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in critical ill patients?
Antoine Dewitte1,2*, Sébastien Lepreux1,3, Julien Villeneuve4, Claire Rigothier1,5, Christian Combe1,5, 
Alexandre Ouattara2,6 and Jean Ripoche1

Abstract 

Beyond haemostasis, platelets have emerged as versatile effectors of the immune response. The contribution of 
platelets in inflammation, tissue integrity and defence against infections has considerably widened the spectrum of 
their role in health and disease. Here, we propose a narrative review that first describes these new platelet attributes. 
We then examine their relevance to microcirculatory alterations in multi-organ dysfunction, a major sepsis complica-
tion. Rapid progresses that are made on the knowledge of novel platelet functions should improve the understanding 
of thrombocytopenia, a common condition and a predictor of adverse outcome in sepsis, and may provide potential 
avenues for management and therapy.
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Background
Sepsis is a syndrome based on a dysregulated immune 
response to infection also involving non-immunologic 
mechanisms, including neuroendocrine, cardiovascu-
lar and metabolic pathways [1–3]. Due to its prevalence 
and high mortality rate, sepsis is a major public health 
issue [4, 5]. The contribution of blood platelets to sepsis 
pathophysiology has been the subject of renewed atten-
tion. First, alterations of platelet count are commonly 
encountered in the intensive care unit (ICU). Using 
common platelet counts thresholds, thrombocytopenia 
accounts for 20–50% of patients for the whole part of 
intensive care settings [6–9]. Thrombocytopenia or the 
non-resolution of thrombocytopenia is associated with 
poor outcome [8, 10–15]. Second, platelets are well-
known players in coagulation and  likely to contribute 
to disseminated intravascular coagulation (DIC). Third, 
beyond the confines of haemostasis and thrombosis, 
platelets are now acknowledged as essential actors of the 

immune response, reacting to infection and disturbed 
tissue integrity and contributing to inflammation, patho-
gen killing and tissue repair [16–21]. These advances in 
platelet biology have opened perspectives on the knowl-
edge of sepsis pathophysiology and  on its management. 
The matter is a complex one as platelets are not only vec-
tors of inflammation contributing to vascular and tissue 
injury in acute or chronic inflammation [18, 22, 23], but 
also play an important role in the resolution of inflamma-
tion, vascular protection and the repair of damaged tis-
sues. The friend and foe dialogue between platelets and 
endothelium has been extensively studied and is thought 
to be relevant to sepsis complications. Here we examine 
this enlarged spectrum of platelet functions and their rel-
evance to the pathophysiology of multi-organ dysfunc-
tion (MOD) and discuss some potential links between 
these advances and sepsis management.

Sepsis as a dysregulated host response to infection
Recent definition of sepsis [24] emphasizes the non-
homoeostatic host response to infection that drives 
life-threatening organ dysfunctions. Activation of 
innate immune responses in sepsis realizes a systemic 
inflammatory condition. The inflammatory phase is 
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characterized by the production of pro-inflammatory 
mediators and immune cell activation [25–29], and sep-
sis prognosis is linked to the magnitude and duration of 
this inflammatory response, high circulating cytokine 
levels being, for example, associated with poor outcome 
[30–32]. The triggering of innate immune responses by 
pathogens and pathogen-associated molecular patterns 
(PAMPs) has been identified as an early and primary 
mechanism [2, 31, 33–36]. Interestingly, mechanisms of 
non-septic systemic-associated inflammatory response 
syndrome (SIRS) as met in major surgery, severe trauma, 
extensive burns or pancreatitis may share common fea-
tures with sepsis-associated SIRS, taking the form of a 
comparable early inflammatory storm that is triggered by 
alarmins released by damaged tissues [37]. However, the 
role played by this hyper-inflammatory phase in the pro-
gression of sepsis and its prognostic is to be understood 
in the context of an accompanying anti-inflammatory 
response and immunosuppression state, and much effort 
is made in elaborating a coherent vision of these opposite 
and complex events [38–43].

Platelets: multifunctional tiny cytoplasmic 
fragments
Platelets are small (2–4  μm), anucleate, discoid-shaped 
cytoplasmic fragments released in the bloodstream dur-
ing the fragmentation of polyploid megakaryocytes in 
bone marrow sinusoidal blood vessels [44]. In humans, a 
regulated steady platelet supply and clearance maintains 
numbers of 150,000–400,000 platelets per microlitre 
of blood. Platelet production is critically dependent on 
thrombopoietin (TPO) that acts for an important part on 
megakaryocyte progenitor proliferation/differentiation 
and on megakaryocyte maturation [45]. Platelets have a 
short lifespan, of up to 10 days. They are cleared out from 
the circulation by mechanisms involving lectin–carbohy-
drate recognition by splenic and liver macrophages and 
hepatocytes [46, 47].

Platelets harbour a large variety of mediators stored in 
a pool of morphologically distinct granules [48]. Granule 
cargo loading is carried out in megakaryocytes. Platelets 
also transport mediators, such as serotonin, that they 
uptake from plasma and can deliver at sites of activation. 
The cataloguing of platelet-derived mediators reflects the 
remarkable versatility of platelets in haemostasis, throm-
bosis and immune responses [49, 50].

