green stars correspond to the best value of the step.

The proliferation rate was chosen so that the mean area in simulations would fit the corre-

sponding experiment at large times (the increase in the aggregate area after formation is only

due to proliferation), see S1(b) Fig. The value κ = 10−4 min−1 (cyan stars) is too small, the value

κ = 1.4 10−3 min−1 is too large and the value κ = 7 10−4 min−1 (green stars) is correct. We

added the bias of the flux if visible in the experiments. Without any flux, aggregates still move

but their motion is very small and the distance between them is too large to allow any collision.

When the flux on individual as well as on aggregates is on, that corresponds to the green stars

in S1(a) Fig, collisions are possible between large aggregates and the number of aggregates

decreases even at large times.

We managed to reproduce the dynamics of both the mean area and the number of aggre-

gates of each experiment and for both cell lines used. Results are shown in Fig 7 for the F98 cell

line and in S2 Fig for the U87 cell line and for both adhesion conditions.

Fig 5. Qualitative comparison between experiments and simulations. (a) experiment and (b) corresponding simulation; top: initial states of an

experiment and a simulation respectively; bottom: final state of the same experiment and simulation (12h later, or 720 iterations with our time

calibration). The black scale bar on the bottom of the top left image, represents 50 μm. Cell color in simulations is a function of the number of

neighbors (the scale is on the right).

https://doi.org/10.1371/journal.pone.0222371.g005
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4 Discussion

We present here a combination of experimental and simulation results on the behavior of a

cell population on soft hydrogels.

On these soft gels, cells stay round, move and stick to each other to create aggregates, within

one day (this is much shorter than the formation of glioma cell aggregates on an adherent

rigid substrate such as plastic, where the time scale is one month [33]). The shape and the size

of these aggregates depend on the nature of the gels (adhesive or not adhesive), but also on the

cell line: U87 aggregates are less cohesive than F98 aggregates, and for both cell lines, aggre-

gates are smaller and more numerous on adhesive substrate (with PLL).

First, we compared the experimental data with the solutions of perikinetic equations. We

found that the experimental non-adhesive and adhesive cases correspond to two different sce-

narii: in the non-adhesive dynamics of aggregation, a constant kernel leads to a better

Fig 6. Parameter choice: Step length. Experimental data points (one of the experiment on a non-adhesive substrate)

are represented by green triangles (F98 cell line). Simulations: cyan stars, a0 = 1 pixel length; green stars, a0 = 6 pixel

length; red stars, a0 = 14 pixel length. All other parameters are fixed: κ = 7 10−4 min−1, αmax = 0.7, N0 = 400, flux is on.

The mean aggregate area evolution over time (bottom part) is using the same color scheme.

https://doi.org/10.1371/journal.pone.0222371.g006
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agreement with the experimental data, whereas the adhesive case is well fitted by a kernel that

is non-zero only for particles of size 1. We found the kernel value K = 2.6 10−13 m2s−1 in the

non-adhesive case, and a four-time smaller value of K1 in the adhesive case K1 = 6.4 10−14

m2s−1. These values are consistent with other studies [31], where only the case of a constant

Fig 7. Experiments and simulations for the F98 cell line. Brown curves are for the adhesive case, blue/green ones are for the non-adhesive one.

Triangles are for the experiment with adhesive substrate and circles are the non-adhesive substrate, while stars are for simulations. The upper part gives

the evolution during time of the number of aggregates while the bottom part gives the mean area of aggregates over time. Simulation parameters: a0 =

3.7 pixel length, N0 = 400, flux is on (cyan); a0 = 6 pixel length, N0 = 784, flux is on (blue); a0 = 4.4 pixel length, N0 = 784, flux is on (green); a0 = 2 pixel

length, N0 = 324, flux is off (orange); a0 = 1 pixel length, N0 = 781, flux is off (pink); a0 = 1.6 pixel length, N0 = 484, flux is off (brown). The parameters

αmax and κ are common to all the simulations: αmax = 0.7, κ = 7 10−4 min−1. Error bars represent the standard deviation over 20 simulations.

https://doi.org/10.1371/journal.pone.0222371.g007
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kernel is compared to experimental data. The agreement with the theoretical spaceless model

is fair, but the model describes only the evolution of the number of aggregates as a function of

time, whereas in our experiments, the area was also recorded.

