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Pervasive influence of idiosyncratic 
associative biases during facial 
emotion recognition
Marwa El Zein   1,2, Valentin Wyart1 & Julie Grèzes   1

Facial morphology has been shown to influence perceptual judgments of emotion in a way that is 
shared across human observers. Here we demonstrate that these shared associations between facial 
morphology and emotion coexist with strong variations unique to each human observer. Interestingly, 
a large part of these idiosyncratic associations does not vary on short time scales, emerging from stable 
inter-individual differences in the way facial morphological features influence emotion recognition. 
Computational modelling of decision-making and neural recordings of electrical brain activity revealed 
that both shared and idiosyncratic face-emotion associations operate through a common biasing 
mechanism rather than an increased sensitivity to face-associated emotions. Together, these findings 
emphasize the underestimated influence of idiosyncrasies on core social judgments and identify their 
neuro-computational signatures.

Our social life is punctuated by countless judgments about others, which determine first and foremost whether 
or not to engage in interactions with them. Does this person look angry? Can he or she be trusted? These differ-
ent kinds of social judgments—from the recognition of a fleeting emotion, to the inference of stable personality 
traits—are influenced by facial cues displayed in others.

Indeed, past research has shown that facial morphological features reliably influence judgments of personality 
traits1, for example, ‘babyfaces’ are judged as weak and submissive, whereas masculine faces are perceived as dom-
inant and aggressive. Such associations are shared—they are consistent across different individuals—and predict 
significant social outcomes such as political success2, even when they are inaccurate1,3. By contrast, some associ-
ations are idiosyncratic: they differ substantially across observers whilst remaining consistent for each observer. 
The degree of consensus across individuals may vary considerably when judging faces on a variety of personality 
traits including attractiveness4–6, intelligence, creativity and competence6.

Shared associations are not limited to facial morphology and personality, but extend also to emotion: cer-
tain morphological features appear to express emotions when in fact they are expressionless7,8 and may bias the 
perception of brief displays of emotion9—masculine faces are perceived as being angrier than babyfaces express-
ing the same emotion1. Yet the extent to which emotion recognition is influenced by idiosyncratic associations 
remains unknown. In the current study, we aim first to investigate the specific contribution of such idiosyncrasies 
to emotion recognition; second, to evaluate the time scale under which these idiosyncrasies emerge; and third, to 
characterise their computational and neural mechanisms.

To address these questions, we asked participants to categorise ambiguous facial expressions of emotion as 
anger or fear. To measure shared and idiosyncratic associations between facial morphology and emotion (aim 
1), we added a post-test at the end of the main emotion categorisation task. Each participant rated each face seen 
during the main task, shown with a neutral expression, according to how frequently he/she thought it expressed 
anger or fear during the main task. This post-test was used to dissociate idiosyncratic associations from shared 
associations.

To determine the time scale under which idiosyncrasies might emerge (aim 2), we induced arbitrary and 
incidental pairings between particular faces and emotions: each face was systematically presented expressing one 
specific emotion at the beginning of each experimental block (half anger, half fear). This manipulation aimed at 
testing whether idiosyncrasies vary on a short time scale–in which case they should match the induced arbitrary 
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face-emotion associations, or reflect stable inter-individual differences in face-emotion associations – in which 
case they should be independent of them.

Finally, to identify neural and computational mechanisms underlying face-emotion associations (aim 3), we 
analyzed human behavior and electrical brain activity using electroencephalography (EEG) during emotion cat-
egorisation in a second group of subjects using the same facial stimuli. Using a canonical decision-theoretic 
framework, we tested whether facial morphology triggers either a shift in decision criterion toward the emotion 
associated with the face, or an increased sensitivity to the facial cues characteristic of the emotion associated with 
the face.

Results
Dissociation of induced, shared and idiosyncratic face-emotion associations.  In the main emo-
tion categorization task, participants categorized 32 different faces as expressing anger or fear. Emotion strength 
was manipulated by presenting ‘morphed’ facial expressions ranging from neutral to intense anger or fear. To 
induce arbitrary face-emotion associations, each experimental block started with a short ‘induction’ period. 
During this period, we randomly paired, differently for each participant, half of the 32 faces with anger only (16 
randomly selected faces) and the other half with fear only (the remaining 16 faces). Both emotional expressions 
were presented with the highest level of emotion (Fig. 1a). Faces arbitrarily associated with anger are labeled 
‘Induced anger’, and those arbitrarily associated with fear are labeled ‘Induced fear’. This short induction period 
was directly followed by a ‘test’ period during which all 32 faces expressed an equal number of angry and fearful 
expressions at variable emotion strength. In both the ‘induction’ and ‘test’ periods, participants had to categorize 
the facial expression that appeared on the screen for 250 milliseconds (ms) as expressing anger or fear (Fig. 1b), 
with no explicit warning about the transition between the ‘induction’ and ‘test’ periods.