The secretion of granule content following platelet acti-
vation by agonists is central to platelet functions. Platelet 
activation induces the expression of membrane proteins 
and the release of mediators via several mechanisms. 
Many of these mediators are preformed and stored in 
granules such as cytokines/chemokines and coagula-
tion factors, others can be synthesized by translational 

pathways, such as IL-1β, and others are released by yet 
incompletely defined mechanisms such as CD154. Acti-
vated platelets also release vesicles, which include platelet 
microparticles (PMPs) and exosomes [51]. Platelets rep-
resent a major source of circulating MPs [52].

In pathological conditions associated with platelet 
activation, multiple agonists are generated. In fact, apart 
from classical strong agonists such as thrombin or colla-
gen, there is an expanding list of agonists that can con-
tribute to platelet activation. These additional platelet 
agonists have allowed a re-appreciation of mechanisms 
and role of platelet activation in vascular inflammation 
and thrombotic events associated with a range of infec-
tious and inflammatory conditions [53].

The archetypal function of platelets is haemostasis. 
Platelets encounter inhibitory signals that prevent their 
activation in the healthy vasculature, such as nitric oxide 
and prostacyclin, which are released by endothelial cells 
(ECs). Platelets circulate in close proximity to the vessel 
wall, and the disruption of EC lining overcomes inhibi-
tory signals and drives platelet adherence, activation and 
aggregation, which temporarily plug the damaged vessel. 
In this process, platelets also activate and confine coagu-
lation at site of damage, particularly via the exposure of 
an efficient catalytic phospholipidic surface [54].

Besides binding to damaged vessels and preventing 
bleeding, platelets support a large spectrum of more 
recently studied functions, as could be reflected by the 
diversity of platelet mediators [55–57]. Platelets are acti-
vated in conditions that disrupt tissue homoeostasis and 
exert, directly and indirectly, a complex control over the 
different stages of inflammation, contributing to patho-
gen clearance, wound repair and tissue regeneration 
(Figs.  1, 2). As such, platelets are now acknowledged as 
essential components of the innate immune response, 
monitoring and rapidly responding to noxious signals.

Platelets as key players in the inflammatory 
reaction; critical links with coagulation
Activated platelets secrete a profusion of pro-inflamma-
tory material, cytokines/chemokines, vasoactive amines, 
eicosanoids, and components of proteolytic cascades that 
directly or indirectly, through the activation of bystander 
target cells, fuel inflammation [23, 58, 59]. ECs and leu-
cocytes are prime targets for platelets. Endothelium is a 
non-adhesive, non-thrombogenic surface in normal con-
ditions; when stimulated by inflammatory mediators, ECs 
undergo profound changes, collectively designed as “EC 
activation”, which include the expression of cell adhesion 
molecules and tissue factor, production of von Wille-
brand factor, cytokines/chemokines, proteases and vaso-
active substances such as nitric oxide. Platelets adhere to 
activated ECs, following a multi-step process in which 
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glycans play a critical role [60–62]. Inflammation can 
also alter the protective EC glycocalyx barrier, favouring 
platelet adhesion [63, 64]. During the adhesion process, 
platelets can be activated and in turn activate ECs. Plate-
let activation in inflammation can alter the vascular tone 
and lead to deleterious effects on vasculature integrity, by 
increasing vascular barrier permeability and contribut-
ing to the generation of cytopathic signals, for example 
by mediating reactive oxygen species generation by neu-
trophils [65]; these effects have to be paralleled with the 
opposed protective role of platelets (below) [66–69]. Leu-
cocytes are a second critical target for platelets, the plate-
let/leucocyte dialogue being essential in inflammation; 
here, we focus on neutrophils and monocytes. Platelet/

leucocyte interactions are a critical step in leucocyte 
recruitment, activation and migration in inflammation 
[70]. Platelet/neutrophil or platelet/monocyte interac-
tions can occur at the EC surface, in clot/thrombi and in 
circulating blood [18, 70, 71], and platelets direct neutro-
phil/monocyte migration to sites of tissue injury [72, 73]. 
Moreover, platelets activate neutrophils and monocytes 
upon interaction, via several mechanisms, including the 
triggering of TREM-1 on neutrophils, leading to various 
pro-inflammatory responses [65, 74–77]. The formation 
of platelet/leucocyte aggregates in blood depends on 
platelet activation and is an early phenomenon in sepsis 
progression. For example, platelet/neutrophils complexes 
are elevated at early phases, while being reduced in 
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Fig. 1 Platelets are integral players in the immune response, linking haemostasis, thrombosis, inflammation, pathogen clearance and tissue repair: 
a schematic representation. A growing body of evidence highlights a role for platelets beyond the confines of haemostasis and thrombosis. Some 
of platelet interfaces in innate immune response are schematized. Platelets are activated at sites of infection/tissue injury. Platelets and platelet-
derived mediators contribute to arrest bleeding, to clear pathogens directly or indirectly by acting on various steps of the immune response, and to 
drive vascular/tissue repair by providing matrix building blocks and a multiplicity of signals that remodel matrix, attracting tissue progenitor cells 
and reconstructing the vascular frame. In doing so, platelets provide a coherent biological response contributing to cure infection and re-establish 
tissue architecture and homoeostasis. Scales are arbitrary. Platelet-derived microparticles (PMPs) recapitulate several of activated platelet functions. 
ECM extracellular matrix, MN monocytes, PMN polymorphonuclear neutrophils, MΦ macrophages
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complicated sepsis possibly reflecting peripheral seques-
tration or sepsis-associated thrombocytopenia [78, 79], 
and endotoxin administration in humans leads to an 
increased circulating platelet/neutrophil aggregates that 
follows a brief decrease [80]. Amplification of inflam-
mation results from the reciprocal activation between 
platelets and their target cells [66], and circulating mono-
cyte/and neutrophil/platelet aggregates may contribute 

