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Abstract

Rationale: The urinary proteome reflects molecular drivers of disease.

Objectives: To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality.

Methods: In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis
coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and
NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression,
the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to
assess predictive accuracy, and Proteasix and protein-proteome interactome analyses.

Measurements and main results: In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new
classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708–0.798) and 0.688
(0.656–0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients
were 2.41 (2.00–2.91) for ACM128 (+ 1 SD), 1.24 (1.16–1.32) for the Charlson Comorbidity Index (+ 1 point), and ≥
1.19 (P≤ 0.022) for other biomarkers (+ 1 SD). ACM128 improved (P ≤ 0.0001) IDI (≥ + 0.50), NRI (≥ + 53.7), and AUC
(≥ + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental
proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/
excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and
absorption, lysosomal activity, and apoptosis.

Conclusions: The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond
clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal
outcome.
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Introduction
In high- and middle-income countries, millions of patients
survive critical illness thanks to the highly specialized life-
sustaining management in intensive care units (ICU).
However, cumulative mortality over the first year after
ICU discharge ranges from 26 to 63% [1]. Large cohort
studies conducted in Canada [2], Australia [3], and the
USA [1] demonstrated that ICU survivors followed up
from 3 [1, 2] up to 15 [3] years experienced mortality rates
2 to 5 times higher than sex- and age-matched population
controls. The number of patients who survive intensive
care is growing fast, because of the demographic transition
in aging populations [4] and the ongoing sophistication of
critical care resulting in a lower in-ICU fatality rate [5–7].
Several risk factors determine the 1-year risk of death after
ICU discharge. Clinical risk indicators include older age,
the indication for critical care, comorbidities, the number
of failing organs, the length of ICU care, and newly diag-
nosed malignancies [3]. The risk of death is also associated
with circulating and urinary biomarkers indicative of myo-
cardial, vascular, or renal distress [8]. Stakeholder confer-
ences advised prioritizing research on reliable predictors
of post-ICU impairments and death to identify patients in
need of further diagnostic work-up and targeted treatment
[5, 7]. Urinary proteomic profiling developed over the past
15 years into a state-of-the-art technology, which enables
discovery of disease-specific multidimensional biomarkers
indicative of molecular pathogenic processes [9, 10].
Along these lines, the current study aimed to develop a
urinary proteomic classifier predictive of the 1-year mor-
tality in ICU survivors. The French and European Out-
come Registry in Intensive Care Unit Investigators
(FROG-ICU; (NCT01367093) compiled the analyzed data-
base [8, 11].

Methods
Patients
FROG-ICU involved medical, surgical, or mixed ICUs at
15 university hospitals [11]. Inclusion criteria included
mechanical ventilation or administration of vasoactive
agents for at least 24 h. The exclusion criteria were age
less than 18 years, severe head injury with a Glasgow
Coma Scale [12] below 8, brain death or persistent vege-
tative state, pregnancy or breastfeeding, transplantation
in the past 12 months, moribund status, and lack of so-
cial security coverage [11].

Measurements
Anthropometric, clinical, and routine biochemical data
were recorded on ICU admission. Variables of interest
included the indication for admission to the ICU, the
Charlson Comorbidity Index (CCI) [13, 14], the Sequen-
tial Organ Failure Assessment (SOFA) [15] score, blood
pressure, serum creatinine and cystatin C, and blood

glucose. Information also collected on admission, included
treatment with mechanical ventilation, extracorporeal mem-
brane oxygenation, or renal replacement therapy.
The CCI is a method of categorizing comorbidities of

patients based on the International Classification of Dis-
eases (ICD) diagnosis codes found in administrative data.
It included 19 categories (Additional file 1: Table S1).
Each comorbidity category has an associated weight
(from 1 to 6), based on the adjusted risk of mortality or
resource use, and the sum of all the weights results in a
single comorbidity score for a patient. A CCI was calcu-
lated for each patient on ICU admission to classify
comorbidity and grouped as having either no comorbid-
ity (CCI = 0), moderate comorbidity (CCI = 1–5), or se-
vere comorbidity (CCI ≥ 6). SOFA score can help assess
the degree of organ dysfunction on ICU admission. The
score is based on six different scores, one each for the
respiratory, cardiovascular, hepatic, coagulation, renal,
and neurological systems. If an organ is not affected, a
zero score is given. If an organ system is affected in mul-
tiple ways, the highest score is used in constructing the
SOFA categorization. SOFA scores range from 0 to 24,
and the risk of death is proportional to the score.
Estimated glomerular filtration rate was derived from

serum creatinine (eGFRcrt) or cystatin C (eGFRcys), ac-
cording to the Chronic Kidney Disease Epidemiology
Collaboration equation [16]. Fresh urine samples were
analyzed for the albumin concentration.