After the main task, participants performed a ‘post-test’ rating task, during which the same 32 faces were pre-
sented, but this time with a neutral expression. Participants were requested to rate each face in terms of how fre-
quently they think this specific face expressed anger or fear during the main task (Fig. 1c). Post-test ratings were 
used to measure and dissociate induced, shared and idiosyncratic face-emotion associations. We first observed 
that induced associations were not reflected in the post-test. Indeed, neither the difference between ‘induced 
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Figure 1.  Stimuli and experimental procedure. (a) Left panel, the first 48 trials of each block consisted of faces 
expressing either anger or fear at the highest level of emotion, to manipulate expressions of individual faces. 
Right panel, an equal number of morphed anger and fear expressions were presented in the other 112 trials 
of the block, examples are shown for one face: morphs from neutral to fearful/angry expressions providing 
evidence for one or the other emotion. (b) Following fixation, a facial expression is presented for 250 ms, after 
which the participant indicates whether the face expressed anger or fear within 2 seconds. No feedback is 
provided after response. (c) At the end of the experiment, participants performed a post-test in which they rated 
on a scale whether they think each neutral face (that appeared for 2 sec) expressed more anger or fear during the 
experiment. The faces shown in the figure are taken from the Radboud Faces database32.
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anger’ and ‘induced fear’ mean ratings (T30 = 0.56, p = 0.57, paired t-test -Bayes Factor = 0.29), nor the area under 
the receiver operating curve (ROC) were significant (0.504 ± 0.003, t-test against chance level, T30 < 0.3, p > 0.8). 
These results suggest that participants were unable to identify induced arbitrary face-emotion associations during 
the post-test.

Next, we used the post-test ratings to define orthogonal shared and idiosyncratic face-emotion associations 
using a ‘leave-one-out’ procedure (see Methods for details). On one hand, we defined ‘shared anger’ and ‘shared 
fear’ as those faces appearing respectively more angry or fearful to the entire group of participants (mean rating 
provided for each face by all participants). On the other hand, ‘idiosyncratic anger’ and ‘idiosyncratic fear’ cor-
responded to faces appearing respectively more angry or more fearful to a particular participant than to other 
participants (i.e., difference between an individual participant’s rating and the mean rating provided for the same 
face by the group of participants).

We then assessed the relationship between induced face-emotion associations and these shared and idiosyn-
cratic associations. Induced associations did not correlate with shared associations (T1,30 = 0.32, p = 0.74, t-test 
against zero), nor idiosyncratic associations (T1,30 < 0.01, p = 1, t-test against zero). This indicates that the three 
types of face-emotion associations (induced, shared and idiosyncratic) are independent. Importantly, this also 
shows that idiosyncratic associations estimated in the post-test cannot be explained only by short-term experi-
ence (i.e. induced associations).

Quantifying emotion recognition biases triggered by shared, idiosyncratic and induced 
face-emotion associations.  We looked at the effect of these three types of face-emotion associations on 
emotion recognition during the main task. First, shared associations interacted with the displayed emotion on the 
accuracy of emotion recognition (F 1,30 = 207.3, p < 0.001, ANOVA), with ‘shared anger’ faces better recognised 
as angry as compared to ‘shared fear’ faces and ‘shared fear’ faces better recognised as fearful than ‘shared’ anger 
faces (Fig. 2a).

To characterise how shared associations impact emotion recognition, we compared different decision-making 
models (inspired by signal detection theory) that instantiate the potential mechanisms by which these associa-
tions influence emotion recognition. Shared associations can either trigger a bias toward anger or fear, or alter-
natively modulate the perceptual sensitivity to these emotions. While the two accounts predict similar effects on 
recognition accuracy (i.e. increased performance for anger in ‘shared anger’ faces and fear in ‘shared fear’ faces), 
a bias effect (shift toward anger responses for ‘shared anger’ faces) would be maximal for neutral expressions, 
whereas a sensitivity effect (increased for anger-signifying cues in a ‘shared anger’ faces) would be maximal for 
intermediate levels of emotion. We compared a model where shared associations bias the responses toward ‘con-
gruent’ conditions (anger in ‘shared anger’ faces, and fear in ‘shared fear’ faces) (model 1), to a model where there 
is an increase in sensitivity for these congruent conditions (model 2). Bayesian model selection combined with 
a cross-validation procedure to estimate the log-evidence of the different models showed that the effect was bet-
ter explained by a change in the decision bias (model 1) toward congruent combinations (‘shared anger’/anger, 
‘shared fear’/fear), when compared with an increased sensitivity to these combinations (fixed-effects Bayes factor 
≈ 1052.7, random-effects pexc = 0.99) (Fig. 2b).

Second, we looked at the influence of idiosyncratic associations that reflect each participant’s unique associa-
tions between certain faces and emotions, independently from shared associations (using the same approach as 
above and described in Methods). Idiosyncratic associations also interacted with the displayed emotion on the 
accuracy of emotion recognition (F 1,30 = 41.5, p < 0.001, ANOVA) during the task: faces belonging to ‘idiosyn-
cratic anger’ were better recognised as angry when compared to faces belonging to ‘idiosyncratic fear’, and faces 
belonging to ‘idiosyncratic fear’ were better recognised as fearful when compared to faces belonging to ‘idio-
syncratic anger’ (Fig. 2c). The effect was mediated by a change in decision bias toward congruent face-emotion 
associations, rather than sensitivity (fixed-effects Bayes factor ≈ 109.0, random-effects pexc = 0.96) (Fig. 2d).

Third, we assessed the effect of induced associations on emotion recognition. Induced associations interacted 
with the displayed emotion on the accuracy of emotion recognition (F 1,30 = 7.71, p = 0.009, ANOVA). Faces 
belonging to ‘induced anger’ and ‘induced fear’ (shown as angry or fearful in the induction phase) were better rec-
ognised as angry and fearful, respectively, as compared to those belonging to ‘induced fear’ and ‘induced anger’ 
(Fig. 2e). Once more, model selection indicated that the effect was mediated by a change in decision bias toward 
congruent face-emotion associations, i.e., induced anger showing an angry expression and induced fear showing 
a fearful expression (fixed-effects Bayes factor ≈ 105.3, random-effects pexc = 0.87) (Fig. 2f).