to disseminate inflammatory signals [81]. Platelets also 
link several inflammatory cascades; for example, they 
propagate the activation of the complement system [82]. 
Commonly, cytokines have an induced expression that is 
regulated at the transcriptional/translational level. Most 
of platelet-derived inflammatory mediators are very rap-
idly released from activated platelets, making platelets 
instant providers of pro-inflammatory material. Cytokine 
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Fig. 2 Platelets monitor and are activated in response to noxious signals. Platelets sense and are activated by multiple signals generated in danger 
situations met by the organism. Interaction with pathogens, endothelial cell/tissue injury and interaction with foreign material activate platelets 
(see text for details). Platelet activation sparks off a broad range of responses, including the activation of various inflammation and coagulation 
pathways. Signals generated in inflammation and coagulation can in return activate platelets (thin arrow). PMPs platelet microparticles
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bioactivity at organs remote from their source is debated 
as cytokine bioactivity may be hampered in plasma. 
Platelet transport may protect inflammatory media-
tors from otherwise degradation. Therefore, platelets 
play a central role in the inflammatory reaction. Impor-
tantly, they also contribute to the control and resolution 
of inflammation via several mechanisms, including the 
release of anti-inflammatory cytokines and inflammation 
pro-resolving mediators [83].

The activation of coagulation and inflammation cas-
cades are consequences of platelet activation, and inflam-
mation and coagulation pathways crosstalk [84]. For 
example, some platelet mediators have both inflamma-
tory and pro-coagulant properties, such as polyphos-
phates [85]. Pro-inflammatory cytokines released by 
platelets can also activate the coagulation cascade at vari-
ous steps [86]. Conversely, the activation of coagulation 
by platelets generates a number of inflammatory effec-
tors, such as thrombin. Further, inflammatory mediators 
can impair anticoagulant and fibrinolysis pathway mech-
anisms, which may contribute to coagulation dysregula-
tion in sepsis [87–89]. Platelet inflammatory mediators 
may thus contribute to sepsis coagulopathy [88–91]. DIC 
is a frequent and major complication of sepsis [41], and 
various mechanisms concur to involve platelets in DIC; 
only some can be mentioned. First, platelets support the 
generation of thrombin. Second, platelet links inflamma-
tion and coagulation. Third, platelets are major induc-
ers of the release of pro-thrombotic scaffolds neutrophil 
extracellular traps (NETs) [92–96].

Notwithstanding, the involvement of PMPs in vascu-
lar inflammation and inflammatory disorders, includ-
ing sepsis, has been emphasized [97–102]. PMPs retain 
many pro-inflammatory and pro-coagulant features of 
parent platelets and are thought to disseminate inflam-
matory and coagulation signals. Although they represent 
potential pathophysiological players in inflammatory dis-
orders [52, 99, 100, 103, 104], their role in sepsis remains 
ill-understood.

Platelets in vascular and tissue integrity
In normal wound healing, platelets establish regulatory 
crosstalks between soluble and cellular actors of tissue 
repair that concur to the various phases of inflammation 
and reestablishment of tissue homoeostasis [50, 83, 104, 
105]. Platelets accumulate early, are activated at sites of 
tissue injury and intervene at each stage of tissue repair, 
the inflammatory, new tissue formation and remodel-
ling stages. In fact, platelet-healing properties are already 
translated to the clinics [50, 55]. The best studied role of 
platelets in tissue homoeostasis is the preservation of rest-
ing and injured endothelium integrity, a critical point in 
MOD pathophysiology [71, 106–108]. The importance of 