Biomarkers
Circulating and urinary biomarkers were measured in a
central certified laboratory on samples obtained on ICU
admission. The circulating biomarkers indicated left ven-
tricular dysfunction (brain natriuretic peptide [BNP];
Roche Diagnostics GmbH, Mannheim, Germany), left
ventricular ischemia and injury (high-sensitive troponin
T [hsTNT]; Abbott, Abbott Park, IL) [17], myocardial
ischemia (high-sensitive troponin I [hsTnI]; Abbott,
Abbott Park, IL) [18], vascular dysfunction (biologically
active adrenomedullin [ADM]; Adrenomed GmbH, Hen-
nigsdorf, Germany) [19], inflammation and cardiac stress
(the interleukin-1 receptor family member soluble ST2
[sST2]; Eurobio, Critical Diagnostics, San Diego, CA)
[20], or acute kidney injury (neutrophil-gelatinase-asso-
ciated lipocalin [NGAL]; ARCHITECT, Abbott Diagnos-
tics, Chicago, IL) [21]. The urinary biomarkers included
albuminuria and NGAL [21].
The urinary proteome is well characterized, and refer-

ence standards are available [22]. Urine proteome ana-
lysis was performed on urine samples collected on
admission and bio-banked until assayed. Detailed infor-
mation on urine sample preparation, proteome analysis
by capillary electrophoresis coupled to mass spectrom-
etry, data processing, and sequencing of the urinary
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peptides allowing identification of parent proteins is
available in previous publications [9] and the methods
section of the online-only supplement.

Outcome
Information on vital status was collected 3, 6, and 12
months after ICU discharge, as previously described [11].
Trained clinical research assistants called the patients or
their relatives. The short intervals between contacts, ran-
ging from 3 to 6months, established a strong relationship
of trust between the research team, the patients, and their
family. If this direct contact was lost during follow-up,
vital status was ascertained via national health services re-
cords. For the current study, the 1-year vital status was
known for all patients included in the analysis.

Statistics
SAS, version 9.4, maintenance level 5 (SAS Institute Inc.,
Cary, NC) was used for database management and statis-
tical analysis. Departure of distributions from normality
was evaluated by the Shapiro-Wilk test. The biomarker
distributions with the exception of ACM128 were trans-
formed by sorting measurements from the smallest to
the highest and then applying the inverse cumulative
normal function [23]. Means, medians, and proportions
were compared using the large-sample z-test or
ANOVA, the Wilcoxon rank-sum test, and Fisher’s exact
test, respectively. We computed 95% confidence interval

of rates as R� 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiðR=TÞp

, where R and T are the
rate and the denominator used to calculate the rate.

Construction and initial validation of the classifier
For discovery of the new classifier associated with all-
cause mortality following ICU discharge, 30% of the co-
hort (299 survivors and 70 nonsurvivors) were randomly
selected from all enrolled patients (n = 1243). For valid-
ation, the remainder of the cohort was analyzed (699
survivors and 175 nonsurvivors). In the discovery phase,
the association of mortality with urinary peptides was
assessed by Wilcoxon testing targeting a significance
level of 0.05. The peptides that remained associated with
the 1-year mortality were combined into a single multi-
dimensional classifier, using support vector machine
modeling, as implemented in the MosaCluster software,
version 1.7.0, and as described in detail in the methods
section of the online supplement.

Performance of the classifier
In patients included in the validation data set, performance
of the new classifier was assessed, using proportional haz-
ards regression. The comparators were established clinical
predictors of adverse health outcomes in ICU patients, i.e.,
the Charlson Comorbidity Index [13, 14] and SOFA [15]

score and other circulating and urinary biomarkers. These
analyses accounted for center effects as a random variable
and for risk factors as fixed effects. Centers were grouped
per location (n = 15) or per group of patients they were
serving (medical, surgical, or mixed). First, cumulative inci-
dence of death was plotted by thirds of the distribution of
the new classifier, while accounting for sex, age, and Charl-
son Comorbidity Index. Next, the hazard ratios relating the
risk of death to tertiles of classifier were computed from
Cox models adjusted for sex, age, mean arterial pressure
(diastolic pressure plus one third of pulse pressure), eGFR,
and diabetes mellitus. The proportional hazards assumption
was checked by the Kolmogorov-type supremum test and
by testing the interaction between follow-up duration and
the new classifier. Finally, in multivariable-adjusted Cox
models, the accuracy of the classifier to discriminate be-
tween survivors and nonsurvivors was compared with the
Charlson Comorbidity Index [13] and other biomarkers
(one at a time). Improvement in model performance was
assessed from the integrated discrimination improvement
(IDI) [24], the net reclassification improvement (NRI) [24],
and the change in the area under the curve (ΔUC).