Persistence of idiosyncratic face-emotion associations.  To assess the specific contribution of idio-
syncratic associations, irrespective of both shared and arbitrarily induced associations, we accounted for all the 
observed biases simultaneously and quantified their respective contributions in one single behavioral model. 
All three sources of biases additively influenced participants’ behavior during emotion recognition: the bias 
that reflected participants’ idiosyncratic associations (T30 = 5.80, p < 0.001, t-test against zero), the bias related 
to shared associations (T30 = 5.63, p < 0.001, t-test against zero), and the bias related to induced associations 
(T30 = 2.58, p = 0.01, t-test against zero) (Fig. 2g – also see Supplementary Figure 1 showing individual vari-
ability for each of the biases). Idiosyncratic and shared biases were both much stronger than the induced bias 
(idiosyncratic vs. induced: T30 = 3.34, p = 0.002, paired t-test; shared vs. induced: T30 = 4.57, p < 0.001, shared vs. 
idiosyncratic: T30 = 3.65, p < 0.001, paired t-test). Moreover, the full model better fitted the data as compared to 
models not accounting for idiosyncratic biases (pexc > 0.94, Bayes factor > 1023.6). Finally, the full model—fitted 
separately in the first and second part of the experiment—showed that none of the three types of biases triggered 
by idiosyncratic, shared and induced associations varied in time (all T < 1.42, all p > 0.16, paired t-test). On one 
hand, this result shows that adaptation effects cannot account for the weakness of induced associations: indeed, 
their influence on emotion recognition did not increase nor decrease throughout the experiment. On the other 
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Figure 2.  Influence of shared, idiosyncratic and induced associations on emotion recognition. (a) Proportion of 
correct responses as a function of shared associations (from left to right) Shared Fear-Anger (meaning Shared Fear 
faces expressing Anger), Shared Anger-Anger, Shared Fear-Fear and Shared Anger-Fear. Congruent combinations 
between facial traits and emotions are highlighted in dark. (b) Psychometric function representing the proportion of 
‘anger’ responses as a function of the evidence for anger (proportion morph, 0 for neutral, negative towards fear, and 
positive towards anger) for Shared anger faces (dark grey) and Shared fear faces (light grey). Dots and attached error 
bars indicate the human data (mean ± s.e.m.). Lines and shaded error bars indicate the predictions of the best-fitting 
model. (c) Proportion of correct responses as a function of idiosyncratic associations (from left to right) Idiosyncratic 
Fear-Anger, Idiosyncratic Anger-Anger, Idiosyncratic Fear-Fear and Idiosyncratic Anger-Fear. (d) Same as (b) for 
Idiosyncratic anger faces and Idiosyncratic fear faces. (e) Proportion of correct responses as a function of induced 
associations (from left to right) Induced fear-Anger, Induced anger-Anger, Induced fear-Fear and Induced anger-
Fear. (f) Same as (b) for faces belonging to Induced anger and those belonging to Induced fear. (g) Estimated decision 
bias strength toward congruent face-emotion associations for the model integrating all three sources of social biases: 
shared (violet), idiosyncratic (green) and induced (orange) associations. *p < 0.05, **p < 0.01, ***p < 0.001.
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hand, and more importantly, this result shows that idiosyncratic biases did not emerge gradually throughout the 
experiment: they rather seem to represent stable biases, unique to each individual. Together, these results show 
that biases in emotion recognition shared across human observers coexist with large and stable idiosyncrasies that 
cannot be explained by short-term experience with particular faces (i.e., our induction manipulation).

Neural signature of shared associations in emotion recognition.  In a previous independent elec-
troencephalography (EEG) experiment, 24 healthy individuals performed exactly the same experimental task—
recognition of morphed expressions of anger or fear (Fig. 1b)—without the induced face-emotion associations 
blocks or the post-test ratings on neutral faces10. To assess whether shared associations are represented in the 
brain along with emotion strength, and in the absence of a post-test rating task, we defined shared face-emotion 
associations directly from decisions in the emotion recognition task. For each face, ‘shared associations’ corre-
sponded to the mean decision bias for that face across participants (see Methods).

Instead of computing event-related averages, our EEG analyses consisted of a parametric regression-based 
approach where single-trial EEG signals were regressed against variables of interest (here the strength of the dis-
played emotion and shared associations) at each electrode and time point following the presentation of the face10–