platelets is exemplified by the disruption of the endothe-
lium barrier associated with thrombocytopenia [109]. 
How platelets contribute is incompletely understood. 
Mechanisms include gap filling, production of EC mito-
genic factors and factors enhancing the vascular barrier 
[71, 107]. On injured endothelium, platelets adhere to the 
vascular wall at sites of damage and immediate proxim-
ity, a first step in a sequence of events that lead to the ini-
tiation and the propagation of haemostasis, thrombosis 
and bleeding arrest [110, 111]. Platelets provide material 
for endothelium repair, including EC growth-promoting, 
antiapoptotic mediators, and attractants for progeni-
tor cells endowed with vascular healing properties [104]. 
They help restoring the disrupted vascular network, pro-
viding positive and negative regulators of angiogenesis 
and stimulating angiogenic mediator production by target 
cells. Platelets are also important contributors to extra-
cellular matrix (ECM) repair as they are a rich source of 
ECM components, ECM remodelling proteins, and fibro-
competent cell activators. Platelets have however been 
found to both promote and prevent vascular permeabil-
ity in inflammation. The differential regulation of vascular 
permeability by platelets has been studied for a large part 
in acute lung injury (ALI) models and will be presented 
in the corresponding section. Importantly, platelets are 
highly efficient at preventing bleeding in an inflamma-
tory context [76, 107, 112]. The platelet count threshold 
needed for vasculoprotection in humans in normal or 
inflammatory conditions is an important question that 
remains to be answered [107]. More generally, platelets 
may play a broader role in organ regeneration. Platelets 
not only prevent blood loss but also provide key signals 
for matrix architecture reconstruction and for the recruit-
ment, proliferation, survival and differentiation of cells 
endowed with new tissue formation, such as fibroblasts, 
smooth muscle cells and tissue-specific progenitors cells 
[113]. This is remarkably illustrated by the requirement 
of platelets in liver regeneration [114]. PMPs are also 
thought to contribute to vascular repair [115]. Hence, 
platelet activation is both necessary to tissue integrity and 
undesirable as it generates tissue-damaging signals. The 
complex network of signals that organize this fine-tuned 
equilibrium is only recently being biochemically dissected 
[55, 104]. Many questions remain on this balanced plate-
let friend or foe contribution, although they are of key 
importance to the pathophysiology of microvascular dys-
functions, such as in sepsis [68].

Platelets contribute to the innate immune 
response against infection
The role of platelets in the defence against infection is 
increasingly stressed [83, 116]. Platelets are now acknowl-
edged as bona fide pathogen sensors interacting directly 
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or indirectly with a number of bacterial, viral, fungal and 
protozoan pathogens and their products, contributing to 
their clearance. Platelet interaction with bacteria depends 
on the nature and concentration of bacteria, interac-
tion time, and involves multiple mechanisms. Toll like 
receptors-dependent and independent mechanisms, such 
as those involving Fcγ receptors, complement receptors 
or glycoproteins GPIIb-IIIa and GPIbα, contribute to 
platelet–bacteria interactions. Indirect interactions are 
also involved, such as via the binding of plasma proteins, 
including fibrinogen, von Willebrand factor, complement 
proteins or IgG, that bridge pathogens and platelets or via 
interaction with bacterial toxins. Interaction with patho-
gens can lead to platelet adhesion or to their activation, 
aggregation and release of platelet mediators [83, 117–
120]. Mechanisms of pathogen clearance by platelets may 
be direct, through the release of various antimicrobial 
peptides and indirect via the release of platelet-derived 
mediators that coordinate chemotaxis and activation of 
immune cells [83, 116–118, 120, 121]. Infection is com-
monly associated with tissue injury. Injured and dying 
cells generate mediators such as alarmins that fuel 
inflammation [122]. Mediators generated by cell dam-
age such as complement activation products and histones 
can activate platelets [123, 124]. Notwithstanding, plate-
lets also contribute to the adaptive immune response to 
infection [17, 18, 22, 125].

The aforementioned role of platelets in the defence 
against pathogens suggests that they can interfere with 
the progression of infection. How can these observa-
tions be translated to sepsis pathophysiology [120, 124, 
126]? Models suggest a protective role of platelets, as, for 
example, in streptococcal endocarditis, malaria or gram-
negative pneumonia [127–129], and thrombocytope-
nia could be a risk factor for bacterial or fungal infection. 
Alternatively, platelets could contribute to spreading 
infection, via the transport of pathogens [130].

Platelets in MOD pathophysiology
Endothelium in MOD: a common pathophysiological 
denominator
The  pathophysiology of sepsis and its complications 
remains uncertain as much caution has to be applied in 
extrapolating to clinical sepsis results obtained in rodent 
models which have their own inherent complexities 
[131–134]. Within these extrapolation limits, experimen-
tal models have, however, yielded significant knowledge. 
Numerous studies have emphasized the orchestrating 
role of endothelium in sepsis, and endothelium injury 
could be one of the primum movens pathophysiological 
events in sepsis complications [102, 135–148]. Mark-
ers of endothelium injury are elevated in sepsis patients, 
although variably associated with sepsis severity [29, 

32, 149]. Inflammation, thrombosis, capillary perfusion 
alterations are among key features of MOD microvas-
cular alterations [102, 136, 150, 151]. Platelet activation 
can be detected in sepsis patients and sepsis models, and 
studies reported association with sepsis severity [79, 124, 
152, 153]. Many signals can activate ECs and platelets in 
sepsis, including pathogens and mediators generated by 
inflammation and coagulation. Activated platelets may 
thus contribute to MOD via their role in inflammation 
and coagulation (Fig.  3) [23, 56, 83, 124, 141, 144, 152, 
154].