Analysis of single urinary peptides
For analysis of single peptides, sequenced peptides, which
had a detectable signal in over 70% of participants, were
selected. P values and confidence intervals were adjusted
for multiple testing using the Bonferroni method based on
the number of parental proteins identified.

Proteasix and pathway analysis
Proteases responsible for the generation of the urinary
peptide fragments were predicted in silico, using Protea-
six [25, 26]. Proteolytic enzymes mapped to at least 10
cleavage sites in the peptides associated with post-ICU
mortality were analyzed. The protein-protein interac-
tome was constructed, using the STRING database
(STRING, version 11.0; https://string-db.org). Proteins
corresponding to sequenced urinary peptides and the in
silico predicted proteolytic enzymes were included for
the interactome analysis. The pathway enrichment was
evaluated against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database with the false discovery rate
set at P < 0.01.
Changes in urinary collagen fragments might reflect

alterations in protease activity, but may also be the result
of a change in collagen turnover in tissues, such as for
instance as a consequence of increased cross-linking. Im-
putation of the protease activity based on directional
changes in urinary collagen fragments might be incorrect.
To account for this potential problem, we also performed
a Proteasix analysis, excluding collagen fragments.
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Results
Characteristics of patients
The analysis included 998 survivors and 245 nonsurvi-
vors. Nonsurvivors compared with survivors (Table 1)
included more patients with diabetes mellitus (26.5%
vs. 14.5%) and needing dialysis (10.2 vs. 5.7%). Non-
survivors were older (68.9 vs. 57.2 years), had lower
diastolic blood pressure (61.7 vs. 64.5 mmHg), mean
arterial pressure (82.6 vs. 84.8 mmHg), lower eGFRcrt

(80.1 vs. 98.8 mL/min/1.73 m2) and eGFRcys (48.3 vs.
75.8 mL/min/1.73 m2), but higher Charlson Comorbid-
ity Index (5 vs. 2 points; Table 1).

Discovery and validation
The characteristics of surviving and nonsurviving pa-
tients in the discovery and validation datasets were
broadly similar (see Additional file 1: Tables S2 and S3
and Figure S1). The analysis of the discovery dataset
(number of deaths/survivors, 70/299) enabled identifica-
tion of 128 peptides, which were significantly associated
with the 1-year post-ICU mortality. Of 63 peptides with
sequence information available, 28 (44.4%) were collagen
fragments (Additional file 1: Table S5). The 128 peptides
were combined in a multidimensional classifier, termed
ACM128 (Additional file 1: Figure S1). With the C and

Table 1 Clinical characteristics at baseline by 1-year survival status

Characteristic Survivors (n = 998) Nonsurvivors (n = 245) P value

N with characteristic (%)

Women 357 (35.8) 84 (35.1) 0.84

Diabetes mellitus 145 (14.5) 65 (26.5) < 0.0001

Indication of intensive care

Acute respiratory insufficiency 198 (19.8) 63 (25.7) 0.043

Pancreatitis or liver failure 14 (1.4) 8 (3.3) 0.048

Hemorrhagic or hypovolemic shock 56 (5.6) 21 (8.6) 0.085

Cardiogenic shock or heart failure 145 (14.5) 34 (13.9) 0.79

Sepsis or anaphylactic shock 230 (23.1) 68 (27.8) 0.12

Post-surgical care 101 (10.1) 23 (9.4) 0.73

Severe trauma 78 (7.8) 0 < 0.0001

Other indications 176 (17.6) 28 (11.4) 0.019

Treatment administered

Mechanical ventilation 615 (61.6) 139 (56.7) 0.16

Extracorporeal membrane oxygenation 9 (0.9) 1 (0.4) 0.44

Dialysis 57 (5.7) 25 (10.2) 0.011

Mean characteristic (SD)

Age, years 57.2 (16.9) 68.9 (12.3) < 0.0001

Body mass index, kg/m2 27.7 (7.6) 26.8 (5.4) 0.081

Systolic pressure, mmHg 125.7 (22.5) 124.5 (22.6) 0.47

Diastolic pressure, mmHg 64.5 (14.0) 61.7 (13.1) 0.0046

Mean arterial pressure, mmHg 84.8 (14.7) 82.6 (13.6) 0.030

Heart rate, beats per minute 92.5 (20.7) 89.4 (19.7) 0.033

Blood glucose, mmol/L 7.35 (2.33) 7.65 (2.70) 0.22

eGFRcrt, mL/min/1.73 m2 98.8 (55.6) 80.1 (57.9) < 0.0001

eGFRcys, mL/min/1.73 m2 75.8 (45.9) 48.3 (36.2) < 0.0001

Median characteristic (IQR)