12. The resulting time course at each electrode represents the degree to which EEG activity ‘encodes’ (co-varies 
with) the emotion strength or shared associations. Emotion strength was encoded at 500 ms in centro-parietal 
EEG signals, known to encode the decision variable11–13 (T23 = 4.7, p < 0.001, t-test against 0). Shared 
face-emotion associations were also encoded at the same electrodes (Fig. 3a, left panel). Yet, besides being rep-
resented in decision signals, shared associations were processed about 100 ms before the emotion strength itself 
(Fig. 3a right panel) (shared face-emotion associations: 270 ms, emotion strength: 390 ms, T23 = 4.0, p < 0.001, 
see Methods for details). This earlier encoding is consistent with a decision bias in emotion recognition, thus 
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Figure 3.  Neural signature of shared and idiosyncratic face-emotion associations. (a) Left panel: Scalp 
topography of encoding parameter estimate at 500 ms for emotion strength (top) and shared associations 
(bottom) expressed as mean parameter estimates in arbitrary units (a.u.). Right panel. Time course of shared 
associations (violet) and emotion strength (blue) encoding at parietal electrodes (indicated by white dots on the 
scalp topography). Shaded error bars indicate s.e.m. Thick violet and blue lines indicate significance against zero 
at a cluster-corrected p-value of 0.05. Encoding latency is significantly different between shared associations 
and emotion encoding. (b) Encoding of emotion strength and shared associations separately for conditions 
where participants responded congruently (cong) or incongruently (incong) with shared associations. (c) Scalp 
topographies at 500 ms after stimulus onset showing the contrast in arbitrary units (a.u) between trials where 
responses were congruent or incongruent with (from left to right) shared, idiosyncratic (stimulus-dependent/
associative) and stimulus-independent biases. (d) Time course of the contrast between trials where responses 
were congruent or incongruent with associative shared (violet), idiosyncratic (green), and motor stimulus-
independent (black) biases at parietal electrodes (indicated by white dots on the scalp topographies in (c)). 
The vertical black line shows mean reaction times across participants with shaded errors bar indicating s.e.m. 
*p < 0.05, ***p < 0.001.
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corroborating the identified behavioral mechanisms underlying the influence of shared associations on emotion 
recognition.

Moreover, the encoding of shared associations was significant only in trials where subsequent responses were 
congruent with the shared emotion association for the presented face (T23 = 2.7, p = 0.01, paired t-test), thus 
showing it could predict upcoming responses (Fig. 3b). To verify whether this effect merely reflects trials where 
participants generally paid more attention to the face and thereby processed any facial information more accu-
rately, we compared the encoding of emotion strength by splitting trial with responses congruent or incongruent 
with shared associations. We found no difference in the encoding of emotion strength when comparing these 
two types of trials (T23 = 0.09, p = 0.92, paired t-test). Furthermore, a significant interaction between the type 
of information encoded (emotion strength or shared associations) and the direction of the upcoming response 
(congruent or incongruent with shared associations) (F1,23 = 6.1, p = 0.02, ANOVA) (Fig. 3b) confirmed that the 
neural encoding of shared associations selectively influenced the direction of upcoming response.

Common neural correlates of decision biases related to shared and idiosyncratic face-emotion 
associations.  Results from our main behavioral experiment suggest that both shared and idiosyncratic 
face-emotion associations bias emotion recognition through a similar mechanism. These findings raised the ques-
tion of whether the neural correlates for shared and idiosyncratic associations were also similar.

For the EEG experiment, we defined orthogonal shared and idiosyncratic face-emotion associations directly 
from decisions in the emotion recognition task. In other words, ‘shared anger’ and ‘shared fear’ faces represented 
faces that biased decisions respectively toward anger and fear for the group of participants. ‘Idiosyncratic anger’ 
and ‘idiosyncratic fear’ corresponded to faces that biased decisions toward anger or fear for a particular partici-
pant as compared to other participants (i.e., difference between the bias of a given participant for a face and the 
mean bias for the same face by all other participants) (see Methods).

We created two ‘shared’ and ‘idiosyncratic’ regressors (orthogonal by definition, given the construction 
of ‘shared’ and ‘idiosyncratic’ labels), which tagged single trials in terms of shared and idiosyncratic asso-
ciations respectively, and the response provided by the participant – either congruent or incongruent with 
the association. We then assessed whether centro-parietal EEG signals at 500 ms differed between trials with 
association-congruent and -incongruent responses, for both shared and idiosyncratic associations. To do so, we 
performed a regression of EEG signals against these two regressors. We observed increased centro-parietal activ-
ity before the responses that were congruent with shared associations (T23 = 3.4, p = 0.002, paired t-test at 500 ms) 
and idiosyncratic associations (T23 = 2.95, p = 0.007, paired t-test at 500 ms) (Fig. 3c,d). This result indicates the 
additive influence of both types of associations on emotion recognition. The influence of shared and idiosyncratic 
face-emotion associations thus relies on similar neural correlates: an increased activity in decision signals preced-
ing responses congruent with the observer’s face-emotion associations.

Interestingly, it is known that other types of decision biases, such as ‘response’ or ‘status quo’ biases, are usu-
ally associated with decreased decision signals preceding congruent responses14,15. In our emotion recognition 
task, the same analyses were performed on overall, face-independent decision biases - i.e. response biases toward 
responding ‘anger’ or ‘fear’. Decreased parietal activity at 500 ms was observed for responses congruent with the 
face-independent ‘response’ bias (T23 = 2.1, p = 0.04, paired t-test) (Fig. 3c,d). The topographies at 500 ms (Fig. 3c) 
and the time course (Fig. 3d) of the main effect of activity with/against different types of biases underline a com-
mon mechanism for shared and idiosyncratic face-emotion biases – i.e., stimulus-dependent associative biases, 
as opposed to stimulus-independent biases.

Shared associations correspond to social attributes of dominance and trust.  Particular facial 
traits such as masculine/feminine or baby-faced traits have been associated with higher order social attributes1. 
To assess whether shared associations between faces and emotional expressions of anger and fear are linked to 
particular social attributes, we conducted another rating task on a new independent sample of twenty healthy 
participants (10 females, mean age: 22.7 ± 0.6 years). Participants were requested to rate each of the faces used in 
the previous experiments, displayed with a neutral expression, in terms of dominance and trustworthiness traits. 
Faces were presented for 2 seconds, followed by the appearance on the screen of 2 continuous scales (going from 
“not at all” to “very much”) accompanied by the instructions: “How much is this face dominant/trustworthy?”. 
We took the mean ratings across participants for each face and correlated these ratings with shared associations 
obtained from the post-test in the main behavioral experiment.