Platelets in acute lung injury (ALI) in sepsis
There are arguments to involve platelets in ALI patho-
physiology [155–158]. Dysregulated inflammation and 
coagulation are central pathophysiological events in ALI 
and lung vascular endothelium injury is a primary cause 
of the alteration of the alveolar-capillary barrier leading 
to pulmonary oedema [159] [160]. Platelets are seques-
tered early in lung microvascular beds in ALI models 
and may contribute to the initial insult of lung endothe-
lium [155, 161–164]. EC activation/injury by inflamma-
tory stimuli, PAMPs and alarmins can generate signals 
mediating platelet accumulation and activation. Entrap-
ment and activation of platelets in pulmonary capillaries 
will consequently feed the deleterious cascade of pro-
inflammatory and pro-coagulant events in the lung [71, 
156, 158, 159, 165]. Platelets can also induce apoptosis 
in the lung in sepsis models [166]. Among these events, 
platelet/neutrophil interactions have received consider-
able attention. Neutrophils are of critical importance 
in MOD, neutrophil influx being a hallmark of ALI and 
their inappropriate activation leading to tissue damage 
signals [167]. Platelets play an important role in neutro-
phil recruitment and activation in the lung, and plate-
let-mediated neutrophil activation results in the release 
of cytokines, chemokines, reactive oxygen species and 
NET generation [71]. Indeed, experimental models 
highlight the deleterious role of platelet/neutrophil and 
also platelet/monocyte interactions in the alteration of 
the alveolar-capillary integrity [71, 108, 168]. Coagula-
tion activation and alveolar fibrin deposition are com-
mon findings in ALI, and platelets are thought to be 
key contributors to the dysregulation of coagulation in 
ALI, through their role in coagulation and NET genera-
tion [169]. Therefore, several studies suggest a platelet 
involvement in ALI. In fact, platelet depletion, blocking 
of platelet/neutrophil interaction, NET dismantling or 
antiplatelet treatments are protective in experimental 
models [96, 162–164, 170]. Although in  vitro experi-
ments show pro-inflammatory and pro-coagulant effects 
of PMPs, there is little evidence for a specific deleteri-
ous role of PMPs in ALI, a study difficult to address due 
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to microparticle identification uncertainties and to the 
simultaneous presence of microparticles from various 
origins with heterogeneous functions [158, 171].

Increased vascular permeability is the basis for oedema 
in inflammation. The concept that platelets protect 
the basal barrier of alveolar capillaries is supported by 
experimental evidences, and thrombocytopenia put the 
lung capillary integrity at risk, particularly in inflamma-
tory conditions. Indeed, severe thrombocytopenia results 
in increased alveolar-capillary permeability [71, 107, 
108]. However, as mentioned above, platelet activation 
in inflammation can also disrupt endothelium barrier 
integrity, and platelet depletion is protective in several 
ALI models [69, 71, 162, 172]. How this dual endothe-
lial barrier-stabilizing versus barrier-destabilizing prop-
erty of platelets is organized and contribute to ALI 
progression, as well as the specific role of PMPs, is not 

understood. Such a differential effect of platelets in con-
trolling endothelial barrier integrity is likely to be based 
on a complex balance between characteristics of inflam-
mation in vascular beds, early or late phase, magnitude, 
role of other inflammatory players, i.e.  leukocytes, and 
experimental models used. The changing relative impor-
tance during sepsis progression of platelet-activating 
signals, platelet count and proteome, interactions with 
leucocytes and ECs, underline the difficulty to dissect 
these mechanisms [69, 71, 76, 108, 173]. Moreover, plate-
lets may play a positive role in the control and resolution 
of inflammation in lung injury, a mechanism that is only 
recently being understood [158]. The genetic background 
also plays a role in ALI-associated mortality and morbid-
ity [174]. Platelet count is determined by genetic factors, 
and genetic studies point to an association between low 
platelet count and acute respiratory distress syndrome 
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(ARDS) risk. Genetic variants within the LRRC16A locus 
(6p22) are associated with a low platelet count. Interest-
ingly, a low platelet count links a single nucleotide poly-
morphism within this locus to ARDS risk [175].