Charlson Comorbidity Index 2 (1–4) 5 (3–6) < 0.0001

SOFA score 7 (4–10) 8 (5–10) 0.46

Length of ICU stay, days 11 (7–18) 12 (7–22) 0.092

Baseline refers to the date of ICU admission. Body mass index was body weight in kilograms divided by height in meters squared. Mean arterial pressure is
diastolic pressure plus one third of the difference between systolic and diastolic pressure. Diabetes mellitus was a fasting/random glucose ≥ 7.0/11.1 mmol/L, use
of anti-diabetic agents or a diagnosis in medical records. P denotes the significance of the difference between survivors and nonsurvivors
Abbreviations: eGFRcrt/eGFRcys glomerular filtration rate derived from serum creatinine/cystatin C according to the Chronic Kidney Disease Epidemiology
Collaboration equation (16), ICU intensive care unit, SOFA Sequential Organ Failure Assessment Score (15), IQR interquartile range
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gamma parameters set at 10,240 and 0.0000002, respect-
ively, the AUC was 0.755 (95% confidence interval [CI],
0.708 to 0.798; P < 0.0001) after complete take-one-out
cross-validation. The unadjusted hazard ratio for a 1-SD
increment in ACM128 was 4.55 (CI, 3.47–5.96; P <
0.0001). In the test set (number of deaths/survivors, 175/
699), the AUC was 0.688 (CI, 0.656 to 0.719; P < 0.0001)
and the hazard ratio 2.27 (CI, 1.86–2.78; P < 0.0001).
With the exception of urinary albumin (P = 0.69), all cir-

culating (BNP, hsTnT, hsTnI, ADM, sSD2, and NGAL) and
urinary biomarkers (NGAL and ACM128) had higher levels
in nonsurvivors than survivors (Table 2). Most circulating
and urinary biomarkers were correlated (see Additional file 1:
Table S2). For ACM128, the correlation coefficients were
not significant with urinary albumin (r= 0.038; P= 0.18); the
correlation coefficients of ACM128 with the other circulat-
ing and urinary biomarkers ranged from 0.19 (P = 0.0083)
for hsTnI and sST2 to 0.45 (P < 0.0001) for plasma NGAL.

Improvement of model performance
In the whole study sample (n = 1243), 245 deaths occurred
within 1 year after ICU discharge, yielding a death rate of
19.7 per 100 patient-years (CI, 19.5–19.9 patient-years).
With adjustments applied for sex and age, the cumulative
death rate increased across thirds of the ACM128 distri-
bution (low vs. top third, 6.7 [CI, 6.4–7.0] vs. 36.2 [CI,
35.6–36.8] deaths per 100 patient-years). Further adjust-
ment for the Charlson Comorbidity Index did not remove
this gradient (Fig. 1).
The proportional hazard assumption was met. While

adjusting for center (n = 15), sex, age, mean arterial pres-
sure, eGFRcys, and diabetes mellitus (Table 3), the hazard
ratio relating the risk of death to ACM128 (+ 1 SD) was
2.41 (CI, 2.00–2.91). With similar adjustments applied,

the hazard ratio for the Charlson Comorbidity Index (+
1 point) was 1.24 (CI, 1.16–1.32) and for urinary albu-
min (+ 1 SD) 1.23 (CI, 1.07–1.42). The hazard ratios for
the circulating biomarkers (+ 1 SD) ranged from 1.09
(CI, 0.94–1.25) for sST2 to 1.39 (CI, 1.11–1.48) for
ADM (Table 3). Substituting eGFRcys as covariable by
eGFRcrt or replacing the center adjustment by type of
ICU ward (medical, surgical, or mixed) yielded highly
consistent estimates of the hazard ratios.
Based on the results presented in Table 3, we carried the

Charlson Comorbidity Index, the circulating biomarkers
(except hsTnI and sST2), and urinary albumin through to
further analyses (Table 4). We assessed model performance
based on NRI, IDI, and ΔAUC by adding ACM128 to a
model accounting for center, the covariables, and including
either the Charlson Comorbidity Index or a second bio-
marker (Table 5). Adding ADM128 to these models
consistently (P ≤ 0.0001) increased NRI, NDI, and the
AUC (Table 5). Replacing ACM128 by the SOFA score
combined with the length of the ICU stay as an index
of frailty did not increase the AUC (AUC, 0.74; P = 0.31).