First, dominance ratings negatively correlated with trustworthiness ratings (r = −0.49, p = 0.002, Pearson 
correlation). Second, the shared component of the post-test rating (mean rating across participants for each 
face) positively correlated with dominance (r = 0.55, p = 0.001, Pearson correlation) and negatively correlated 
with trustworthiness (r = −0.43, p = 0.01, Pearson correlation). Doing a similar correlation in the EEG exper-
iment showed that shared associations (mean bias across participants for each face) positively correlated with 
dominance (r = 0.64, p < 0.001, Pearson correlation) and negatively correlated with trustworthiness (r = −0.43, 
p = 0.008, Pearson correlation). These highly significant correlations suggest that when faces are associated with 
anger and fear in a way that is shared across participants, these faces are also associated with dominance and 
trustworthiness. However, the precise direction of the effect (e.g. dominance associated with anger and trustwor-
thiness associated with fear) is difficult to assess because the emotion recognition task consisted of a binary choice 
between anger and fear. We can only conclude that in such a context, the more dominant or untrustworthy a face 
is, the more it is recognised as angry, and the more trustworthy or non-dominant another face is, the more it is 
recognised as fearful.
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Discussion
Past research has shown that potentially unreliable1,3, yet pervasive, social judgments about others arise from 
facial morphology whose significance is similar across observers1. These shared associations have been demon-
strated not only between specific facial morphology and social attributes (e.g. personality traits), but also between 
specific facial morphology and emotional expressions9. Here we show that humans also feature a large degree 
of idiosyncrasy in emotion judgement – that is, variation unique to each observer. A large part of this idiosyn-
cratic component appears to be independent from short-term experience (in our study, arbitrarily associations 
induced at the beginning of each block). Using computational modeling based on canonical decision theory16,17, 
we identified a single mechanism responsible for both shared and idiosyncratic facial determinants of emotion 
recognition: a shift in decision criterion toward bias-congruent interpretations of facial cues. Finally, the influ-
ence of shared and idiosyncratic associations in emotion recognition was associated with a common signature in 
EEG activity – which differed from the signature of classical response biases in decision-making. Together, these 
findings highlight the underestimated influence of idiosyncratic associative biases on core emotional judgments.

By means of computational modeling of human decision-making, we characterised the specific mechanism 
by which facial morphology influences emotion recognition. Two main classes of mechanisms could explain the 
observed influence: a shift in decision criterion toward the emotion associated with identity-characteristic fea-
tures – e.g., anger for a masculine face, or an increase in perceptual sensitivity to emotional cues associated with 
identity-characteristic features – e.g., anger-signifying cues such as lowered eye brows in the same masculine face. 
Here, by varying emotion strength parametrically, we could differentiate between these two mechanisms in choice 
behavior. We revealed that idiosyncratic and shared associations jointly influenced emotion recognition through 
a criterion shift – in contrast to other known contextual effects in emotion recognition such as gaze direction10. A 
criterion shift is generally thought to be less costly than an enhancement of perceptual sensitivity – which requires 
increasing the signal-to-noise ratio of neural processing. Face-emotion associations might rely on flexible shifts 
in decision criterion because such social judgments are often inaccurate3 and thus prone to many adjustments at 
various time scales – e.g., cultural (different cultures have different social codes) or contextual (different moods 
at work/home).

Our findings further support an automatic processing of facial cues constitutive of someone’s identity dur-
ing emotion recognition. While traditional views emphasised an independent processing of emotion and 
facial identity18,19, there is now growing evidence in favor of a reciprocal interaction between emotion- and 
identity-characteristic facial attributes20–22 suggesting that both are processed automatically. The regression 
of emotion- and identity-characteristic features against electrical brain signals revealed that the encoding of 
identity-characteristic facial attributes in centro-parietal correlates of the decision variable12,13 emerged 100 ms 
earlier (270 ms) than the encoding of the emotion-characteristic features (390 ms). The timing of these effects is 
in line with previous reports of an early processing of facial features (starting at 170 ms) and a later processing 
(after 300 ms) of task-specific facial information23,24. The earlier encoding of facial morphological features in the 
decision process provides supplementary evidence in favor of a criterion shift in emotion recognition.

In addition, increased centro-parietal activity was observed prior to responses congruent with the 
face-emotion associations – whether shared (predictable across observers) or idiosyncratic (unique to each 
observer). The fact that shared and idiosyncratic biases rely on the same neural correlates supports the hypoth-
esis of a single mechanism that might, speculatively, reinforce associative biases in social judgments irrespec-
tive of their fitness. The additional observation that the expression of both shared and idiosyncratic biases 
co-varies positively with the decision neural signal is also important. Indeed, this common directionality sug-
gests that a stronger processing of identity-characteristic facial attributes increases the likelihood of the expres-
sion of corresponding bias in the subsequent response. This neural signature of ‘associative’ biases is opposite 
to those described for other decision biases – e.g., ‘response’ or ‘status quo’ biases14,15, which are independent 
of the stimulus. Their expression is typically associated with decreased decision signals preceding response. An 
important difference between associative and other kinds of biases is that only the first depends on the process-
ing of stimulus attributes, and thus on the allocation of attentional resources to stimulus processing – here the 
identity-characteristic attributes of the presented face.