Platelets and acute kidney injury (AKI) in sepsis
Acute kidney injury (AKI), a major sepsis complication, 
is accompanied by hemodynamic disturbances such as 
decreased glomerular filtration rate and microcircula-
tion alterations [146, 176–180]. The extent of apoptosis 
and necrosis in tubular lesions is debated. Subtle, het-
erogeneous, potentially reversible, cytopathic and adap-
tive cellular events (metabolic changes, mitochondrial 
dysfunction, autophagy, cell cycle arrest, etc.) may char-
acterize tubular lesions in sepsis AKI [181–184]. Beyond 
the classic paradigm of renal hypoperfusion, the role of 
immune response pathways and particularly inflamma-
tion in AKI progression is increasingly stressed [1, 178, 
185–195]. Alarmins, PAMPs, inflammatory mediators 
and   leukocytes can activate ECs in the renal micro-
circulation bed, leading to inflammation/thrombosis, 
metabolic alterations, oxidative stress, concurring to 
microvascular dysfunction. Due to the close depend-
ence between TECs and tubular microvascularization, 
compromise blood flow and inflammation in the micro-
vascular beds can lead to tubular epithelial cells (TECs) 
injury, driving inflammation, mitochondrial/metabolic 
alterations and various adaptive responses, including cell 
cycle arrest. Alarmins, PAMPs and inflammatory media-
tors may also impact TECs after being filtered, and TECs 
are active participants in kidney inflammation [192, 
196–198].

In the highly vascularized kidney, platelet/endothe-
lium interactions can be postulated to be of specific 
importance. In an AKI model in which selective kidney 
endothelial injury is realized, there are evidences for 
platelet contribution [199]. Platelets will be arrested and 
activated on the kidney endothelium activated by circu-
lating deleterious signals. Inflammation-mediated altera-
tion of EC glycocalyx can also favour platelet adhesion 
[141, 146, 200–203]. Platelets can also be activated by 
ischaemic blood flow disturbances in the septic kidney. 
Therefore, and although much remains to be understood, 
platelets may be pathophysiological players in sepsis AKI. 
On the other hand, as mentioned above, platelets con-
tribute to the resolution of inflammation and vasculature 
integrity. Important questions remain with reference to 
the identification of soluble and cellular effectors that 
contribute to the resolution of inflammation and tubu-
lar regeneration in the kidney [204]. Microparticles, and 
PMPs more specifically, are elevated in sepsis and sepsis 
complicated by AKI [101, 102, 193]. However, their spe-
cific role remains to be addressed.

Platelets and organ‑to‑organ crosstalk in sepsis
Despite the importance of the deleterious organ-to-
organ communication in sepsis, underlying mechanisms 
are only beginning to be unravelled. Inflammatory sig-
nals are implicated in these communications [205]. Can 
platelets vectorize the exchange of pro-inflammatory 
and/or pro-coagulant signals that link injuries in distant 
organs? Interestingly, the activation of platelets at remote 
sites may mediate lung injury, as shown in mesenteric 
ischaemia/reperfusion models [206]. Platelets can medi-
ate remote kidney damage induced by pneumonia [207]. 
Among platelet-derived mediators that could convey 
such a deleterious action, platelet factor 4 (CXCL4) and 
CD154 have been identified [208, 209]. When activated, 
platelets express CD154 and release a soluble form of 
CD154 [22, 210]; CD154 may bear a particular respon-
sibility as, for example, the CD154/CD40 dyad plays a 
deleterious role in ALI, including pancreatitis-associ-
ated lung injury [211, 212], and as it could be brought to 
lung microcirculation via PMPs. Further, platelet CD154 
mediates neutrophil recruitment in septic lung injury 
[213]. Although these results suggest a role for platelets, 
the extent and relative contribution of platelets, platelet-
derived mediators, PMPs or circulating platelet/leucocyte 
aggregates in conveying deleterious signals at distance in 
patients with sepsis is unknown.

Platelet count in sepsis and the dilemma of platelet 
transfusion
Platelet count and dynamics of platelet count 
as determinants of clinical outcome in sepsis patients
Thrombocytopenia is common in sepsis and more gen-
erally in critically ill patients and has long been recog-
nized as an independent risk factor for mortality in ICU 
patients and a sensitive marker for disease severity; the 
severity of sepsis is a risk factor for thrombocytopenia 
[6, 8–15, 214–221]. For these reasons, the platelet count 
is included in the ICU severity of illness scoring system. 
Platelet count kinetics is often biphasic in ICU patients, 
characterized by a moderate initial decrease in the first 
days followed by a rise [11, 216, 222]. Early thrombocy-
topenia and new-onset thrombocytopenia during ICU 
hospitalization are associated with a poor prognostic; 
the magnitude and duration of thrombocytopenia and 
the absence of relative increase in the platelet count have 
been linked to the poor outcome [6, 9, 11, 216, 221–
227]. In a large recent study, which included 931 sepsis 
patients, a low platelet count at admission in the ICU was 
associated with an increased mortality risk [29]. Notably, 
patients with low platelet counts were more severely ill at 
ICU admission. Understanding pathophysiological links 
between platelet count alterations and clinical outcomes 
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is therefore an important issue for the intensive care 
physician.

The multiple causes of thrombocytopenia in sepsis 
patients
The association between thrombocytopenia and clinical 
outcome does not establish causality, and identifying the 
causes of thrombocytopenia is essential to patient man-
agement. Management of the underlying condition is a 
primary focus, and an important issue is platelet transfu-
sion. Platelet transfusion may be ineffectual and delete-
rious in patients with, for example, intravascular platelet 
activation and have their own risks [228–230]. In a recent 
report, sepsis was identified as associated with ineffectual 
platelet transfusion, as evaluated by inadequate platelet 
count increase [231].