We thus developed an agent-based model with simple rules that could reproduce as well the

first stages of the experiments, when cells still move as individual cells, as the late stages where

cells are in aggregates, and that could reproduce the experimental evolution of both the num-

ber and the mean area of the aggregates. To model all these stages, without describing precisely

the shape of the cells, we estimated that a cellular Potts model was less adapted to our problem,

compared to a classical agent-based cellular automaton. We introduced four rules: the motion

rule (for individual cells, for cells inside an aggregate and for aggregates, in the presence or not

of a flux), the superimposition rule, the proliferation rule and the compaction rule.

The superimposition and the compaction rules may need further justifications: Since the

precise 3D organization in aggregates concerns only the F98 cell line, and to follow the

approach of [13] where a stacking index is defined, we decided to keep our model in 2D and

introduce an effective parameter of superimposition, that describes the strength of cell-cell

adhesion and their ability to organize in 3D. This approach has the advantage of simplicity,

since only one parameter can resume the differences between the behavior of the two cell lines.

The compaction that arises after the formation of cellular aggregates is a collective effect of

a cell population. In experiments, compaction of aggregates is due to individual cells that

deform and flatten their membranes against each other, increasing cell–cell contact and mini-

mizing intercellular spaces. This process is similar to the embryo’s compaction, see [34]. Com-

paction may also be due to the possible formation of supracellular stress cables, at the scale of

the whole aggregate [35]. This made us define a compaction rule that is non-local: the cells’

motion is biased towards the center of their aggregate and this bias increases with the size of

the aggregate. Actually, the limitation of the motion is not severe: the maximum bias (in very

big aggregates) restricts only the cell motion to a half plane towards the center of the aggregate.

With this agent-based model, in 2D and with simple rules, we were able to reproduce the

behavior of two cell lines, namely the evolution of the number of aggregates and of their pro-

jected area, on two different substrates, one adhesive (with PLL) and one not (without PLL).

More importantly, by fitting the number of aggregates and the mean area of aggregates as a

function of time, we were able to infer quantitatively several properties of the two cells lines,

on the two substrates: their speed of motion, their proliferation rate, their superimposition

coefficient and the capacity of aggregates to compact.

First, our model allowed us to conclude that the effect of the presence of PLL in the gel

(more adhesive substrate), for both cell lines, could be modeled as a simple slowing effect on

cells. On non-adhesive hydrogels, there is often a flux (probably due to inhomogeneities of the

gels) which gives to the cells and aggregates a motion bias (direction in only a half plane), that

was taken into account in the model. We found that in the cellular automaton, in order to

model the adhesive substrate, we had to decrease the step and remove the flux (i.e. remove the

restriction of the motion to a half plane). For F98 cells, the mean speed motion of F98 is

4.7 ± 0.7 pixel length min−1 = 3.1 ± 0.4 μm min−1 on non-adhesive substrates, whereas it is

equal to 1.5 ± 0.3 pixel length min−1 = 1.0 ± 0.2 μm min−1 on adhesive ones. For U87 cells the

mean speed of motion are respectively 6 pixel lengths min−1 = 3.9 μm min−1 and 2 pixel length

min−1 = 1.3 μm min−1.

The surface density of PLL molecules estimated from the volume concentration of 0.001%

(w/v) PLL in the hydrogel precursor solution for a hydrogel thickness of 2 mm, is about 5 1011

molecules mm−2. About 5 105 PLL molecules are found every μm2. The F98 and U87 MG cells

have a radius between 8 and 20 μm so they move on a quasi-homogeneous surface of PLL
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molecules. The cells make smaller steps on PLL hydrogels because they are constrained in

their motion by the electrostatic interactions they form with the PLL.

We also had to change the proliferation rate between the two cell lines. We found that the

proliferation rate (in aggregates) is 7.10−4 min−1 for the F98 and 3.10−4 min−1 for the U87 cell

line. Our results also reveal that the adhesive properties of the substrate do not impact the pro-

liferation rate in aggregates: it is the same in the two conditions (adhesive and non-adhesive

substrate), for each cell line.