Single urinary peptides
The analysis of 153 single urinary peptides with known
amino-acid sequence and detectable in over 70% of pa-
tients enabled identification of 19 peptides, which were as-
sociated with the risk of death with adjustments applied
for sex, age, mean arterial pressure, eGFRcys, and diabetes
mellitus and with significance levels corrected for multiple
testing (Additional file 1: Table S7). The risk of death,
expressed per 1-SD increment in the marker signal ampli-
tude increased with 14 collagen alpha-1 (I) fragments
(1.20 ≤HR ≤ 1.50; 0.0001 ≤ P ≤ 0.0050), three collagen
alpha-1 (III) fragments (1.19 ≤HR ≤ 1.28; 0.00017 ≤ P ≤

Table 2 Biomarkers at baseline by 1-year survival status

Biomarkers Survivors (n = 998) Nonsurvivors (n = 245) P

Median (IQR) Median (IQR)

Circulating

BNP, pg/mL 106 (34, 302) 251 (98, 763) < 0.0001

hsTNT, pg/L 32 (12, 90) 44 (19, 177) < 0.0001

hsTnI, pg/L 28 (8, 184) 41 (13, 390) 0.0006

ADM, nmol/L 50 (29, 92) 82 (42, 143) < 0.0001

sST2, ng/mL 281 (163, 501) 376 (205, 848) 0.0002

NGAL, mg/mL 148 (81, 304) 272 (128, 528) < 0.0001

Urinary

Albuminuria, mg/L 381 (300, 467) 386 (293, 461) 0.69

NGAL, ng/mL 84 (31, 390) 200 (46, 902) < 0.0001

ACM128 − 0.53 (− 0.89, − 0.07) 0.11 (− 0.34, 0.69) < 0.0001

Values are medians (interquartile range). P denotes the significance of the difference between survivors and nonsurvivors
Abbreviations: BNP brain natriuretic peptide, hsTnT high-sensitive troponin T, hsTnI high-sensitive troponin I, ADM biologically active adrenomedullin, sST2 soluble
ST2, NGAL neutrophil-gelatinase-associated lipocalin, ACM128 multidimensional urinary proteomic biomarker
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0.0049), and one collagen alpha-1 (V) chain (HR, 1.29; P =
0.00014). The risk of death decreased with a fibrinogen
alpha chain fragment (HR, 0.80; P = 0.0013).

Protease activity and pathway analysis
The in silico analysis of sequenced urinary peptide frag-
ments, including (n = 63) and excluding (n = 28) collagen, is

presented in Additional file 1: Tables S6 and S7, re-
spectively. With collagen fragments included, the pro-
teases with a nonsurvivors-to-survivor ratio of 1.5 or
greater included cathepsin E (1.98), D (1.89), G (1.70),
S (1.52), and L1 (1.51), kallikrein-6 (1.77), and neutro-
phil elastase (1.67). The analysis with 28 collagen frag-
ments excluded did not identify kallikrein-6, but was

Fig. 1 Cumulative incidence of mortality over 1 year in 1243 study participants by thirds of the ACM128 distribution, unadjusted (a), adjusted for sex and
age (b), and additionally adjusted for Charlson Comorbidity Index (c). P values denote the significance of the difference between the low (≤− 0.662) and
top (>− 0.091) thirds of the ACM128 distribution. The numbers along the horizontal axis denote the number of patients at risk at 60-day intervals

Table 3 Hazard ratios expressing the risk of death in relation to risk factors and biomarkers in 1243 ICU survivors