Shared associations were related to social attributes (dominance, trustworthiness). This finding supports pre-
vious results showing that social attributes such as trustworthiness influence emotion recognition9. Interestingly, 
dynamic facial expression and movements can camouflage facial morphology information when conversely judg-
ing trustworthiness, dominance and attractiveness25. The bi-directionality of interactions between emotional 
expressions (variable traits) and facial morphology (invariant, stable traits) suggests that the facial features at 
play in social attributions (such as attractiveness and trustworthiness) are partially overlapping with those used 
in emotion recognition.

In line with previous studies4–6, our findings draw attention to the existence and importance of idiosyncra-
sies in social judgments. Importantly, they extend previous observations of idiosyncrasy in judgments of per-
sonality traits (such as attractiveness4–6) to emotion recognition from faces. Such idiosyncrasies can stem from 
inter-individual difference in their associations between identity-characteristic facial features and emotions, their 
internal representations of emotional expressions26 (i.e. the model of an angry face for each observer) or their 
strategies for feature sampling in faces (i.e. one observer focuses on the mouth while another person focuses 
on the eyes to make emotion judgments). Although the present experiment cannot disentangle these potential 
sources of idiosyncrasy, it allowed us to evaluate the time scale under which they emerged. In agreement with 
inter-temporal idiosyncrasies, i.e. inconsistent social judgments for the same faces by the same observer27–29, our 
results show that short-term experience (induced associations) impacts emotion judgment from faces. Yet, a large 
degree of idiosyncrasy appears to reflect stable individual differences (independent from short-term induced 
associations and stable over the course of the experiment). These idiosyncrasies might reflect the unique life 
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experience30 or environment4 of each observer, and could be maintained through generalization to other faces 
resembling that face31.

To conclude, our findings provide the mechanism by which face-emotion associations influence emotion 
recognition. They extend previous studies4–6 by revealing large idiosyncrasies during core emotion judgments – a 
factor which is only rarely taken into account when studying emotion recognition. Importantly, idiosyncrasies 
in social judgments have the advantage of avoiding strong and potentially inaccurate consensus during collective 
decisions, by adding variability in social judgments across observers. Future studies should directly address the 
impact of idiosyncrasies on collective decision-making and the emergence of consensus between individuals. 
Finally, the criterion shift by which face-emotion associations influence emotion recognition is known to be par-
ticularly flexible, and thus minimizes the biological cost associated with overcoming inaccurate social attributions 
on the basis of disconfirmatory evidence (e.g., social interactions) in a rapid and adaptive fashion.

Methods
In this section, we describe the methods of our current experiment, as well as the methods from one of our pre-
vious electroencephalography experiments10 that allowed tackling the neural signature of the behavioral effects 
observed in the current experiment.

Participants.  Current Experiment.  Thirty-one healthy participants (15 females; mean age: 22.3 ± 0.5 years) 
participated to the experiment.

Electroencephalography (EEG) experiment.  Twenty-four healthy participants (12 females; mean age: 22.7 ± 0.7 
years) participated to the experiment10.

All participants were right-handed, with normal (or corrected-to-normal) vision and no neurological 
or psychiatric history. All experiments were approved by the local ethics committee (Comite de Protection 
des Personnes, Ile-de-France VI, Inserm approval #C07–28, DGS approval #2007-0569, IDRCB approval 
#2007-A01125-48). Our studies were performed in accordance with the Declaration of Helsinki. All human par-
ticipants provided informed written consent prior to the experiment according to institutional guidelines and 
regulations of the local research ethics committee.

Stimuli.  Stimuli consisted of faces adapted from the Radboud Faces Database32 that varied in emotion (neu-
tral, angry or fearful expressions). The strength of emotional expressions varied with 7 levels of anger and 7 levels 
of fear equalized in perceived emotional strength and a neutral condition (see Fig. 1a for examples of stimuli). A 
complete description of the stimuli is provided in El Zein et al., 201510. In the published EEG study, 36 faces (18 
females) were used while in the current behavioral study, only 32 (16 females) out of these 36 faces were used only 
to reduce the length of the task that now included additional trials and a post-test that will be described in the 
experimental procedure below.

Data availability.  The datasets generated and analysed during the current study are available at this link: 
https://drive.google.com/drive/folders/1UjHf17poDLWoSMY0pXZ2bZv9Ai2mrzj1?usp=sharing.

Experimental Design and Statistical Analysis
Experimental design.  Current Experiment.  The task consisted of categorizing the faces as fearful or angry 
(Fig. 1b). Using the Psychophysics-3 Toolbox33,34, faces appeared for 250 ms on a black screen, after which par-
ticipants had to give their response by pressing one of the two “ctrl” buttons localized on the keyboard with their 
right or left index (a maximum of 2 seconds to respond before the next trial). The faces shown at each trial covered 
the participant’s central vision and were displayed with a visual angle of 6.5 degrees. An Anger/Fear mapping was 
used (e.g Anger: Left hand, Fear: Right hand) kept constant for each subject, counterbalanced over all subjects.

To experimentally manipulate face-emotion associations, the 48 first trials of each block consisted of biased 
trials (‘induction period’): instead of each face expressing at an equal amount anger or fear, half of the faces 
expressed only anger (faces belonging to “induced anger”), and the other half expressed only fear (faces belonging 
to “induced fear”) (Fig. 1a). The assignment of faces to ‘Induced anger’ and ‘Induced fear’ varied from a partici-
pant to another, with the constraint that all faces were shown as expressing anger or fear across all participants. 
To maximise the chance of inducing the associations, only the highest level of emotion strength (7) was presented 
in these trials, and each stimulus was repeated 3 times. Importantly, the task during these blocks was unchanged, 
and participants had no explicit information about the content of the trials, they were only informed that the task 
might seem a little easier at the beginning of the blocs. Participants were indeed very accurate (95.5 ± 0.7%) dur-
ing the ‘induction period’. Importantly, we chose to induce face-emotion pairings at the beginning of the blocks, 
and not during all the experiment, to avoid recency effects.