The U87 cells are characterized by a weak adhesion between cells, leading to loose aggre-

gates, whereas the F98 cells are much more cohesive. Moreover, there is no late compaction of

the aggregates and the aggregates stay in 2D instead of organizing in 3D as in the F98 case. The

results for both lines could be reproduced: in order to describe the U87 cell line we had to use

a superimposition parameter smaller (αmax = 0.2) than the one used for the F98 line (αmax =

0.7) and to remove the compaction rule.

For two cell lines, we show here that by using our spatial model to fit the temporal evolution

of the number of aggregates and their mean area, it is possible to infer the quantitative values

of speed motion, proliferation and the qualitative abilities of cells to adhere to each other and

to deform. It should be possible to study any cell line, providing that the gel stiffness is opti-

mized for this cell line (indeed, carcinomas develop on a much stiffer substrate than gliomas,

this was confirmed by a preliminary study of ours on the breast cancer cell line MCF7 which

could not form aggregates on soft gels, dying rapidly). It has been shown for example that the

cohesivity of aggregates (due to cell-cell adhesion) could be a clinically important parameter,

since it seems to be inversely proportional to the in vitro invasive potential [36]. One promis-

ing direction of research is that of the study of cell lines from cancers which are known to

develop metastases, such as breast cancer. In that case, our experimental technique should be

adapted. Another interesting direction of future studies would be to modulate the adhesion.

This could not be done in the present studies using PLL since a higher concentration of this

molecule becomes toxic for the cells. Using an other adhesion molecule, such as RGD instead

of PLL, we expect to be able to vary adhesion and study the aggregation phenomena for a wide

range of values of the latter. We expect to return to address these problems, both experimen-

tally and through modeling, in some future work of ours.

Supporting information

S1 Appendix. Additionnal information about the FIJI macro and the workflow.

(PDF)

S1 Fig. Parameter choice for F98 cell line. Experimental data points (one of the experiment on

a non-adhesive substrate) are represented by green triangles (F98 cell line). (a) Flux choice: no

flux (cyan stars), flux on individual cell (red stars) and flux on individual cells and small aggre-

gates (green stars). All other parameters are fixed: a0 = 6 pixel, αmax = 0.7, κ = 7 10−4 min−1,

N0 = 400. Error bars are chosen equal to the standard deviation over 20 simulations. (b) Prolif-

eration choice: cyan stars, κ = 10−4 min−1; green stars, κ = 7 10−4 min−1); red stars, κ = 1.4 10−3

min−1. All other parameters are fixed: a0 = 6 pixel length, αmax = 0.7, N0 = 400, flux is on.

(c) Superimposition parameter choice: cyan stars, αmax = 0.95; green stars, αmax = 0.7; red stars,

αmax = 0.2. All other parameters are fixed: a0 = 6 pixel length, κ = 7 10−4 min−1, N0 = 400, flux is

on. In all the simulations, error bars represent the standard deviation over 20 simulations.

(EPS)

S2 Fig. Experiments and simulations for the U87 cell line. Brown curves are the adhesive

case, blue are for the non-adhesive case, triangles are for adhesive experiment and circles are
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for non adhesive experiment, stars are for simulations. The upper part gives the evolution dur-

ing time of the number of aggregates while the bottom part gives the mean area of aggregates

over time. Simulation parameters: a0 = 6 pixel length, N0 = 900, flux is off (cyan); a0 = 6 pixel

length, N0 = 625, flux is off (blue); a0 = 2 pixel length, N0 = 484, flux is off (brown). The param-

eters αmax and κ are common to all the simulations: αmax = 0.2, κ = 3 10−4 min−1. Error bars

represent the standard deviation over 20 simulations.

(EPS)

S3 Fig. Diffusion coefficient on an adhesive substrate for the F98 cell line. The mean square

displacement (msd) is plotted against time. Each point represent the mean over 25 cells. The

error bars the standard deviation.

(EPS)

S1 Video. Aggregation of F98 cells. The aggregation process for the F98 cell line, during the

first 400 minutes.

(AVI)

S2 Video. Aggregation of U87 cells. The aggregation process for the U87 cell line, during the

first 600 minutes.

(AVI)
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