Risk factors Hazard ratio (95% CI) P

Number of deaths/number at risk 245/1243

Clinical risk factors

Mechanical ventilation (0, 1) 0.84 (0.65, 1.09) 0.20

Sepsis (0, 1) 0.99 (0.74, 1.32) 0.92

Charlson Comorbidity Index (+ 1 point) 1.24 (1.16, 1.32) < 0.0001

SOFA score (+ 1 point) 0.99 (0.86, 1.15) 0.92

Length of ICU stay (+ 1 day) 1.18 (1.03, 1.34) 0.014

Circulating biomarkers

BNP (+ 1 SD) 1.38 (1.19, 1.60) < 0.0001

hsTNT (+ 1 SD) 1.19 (1.03, 1.39) 0.022

hsTnI (+ 1 SD) 1.14 (0.99, 1.32) 0.076

ADM (+ 1 SD) 1.39 (1.11, 1.48) 0.0006

sST2 (+ 1 SD) 1.09 (0.94, 1.25) 0.23

NGAL (+ 1 SD) 1.28 (1.11, 1.47) 0.0005

Urinary biomarkers

Albuminuria (+ 1 SD) 1.23 (1.07, 1.42) 0.0046

NGAL (+ 1 SD) 1.13 (0.98, 1.31) 0.094

ACM128 (+ 1 SD) 2.41 (2.00, 2.91) < 0.0001

Abbreviations of the biomarkers are given in Table 2. All models accounted for center (n = 15) as random effect and for sex, age, mean arterial pressure,
glomerular filtration estimated from serum cystatin C, and diabetes mellitus
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otherwise confirmatory, and additionally predicted
matrix metalloproteinase 7 (1.51), 9 (1.61), 14 (1.90), and
25 (1.89), cathepsin B (1.82), S (1.79), and K (1.60), and
meprin A subunit alpha (1.61).
The protein-protein interactome derived from 30 parental

proteins identified from 63 sequenced urinary peptides in-
cluded in the ACM128 classifier and the in silico predicted
proteases (Additional file 1: Table S7) generated a network
consisting of 57 nodes and 295 edges (Additional file 1:
Figure S2), with a protein-protein interaction enrichment P
of 10–16. Excluding the 28 urinary collagen fragment from
the Proteasix (Additional file 1: Table S8) and interactome
analysis yielded a network of 37 nodes and 122 edges
(Additional file 1: Figure S3) with an enrichment P of
10–16. Both analyses revealed as top molecular pathways
protein digestion and absorption (hsa04974), lysosomal
activity (hsa04142), and apoptosis (hsa04210).

Discussion
In line with the recommendations of stakeholders [5, 7],
the objective of the current study was to identify a urinary
proteomic biomarker that may predict 1-year post-ICU
mortality, thereby revealing molecular pathways contribut-
ing to prognosis. Pursuing this objective, we identified the
multidimensional urinary biomarker ACM128, consisting
of 128 dysregulated peptide fragments. In multivariable-
adjusted analyses, ACM128 measured at ICU admission
predicted death within 1 year after ICU discharge with
greater accuracy than clinical markers, such as the Charlson
Comorbidity Index and the length of the ICU care, as well
as other biomarkers tested within the context of post-ICU
prognosis, including circulating BNP, hsTnT, active ADM
and NGAL, and urinary albumin. Of note, the 1-year
mortality was not significantly associated with circulating
hsTnI, sST2, and urinary NGAL (Table 3).

Table 4 Hazard ratios expressing the risk of death in models adding ACM128 to an established risk factor or biomarker

Risk factor to which ACM128
was added

Estimates for the risk factor to which ACM128 was
added

Estimates for ACM128 in models with a second risk factor
added

HR (95% CI) P HR (95% CI) P

Clinical risk factors

Charlson Comorbidity Index 1.20 (1.12, 1.28) < 0.0001 2.24 (1.86, 2.71) < 0.0001

Length of ICU stay 1.12 (0.99, 1.27) 0.078 2.38 (1.97, 2.87) < 0.0001

Circulating biomarkers

BNP 1.15 (0.99, 1.34) 0.070 2.28 (1.87, 2.77) < 0.0001

hsTnT 1.03 (0.87, 1.20) 0.76 2.40 (1.98, 2.91) < 0.0001

ADM 1.06 (0.91, 1.23) 0.46 2.35 (1.93, 2.87) < 0.0001

NGAL 1.04 (0.89, 1.21) 0.65 2.37 (1.93, 2.90) < 0.0001

Urinary biomarkers

Albumin 1.14 (0.99, 1.32) 0.078 2.37 (1.96, 2.86) < 0.0001

Abbreviations of the biomarkers are given in Table 2. The analysis includes 245 deaths and 1243 patients at risk. All models accounted for center (n = 15) as
random effect and for sex, age, mean arterial pressure, glomerular filtration estimated from serum cystatin C, and diabetes mellitus. Association sizes are
expressed for a 1-SD increment in the biomarkers except for the Charlson Comorbidity Index (+ 1 point)

Table 5 Improvement of model performance for adding ACM128 to an established risk factor or biomarker in 1243 ICU survivors

Risk factor to which ACM128 was added IDI (95% CI) NRI (95% CI) AUC of basic model (95% CI) Increase in AUC by adding ACM128

Clinical risk factors

Charlson Comorbidity Index 1.12 (0.72, 1.51) 49.3 (35.6, 63.0) 0.746 (0.713, 0.779) 0.042 (0.022, 0.063)

ICU stay 1.24 (0.87, 1.62) 51.3 (37.6, 65.0) 0.719 (0.686, 0.753) 0.057 (0.033, 0.081)