In the rest of the block ‘test period’ (112 trials), we presented levels 1 to 6 from the morph continuum of both 
emotions in an unbiased fashion (equal number of anger and fear for each face) as well as the neutral stimuli. The 
highest level of emotion, used in the ‘induction period’, was excluded from the ‘test period’. After each block, the 
percentage of correct responses was calculated from the ‘test period’ only and was shown to the participants to 
keep them motivated. The experiment was divided in 8 experimental blocks, 16 faces were manipulated in the 
first 4 blocs, and 16 different faces were manipulated in the 4 last blocks. All analyses were performed on only 
trials from the ‘test’ period. Note however that there were 2 outliers among the 32 faces with average classifica-
tion errors of 27% error and 18% in the induction period (they were still recognized above chance). Removing 
them from the analysis did not change any of the reported results, neither qualitatively nor in terms of statistical 
significance.

At the end of the experiment, participants performed a post-test, during which they saw all the 32 faces 
encountered in the main experiment, but with a neutral expression. Each face appeared on the screen for 

https://drive.google.com/drive/folders/1UjHf17poDLWoSMY0pXZ2bZv9Ai2mrzj1?usp=sharing
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2 seconds and participants had to rate it on a scale (unlimited time) measuring the degree to which they thought 
that each face expressed anger or fear during the experiment (Fig. 1c). The position of anger and fear at the right 
and left of the scale was counterbalanced across participants.

EEG experiment.  Faces appeared for 250 ms on a black screen, after which participants had to categorise the 
expressed emotion as anger or fear by pressing one of two buttons located on two external devices held in their 
right and left hands (Fig. 1b). An Anger/Fear mapping was used (e.g Anger: Left hand, Fear: Right hand) kept 
constant for each subject, counterbalanced over all subjects. Here, face-emotion associations were not manipu-
lated; and no post-test was performed at the end of the experiment.

Behavioral data analyses.  Post-test analyses.  To check whether the post-test reflected experimentally 
induced face-emotion associations, a two-tailed student t-test was conducted on the mean ratings for faces 
belonging to Induced anger and those belonging to Induced fear (considering the associations for each partici-
pant, as they differed across participants). The area under the receiver operating curve (AUC ROC) was also cal-
culated to assess if the ratings were significantly different from chance or reflected the experimental manipulation.

Post-test ratings of neutral faces were employed to determine shared and idiosyncratic face-emotion asso-
ciations. In practice, to label each face with respect to ‘shared’ and ‘idiosyncratic’ categories, we implemented a 
‘leave-one-out’ procedure. First, we assessed whether the ratings provided by a participant for the different faces 
correlated positively with the mean ratings provided by all other participants for the same faces using the follow-
ing linear regression:

β ε= = = × = ≠ +rating i j rating i j(face , subj ) mean [ (face , subj )] (1)subj

with = iface  corresponding to face number i, = jsubj  to participant number j, mean [ ]subj  signifying a mean 
across participants.

This analysis revealed a positive correlation coefficient β for all participants (T30 = 9.18, p < 0.001, t-test 
against zero), indicating that ratings were consistent across participants. It remained significant when induced 
associations were modeled as an additional predictor of ratings (T30 = 9.31, p < 0.001, t-test against zero), suggest-
ing that shared and induced associations are independent. For participant number j, we thus defined ‘shared 
anger’ faces and ‘shared fear’ faces based on a median split of the mean ratings provided by all other participants: 
‘shared anger’ if = ≠rating i jmean [ (face , subj )]subj  exceeds its median value across faces, and ‘shared fear’ 
otherwise.

To compute idiosyncratic associations for participant number j, we subtracted the mean rating of all the other 
participants (shared component of the rating) from the mean rating of participant number j, leaving the residuals 
ε that only mirror the idiosyncratic (participant-specific) component of the ratings. Similarly to shared associa-
tions, we defined ‘idiosyncratic anger’ faces and ‘idiosyncratic fear’ faces based on a median split of the residuals 
ε: ‘idiosyncratic anger’ if ε > 0, and ‘idiosyncratic fear’ otherwise.

Finally, for each participant, we performed general linear regressions to determine whether shared and idi-
osyncratic associations correlate with induced associations. A t-test against zero of the correlation coefficients 
was conducted to test for significant correlations. Induced associations did not correlate with shared associations 
(T1,30 = 0.32, p = 0.74, t-test against zero), nor with idiosyncratic associations (T1,30 < 0.01, p = 1, t-test against 
zero).

Emotion recognition task analyses.  Repeated-measures analyses of variance (ANOVA) were performed on the 
proportion of correct responses in the unbiased trials ‘test’ period (removing the ‘induction’ period). Shared asso-
ciations (‘shared anger’/’shared fear’) or idiosyncratic associations (‘idiosyncratic anger’/’idiosyncratic fear’) or 
induced associations (‘induced anger’/’induced fear’) and emotion (anger/fear) were within-participant factors.

Model selection.  We performed model-guided analyses of the behavioural data to characterise the observed 
influence of face-emotion associations on emotion recognition accuracy. We used Bayesian model selection 
based on the model evidence (estimated by a 10-fold cross-validation estimation of model log-likelihood, which 
penalises implicitly for model complexity without relying on particular approximations such as the Bayesian 
Information Criterion or the Akaike Information Criterion). We applied both fixed-effects35,36 and random-effects 
statistics37.