Several mechanisms, acting alone or in combination, 
can be responsible for a low platelet count in sepsis, and 
all steps of platelet life may be concerned. Decreased 
platelet production in the bone marrow can result from 
pre-existing conditions or from the inhibitory effect of 
pathogen toxins, drugs or inflammatory mediators on 
haematopoiesis. Peripheral mechanisms are essential 
causes of thrombocytopenia [15, 214, 218, 227, 232, 233]. 
The reduction in platelet half-life and their consumption/
destruction may be linked to the many events of platelet 
activation occurring in sepsis, intravascular coagulopa-
thy and immune mechanisms. Drug-induced thrombo-
cytopenia, hemophagocytosis, bleeding, hemodilution 
are also major explanatory factors. Laboratory artefact 
of pseudothrombocytopenia can be encountered, and 
assessing the reality of thrombocytopenia is an important 
point [230].

Systematic investigations with routinely available tests 
can help to delineate mechanisms of thrombocytope-
nia [218, 232, 234]. An early rise of reticulated platelets 
follows endotoxin administration in humans, and the 
percentage of immature platelet fraction that evaluates 
thrombopoietic rate could be a useful tool to witness 
early bone marrow reaction predicting sepsis develop-
ment [80, 235]. Apart from altering platelet count, sepsis 
and sepsis medications can also result in platelet function 
defect, adding another pathophysiological interface [236, 
237]. A detailed description of these mechanisms and 
diagnostic/management guidance has been excellently 
reviewed and is beyond the scope of the present work 
[154, 222, 230, 233, 238–242]. A difficulty in approach-
ing thrombocytopenia and its management is related to 
the paradox of platelets being potentially both deleteri-
ous and beneficial during sepsis course. In a first point of 
view, platelet count reduction is related to sepsis via con-
sumption mechanisms including pathogen and pathogen 
product-mediated activation, induction of apoptosis, 

lysis and increased phagocytic clearance. Acute infec-
tions often lead to thrombocytopenia [58], and blood-
stream infection is associated with lower platelet counts 
[221]. Coagulopathy, particularly DIC, platelet sequestra-
tion by leucocytes and by inflammatory vascular beds are 
also commonly stressed mechanisms of thrombocyto-
penia. Through these mechanisms, platelets can be per-
ceived as bystanders whose destruction is related to the 
severity of infection and to the characteristics of the host 
response to the infectious challenge. In that case, the use 
of platelet transfusion may be perceived as being detri-
mental, via the fuelling of inflammation and coagulation. 
On the other hand, platelets are active players in patho-
gen clearance, leading to the possibility that a low plate-
let count and platelet function alteration may first favour 
infection. Further, platelets also protect vascular integ-
rity; hence, maintaining an adequate threshold of plate-
let count seems a necessary target to prevent bleeding. In 
fact, platelet transfusions are mostly used to prevent or 
treat bleeding [228]. Conciliating such a paradox of plate-
lets being both deleterious and beneficial is a challenging 
point for platelet-targeted therapeutic interventions in 
sepsis.

Can platelets represent therapeutic targets 
and diagnostic tools in sepsis?
The clinical management of sepsis remains a difficult 
challenge, and pathophysiological advances have not 
yet been translated into effective therapeutic protocols 
[2]. Notably, strategies to counteract the runaway pro-
inflammatory state in sepsis, such as inhibition of specific 
inflammatory mediators, have given disappointing results 
[243]. However, current knowledge on sepsis pathophysi-
ology, highlighting multiple humoral and cellular factors 
in the inappropriate inflammatory response to infec-
tion, suggests that therapies targeting a single mediator 
will not demonstrate effectiveness [41]. Additional com-
plexity is linked to individual disease susceptibilities and 
medical comorbidities that would necessitate individual 
approaches. Accumulating evidence therefore speaks for 
an integrated approach of sepsis treatment based on a 
better knowledge of its natural history.