Circulating biomarkers

BNP 1.12 (0.76, 1.47) 41.0 (27.2, 54.8) 0.726 (0.693, 0.759) 0.048 (0.026, 0.069)

hsTnT 1.23 (0.85, 1.60) 47.9 (34.1, 61.6) 0.718 (0.684, 0.752) 0.056 (0.032, 0.080)

ADM 1.14 (0.78, 1.50) 52.8 (39.2, 66.4) 0.724 (0.691, 0.757) 0.049 (0.028, 0.071)

NGAL 1.11 (0.75, 1.71) 52.8 (39.1, 66.4) 0.729 (0.696, 0.763) 0.045 (0.023, 0.066)

Urinary albumin 1.22 (0.84, 1.60) 46.4 (32.7, 60.1) 0.721 (0.686, 0.755) 0.053 (0.029, 0.077)

Abbreviations of the biomarkers are given in Table 2. The analysis includes 245 deaths and 1243 patients at risk. IDN indicates the integrated discrimination
improvement, NRI the net reclassification improvement, and AUC to the area under the curve. All estimates, given with 95% confidence interval, were significant
(P ≤ 0.0001). All models accounted for center (n = 15) as random effect and for sex, age, mean arterial pressure, estimated glomerular filtration estimated from
serum cystatin C, and diabetes mellitus. The basic model included the covariables and the risk factor or biomarker to which ACM128 was added. IDI is the
difference between the discrimination slopes of the basic model and the basic model extended with ACM128. The discrimination slope is the difference in
predicted probabilities (%) between cases and controls. NRI is the sum of the percent of patients reclassified correctly as cases and controls
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A PubMed search with search terms “Intensive Care”
AND “Mortality” AND “Proteome” OR “Proteomics”
yielded 15 hits, published from 2003 until 2018, without
any relevance to the current manuscript. Replacing “Prote-
ome” by “Biomarker” yielded 420 hits, with few focusing on
the biomarkers reported in Table 3 and none on a multidi-
mensional proteomic marker. Previously published studies
reported on NGAL [27], ADM [28, 29], NT-proB-type
natriuretic peptide (NT-proBNP) [30, 31], hsTnT [32, 33],
hsTnI [34], or sST2 used in combination with other circu-
lating biomarkers [35]. In patients after major non-cardiac
surgery, early NGAL-based prediction of imminent acute
kidney injury followed by implementation of KDIGO care
bundle (https://kdigo.org/guidelines/acute-kidney-injury/)
reduced the severity of kidney injury, postoperative creatin-
ine increase, and the length of ICU and hospital stay [27].
Compared with urinary NGAL, plasma NGAL was a better
predictor of an adverse outcome (Table 3). Our observation
replicated findings in 110 patients admitted to intensive
care after cardiac surgery with cardiopulmonary bypass [36]
and in 50 patients admitted to intensive care because of
acute kidney injury [37]. Circulating NGAL is freely filtered
in the glomeruli and reabsorbed in the proximal tubule
[38, 39]. In response to kidney injury, NGAL expression
is upregulated in particular in the distal tubules. How-
ever, NGAL passing the glomerular sieve and impaired
proximal tubular reabsorption also contribute to the
urinary NGAL level [40, 41]. On the other hand, NGAL
back leaking from the tubules into the circulation, the
extra-renal synthesis of NGAL, and reduced glomerular
filtration all impact on the plasma levels [40, 41]. Thus,
the kinetics of plasma and urinary NGAL explain why
there might be discrepancy in the predictive value of
both biomarkers.
In surgical patients with sepsis, ADM indicated a higher

need of vasopressor treatment and predicted mortality
after 90 days [28]. NT-proBNP is commonly elevated on
admission to intensive care, increases with severity of dis-
ease, and is an independent predictor of mortality [42].
NT-proBNP and hsTnT exhibit additive prognostic poten-
tial, which exceeds their individual value. This might be at-
tributed to a difference in underlying pathophysiological
mechanisms and synergy between risk factors [30]. Fur-
thermore, one study demonstrated that hsTNT was the
only independent predictor of 1-year mortality in patients
with shock, whereas BNP or echocardiographic indexes
had no prognostic value [32, 33]. In patients with nontrau-
matic subarachnoid hemorrhage, hsTnI measured within
24 h after the event predicted the need for a higher inspira-
tory oxygen fraction [34]. HsTnI is also a sensitive, albeit
unspecific marker of myocardial infarction. Our current
findings move the field forward, because ACM128 was pre-
dictive of the 1-year mortality after ICU discharge, inde-
pendent of the underlying condition requiring intensive