We used a simple model accounting for subject’s decisions using a psychometric model such as:

= Φ ∗ +xP(Anger) (w b) (2)

where P(Anger) corresponds to the probability of judging the face as angry, Ф to the cumulative normal function, 
w to the perceptual sensitivity to the displayed emotion, x to the evidence in favor of anger or fear in each trial 
and b to an additive, stimulus-independent bias toward one of the two responses/emotions. We compared two 
models deriving from this simple model each proposing different mechanisms to account for changes in recogni-
tion accuracy based on face-emotion associations. Model 1 considers that faces associated with an emotion bias 
the recognition in favor of that emotion. Model 2 proposes that face-emotion associations selectively increase the 
sensitivity to congruent emotions. These models were used for effects related to shared, idiosyncratic and induced 
associations. After isolating winning models in each case, we used a full model that integrated all three types of 
associations changing the response bias.

Where useful, Bayes factors were computed as means to test for a critical absence of effects observed, to distin-
guish between the lack of sensitivity of tests and genuine absence of difference38.
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EEG analyses.  EEG analyses were performed on a previous EEG study consisting of 24 participants that 
completed an emotion recognition task on morphed emotional expressions of anger and fear. EEG activity was 
recorded using an EEG cap of 63 sintered Ag/AgCl ring electrodes. Pre-processing of EEG data is described in 
details in El Zein et al.10.

The approach we use for analyzing EEG data consists in performing single-trial regressions against variables 
of interest, instead of averaging trials to compute evoked potentials. As the task comprised categorisation of anger 
and fear emotions, emotion strength was the decision variable and one variable of interest. Here we wanted to 
assess whether shared associations were also represented in the brain along with the decision variable, i.e. emo-
tion strength. The strength of the parameter estimates of this regression at each time point after stimulus onset 
represents how much EEG activity encodes emotion levels or shared associations. As no ‘post-test’ rating task was 
used in the EEG experiment, we defined shared associations directly from participants’ behavior on the emotion 
recognition task using participants’ decision biases (see equation 2) when categorizing faces as angry or fearful. 
When computed separately for each face for all participants, the mean decision bias/criterion captures the shared 
component in emotion recognition. For each participant, shared associations between a face and an emotion 
thus corresponded to the mean emotion bias across participants for that face. We were interested in whether, 
in addition to encoding emotion strength, decision related brain signals encoded shared face-emotion associa-
tions. We thus looked at EEG activity at centro-parietal electrodes (CP1/CP2/CPZ/P1/P2/PZ/PO1/PO2/POZ) 
that encoded the decision variable13 and that was shown to co-vary with emotion strength at 500 ms10. We entered 
both emotion strength and shared face-emotion associations as predictors of EEG activity on these electrodes. We 
then looked at the parameter estimates of this regression including emotion strength and shared associations, at 
each time point after stimulus onset on the centro-parietal electrodes.

To look for a neural signature of both shared and idiosyncratic face-emotion associations and compare it 
to other types of biases, we used single-trial regressions looking at parietal activity in trials where responses 
were congruent or incongruent with shared, idiosyncratic (both stimulus-dependent/associative) and 
stimulus-independent biases.

Idiosyncratic biases were computed by using a residual approach as described in the following equation:

β ε= = = × = ≠ +decision bias i j decision bias i j_ (face , subj ) mean [ _ (face , subj )] (3)subj

with = iface  corresponding to face number i, = jsubj  to participant number j, mean [ ]subj  signifying a mean 
across participants.

For participant number j, ‘shared anger’ faces and ‘shared fear’ faces corresponded to a median split of the 
mean decision bias across all other participants: ‘shared anger’ if = ≠decision bias i jmean [ _ (face , subj )]subj  
exceeds its median value across all faces, and ‘shared fear’ otherwise. As for idiosyncratic biases, for participant 
number j, we subtracted the mean decision bias across all the other participants (shared component) from the 
decision bias of participant number j, leaving the residuals ε that only mirror the idiosyncratic 
(participant-specific) component of the decision bias. ‘Idiosyncratic anger’ faces and ‘idiosyncratic fear’ faces 
were based on a median split of the residuals ε: ‘idiosyncratic anger’ if ε > 0, and ‘idiosyncratic fear’ otherwise.

Stimulus independent or motor biases simply reflected the general tendency to respond ‘anger’ or ‘fear’ inde-
pendently of the stimulus, i.e., the mean decision bias across all trials for each participant.

To assess whether EEG signals differed between trials with congruent and incongruent responses, across 
shared and idiosyncratic associations as well as stimulus-independent biases, we performed one single regression 
predicting EEG activity at 500 ms in centro-parietal electrodes with 3 different regressors: responses congruent 
or incongruent with shared associations, idiosyncratic associations and stimulus-independent biases (i.e., each of 
the three regressor consisted of +1 for trials where the participant’s response was congruent with the association/
bias and −1 when incongruent). Positive parameter estimates from this regression signify an increased EEG 
activity for congruent vs incongruent response trials while negative parameter estimates signify increased activity 
for incongruent vs congruent response trials.

We controlled for type 1 errors that come from multiple comparisons across time points using non-parametric 
cluster-level statistics39. Finally, we applied a bootstrapping method to test for significant shifts in neural encoding 
latencies between conditions, using a ‘jackknifing’ procedure40.
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