The recently described involvement of platelets at the 
crossroads of several immune response pathways has led 
to the assumption that platelets or platelet-derived effec-
tors represent therapeutic targets in sepsis. Platelet acti-
vation can drive multiple inflammatory and coagulation 
pathways, and targeting platelets offer the theoretical 
perspective of targeting simultaneously several deleteri-
ous pathways. Although the clinical relevance of animal 
models has many drawbacks, it is of interest that plate-
let depletion, inhibition of platelet functions and anti-
platelet drugs show protection in experimental ALI or 
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AKI [124]. P2Y12 inhibitors reduce inflammatory and 
pro-thrombotic mechanisms after endotoxin adminis-
tration in humans [244]. Several observational and ret-
rospective clinical studies have shown that antiplatelet 
agents such as acetylsalicylic acid, platelet P2Y12 inhibi-
tor clopidogrel or GPIIb/IIIa antagonists reduce mortal-
ity or complications in critically ill patients [245–255]. 
However, some studies are conflicting [249, 252, 256] 
(Table 1). There is therefore a strong need for large rand-
omized controlled clinical trials to investigate the effects 
of antiplatelet therapy in sepsis. The complexity of such 
studies relates in part to the heterogeneity of sepsis 
patients in terms of nature of the causal germ, site and 
severity of infection, multiple comorbidities, gender, age 
and genetic background. There is also individual vari-
ability in the concentration of antiplatelet agents that effi-
ciently inhibits platelet function. A defective response to 
clopidogrel or aspirin treatment may concern up to 30 or 
40% individuals, respectively [257–259]. Also, antiplate-
let treatments have differential effects on platelet func-
tions. Platelets treated with aspirin can still be activated 
by strong agonists, such as thrombin or ADP. Hence, in 
a full-blown pro-inflammatory/pro-coagulant condition 
as met in sepsis, it remains to be determined whether 
platelet activation is efficiently inhibited by antiplatelet 
treatments. Platelets are an important blood reservoir 
of pro-inflammatory molecules and may contribute to 
the “cytokine storm” that characterizes sepsis. However, 
many cellular players, including leucocytes and EC, also 
produce such mediators, and the relative contribution 
of platelets is not understood. In a recent study, anti-
platelet therapy did not significantly reduce plasma pro-
inflammatory cytokines levels in sepsis patients [260]. 
Antiplatelet agents have also been shown to have indirect 
off-platelet effects, a mechanism which importance is not 
yet established [261]. Finally, the impairment of platelet 
function may have undesirable consequences, such as 
bleeding or the blunting of platelet protective functions.

As mentioned above, elucidating mechanisms of 
thrombocytopenia in sepsis are essential with refer-
ence to transfusion. Platelet transfusion is mostly used 
to prevent/treat bleeding [228, 229]. The risk of bleed-
ing increases with the severity of thrombocytopenia 
[222]. The threshold of  platelet count ensuring protec-
tion may be higher in sepsis patients, reflecting the 
severity of the disturbance of the vascular beds. Com-
monly advocated threshold of platelet count is in the 
range of 10–50  ×  109/L, depending on clinical situa-
tions, additional bleeding risks, evidence for central 
thrombocytopenia. The risk of bleeding is, however, not 
straightforwardly linked to the depth of thrombocytope-
nia, in the context of a sustained production of platelets, 
and additional parameters in the critically ill patient may 

interfere; indeed, the risk of bleeding is also increased for 
platelet counts between 50 and 100 ×  109/L [8, 9, 222, 
229]. In fact, there is a poor evidence-based clinical bene-
fit of platelet transfusion in the non-bleeding ICU patient 
[154, 228–230, 242]. The lack of a clear understanding of 
thrombocytopenia causes makes the risk/benefit assess-
ment difficult, as there is a theoretical risk to aggravate 
the underlying pathophysiology [229]. The main regula-
tor of platelet production, TPO, is elevated in sepsis and 
related to the platelet count [262, 263], which may be 
linked to the reduction in platelet mass or stimulation 
of TPO production by inflammatory mediators. Experi-
mental models show that TPO neutralization reduces the 
severity of organ damage [264]. However, in the clinics, 
the potential benefit of TPO administration in thrombo-
cytopenic patients in sepsis has been recently suggested 
[265]. At this stage, results from randomized controlled 
trials remain necessary to evaluate TPO interest in sepsis.

If the interpretation of thrombocytopenia in sepsis 
patients is made difficult by the multiplicity of underlying 
mechanisms, the platelet count by itself may hold valua-
ble information [242]. The platelet count may represent a 
surrogate marker of the severity of organ dysfunction. A 
low platelet count occurring even early in sepsis patients 
is indeed recognized as a sign of poor prognostic; how-
ever, a single platelet count at admission may have lit-
tle pertinence [266], and the kinetics of platelet counts 
appears to have a deeper meaning. Two alterations of 
this kinetics have been shown to be of clinical interest in 
sepsis patients, suggesting that they must be given spe-
cific attention. Both the magnitude of the drop in platelet 
count rather that thrombocytopenia per se, and the non-
resolution of thrombocytopenia are strong predictors of 
mortality in sepsis [9, 15, 267]. The onset and dynam-
ics of thrombocytopenia have been stressed as potential 
diagnostic approaches in ICU patients [222].

Conclusion
Platelets play key roles in various aspects of the immune 
response, suggesting that they take a significant part in 
sepsis pathophysiology. Therapeutic control of platelet 
functions would offer the perspective of targeting simul-
taneously several deleterious pathways in sepsis. The dif-
ficult extrapolation of experimental models to clinical 
sepsis and the conflicting results of clinical studies do not 
allow us today to introduce an antiplatelet agent in clini-
cal practice. However, septic critically ill patients treated 
with long-term antiplatelet agent may benefit from the 
continuation of their treatment in the absence of bleed-
ing risk, avoiding a rebound of platelet reactivity. The 
multiple facets of platelet involvement in sepsis therefore 
represent substantial challenges to the clinician and call 
for a deeper understanding of the relative importance of 
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platelet contribution to determine their ultimate clinical 
significance.
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