care. Moreover, compared with the aforementioned bio-
markers, ACM128 was a better prognosticator of death as
evidenced by IDI, NRI, and ΔAUC. IDI and NRI thereby
provided complementary information. Indeed, if addition
of a biomarker to a model increases the predicted probabil-
ity in cases, this is reflected by a significant increase in IDI.
NRI indicates the extent by which a biomarker improves
diagnostic accuracy [24].
Under physiological conditions, about 70% of the urin-

ary proteome originates from the kidney and the urinary
tract, while 30% is derived from plasma [43]. Approxi-
mately 60% of the total mass of urinary peptides and
proteins consist of collagen fragments [44]. Interactome
mapping, using parental proteins identified from se-
quenced peptides contained in ACM128 and the in silico
predicted proteases, revealed as top deregulated pathways
protein digestion and absorption, lysosomal activity, and
apoptosis. Furthermore, there was limited overlap in the
peptide fragments making up the ACM128 biomarker and
those known to be associated with chronic kidney disease
(the CKD273 panel) [45] or with coronary heart disease
(the CAD238 panel) [46]. Thus, ACM128 does not merely
reflect micro- or macro-vascular insult.
The analysis of sequenced peptides was collagen-

driven, as reflected by predicted proteases and proteins
assigned to enriched pathways. While the reduced num-
ber of peptides resulted, as expected, in a decrease in the
pathway coverage, we observed high consistency in the
interactome results irrespective of whether collagen frag-
ments were included or not, supporting the validity of
the approach.
Urinary proteomic profiling is progressing to clinical ap-

plication for detection, prevention, and early intervention
in type 2 diabetic patients with silent renal dysfunction
[47, 48] and in patients at risk of left ventricular dysfunc-
tion [49, 50]. The multidimensional proteomic biomarker
CKD273 (sensitivity/specificity > 90%) predicts the 3-year
risk of kidney disease 2 years earlier than microalbumi-
nuria (70%/45%) and leads to substantial cost savings [51],
to be confirmed by the PRIORITY results to be published
later this year [52, 53]. HF1 encompasses 85 urinary
peptides and predicts subclinical diastolic left ventricular
dysfunction 5 years ahead of echocardiography, while NT-
proBNP or BNP are not diagnostic in asymptomatic pa-
tient at risk of heart failure [49, 50]. Our current findings
highlight the need for further research into the clinical
application of urinary proteomic profiling in ICU patients
to identify those in need of further diagnostic and thera-
peutic work-up. Urinary proteomic profiling might replace
magnetic resonance imaging [54] or kidney biopsy to diag-
nose myocardial and renal fibrosis, respectively. Further-
more, from the therapeutic angle, intensive risk factor
management and antifibrotic drug treatment, using al-
dosterone receptor inhibitors, such as spironolactone
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or eplerenone, or the novel nonsteroidal anti-
mineralocorticoid finerenone [55], or the novel sacubi-
tril/valsartan [56], are options.

Strong points and limitations
Strong points of the current study are its prospective de-
sign, the confirmation of the “a priori” hypothesis that
multidimensional urinary biomarkers have clinical utility in
risk stratification without the need to standardize for urin-
ary volume or creatinine concentration. Patients randomly
assigned to the discovery and test set (Additional file 1:
Table S3) had similar characteristics. Our results replicate
literature findings on atrial natriuretic peptides [30, 31],
hsTnT [32, 33], active ADM [28, 29], and NGAL [27] and
urinary albumin as predictors of outcome among ICU pa-
tients, but show that ACM128 outperforms all these
markers in predicting 1-year mortality after ICU discharge.
Notwithstanding these strengths, the current study must
also be interpreted within the context of its limitations.
First, we collected all-cause and not cause-specific mortal-
ity. However, all-cause mortality has the advantage that this
outcome does not require any adjudication as cause-
specific mortality does. Second, our study combines data
from patients admitted to the ICU, because of surgical,
medical, or mixed indications. While this may be consid-
ered as a weakness, it also facilitates the generalizability of
our results. Finally, although the ACM128 outperformed
established risk factors and widely used risk scores includ-
ing Charlson Comorbidity Index and SOFA score as well as
circulating and urinary biomarkers, cost-effectiveness ana-
lyses still have to be done as a lead on to further studies
paving the way for the clinical application of ACM128.

Conclusions and perspectives
The urinary proteomic classifier ACM128 predicts the 1-
year post-ICU mortality over and beyond clinical risk fac-
tors and other biomarkers and revealed as top molecular
pathways, potentially contributing to a fatal outcome, pro-
tein digestion and absorption, lysosomal activity, and apop-
tosis. The way to clinical application will be long and
involves determining and validating diagnostic thresholds
of ACM128, constructing risk prediction models, and last
but not the least, if the previous steps are taken success-
fully, a randomized clinical trial following the PRIORITY
design [52, 53].
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