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Abstract

Background: When conducing a non-inferiority Phase-III trial, regulatory agencies and investigators might want to
get reliable information about rare but serious safety outcomes during the trial. Bayesian non-inferiority approaches
have been developed, but commonly utilize historical placebo-controlled data to define the margin, depend on a
single final analysis, and no recommendation is provided to define the prespecified decision threshold. In this study,
we propose a non-inferiority Bayesian approach for sequential monitoring of rare dichotomous safety events
incorporating experts’ opinions on margins.

Methods: A Bayesian decision criterion was constructed to monitor four safety events during a non-inferiority trial
conducted on pregnant women at risk for premature delivery. Based on experts’ elicitation, margins were built using
mixtures of beta distributions that preserve experts’ variability. Non-informative and informative prior distributions
and several decision thresholds were evaluated through an extensive sensitivity analysis. The parameters were
selected in order to maintain two rates of misclassifications under prespecified rates, that is, trials that wrongly
concluded an unacceptable excess in the experimental arm, or otherwise.

Results: The opinions of 44 experts were elicited about each event non-inferiority margins and its relative severity. In
the illustrative trial, the maximal misclassification rates were adapted to events’ severity. Using those maximal rates,
several priors gave good results and one of them was retained for all events. Each event was associated with a specific
decision threshold choice, allowing for the consideration of some differences in their prevalence, margins and
severity. Our decision rule has been applied to a simulated dataset.

Conclusions: In settings where evidence is lacking and where some rare but serious safety events have to be
monitored during non-inferiority trials, we propose a methodology that avoids an arbitrary margin choice and helps in
the decision making at each interim analysis. This decision rule is parametrized to consider the rarity and the relative
severity of the events and requires a strong collaboration between physicians and the trial statisticians for the benefit
of all. This Bayesian approach could be applied as a complement to the frequentist analysis, so both Data Safety
Monitoring Boards and investigators can benefit from such an approach.
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Background
Non-inferiority (NI) randomized clinical trials aim to
demonstrate whether an experimental treatment is not
inferior, below a certain pre-specified margin, to the con-
trol treatment [1]. This margin should be formulated
according to earlier knowledge and clinical relevance
[1, 2]. It has been shown, for instance in paedi-
atrics, that the choice is not well-documented in 63%
of studies [3]. However, when there is no reliable
placebo-controlled historical data, and when conduct-
ing such a trial is not ethical due to changes in
practices, margins based solely on clinical judgement
could be acceptable, if constructed with rigorous meth-
ods, such as systematic analysis of several independent
experts’ opinions.
When conducing a trial, the analysis of some secondary

outcomes, in addition to the primary endpoint, might
be challenging, as the sample size was not specifically
tuned for that. This issue is of particular importance
for safety events, and is even more true when con-
sidering rare but critical safety outcomes, which might
not occur or only a few can be observed. Consequently,
these individual trials are usually under-powered to detect
safety differences and to ensure reliable conclusions. Some
efficient methods have been proposed for the detection
of rare events that are using meta-analysis tools in order
to improve overall power. Nevertheless, many methods of
meta-analysis are based on large sample approximations,
andmay be unsuitable when events are rare [4]. Moreover,
regulatory agencies and investigators may not wish to wait
for post-marketing studies to draw conclusions about rare
but serious outcomes of a new intervention. Furthermore,
they might want to get reliable safety information before
the end of a trial.
When considering NI trials, investigators would like

to monitor whether the difference in safety outcomes
between arms is clinically relevant. In this case, simi-
lar reasoning as for the efficacy primary outcome can be
applied, using specific NI margins. If we consider set-
tings where events are rare, a Bayesian approach may
seem appropriate to construct sequential stopping rules.
Several authors have proposed Bayesian designs for NI
trials [5, 6]. Gamalo et al. have proposed a Bayesian NI
approach for binary endpoints in which an active-control’s
treatment effect is estimated using historical data under a
fixed margin assumption [7]. However, this Bayesian deci-
sion criterion utilizes historical placebo-controlled data,
it depends on a single final analysis, and no recommen-
dation is provided to define the prespecified decision
threshold.
We propose a Bayesian NI sequential design to mon-

itor several safety dichotomous events where margins
are based on clinical relevance obtained from several
experts.

Motivation
The ongoing BETADOSE study (NCT02897076) aims to
demonstrate that a 50% reduced betamethasone dose reg-
imen is not inferior to a full-dose in preventing neonatal
severe respiratory distress syndrome [8]. Several studies
have proven the benefice of antenatal corticosteroids, such
as betamethasone, so it is used worldwide in pregnant
women at risk [9–13]. However, concerns persist regard-
ing long-term adverse events of antenatal corticosteroids,
mainly dose-related [14–16].
The trial plans to include 1571 women per arm in

37 French centres. A sequential data analysis has been
planned after every 300 newborns reach the primary
outcome.
As a safety secondary objective, the protocol plans to

monitor, at each interim analysis, the absence of an excess
of four other neonatal complications, i.e., neonatal death,
severe intraventricular haemorrhage (IVH), necrotising
enterocolitis and retinopathy, in two gestational age sub-
groups of neonates (<28 weeks, 28–32 weeks).
Because only 33% of the randomized women are

expected to deliver before 32 weeks, and due to the low
frequency of some complications in preterm children, the
trial planning had to cope with an expected low number of
some secondary events (based on the EPIPAGE-2 cohort
study - Additional file 1) [17]. As a consequence, standard
frequentist analysis of those outcomes, consisting of tests
repeated at each interim analysis, might be powerless.
The Bayesian approach proposed in the manuscript

will be applied to this trial (complementary to the fre-
quentist analysis) so the Data Safety Monitoring Board
and the investigators can evaluate the difference in terms
of the result’s interpretation and the benefit of such an
approach.

Methods
Let i = 0, 1 be the arm-index (1 for the half-dose, 0 for
the full-dose) and j = 1, 2, 3, 4 the event-index. For the
sake of clarity, we show the methodology and results for
only one subgroup of neonates (<28 weeks), as it can be
repeated in the other subgroup. We used a Bayesian Non-
Inferiority approach, detailed in the next subsection. If πi,j
denotes the event rate in the ith arm, and Dj ∈ (0, 1) the
maximal acceptable difference, the probabilities of interest
are Pr(π1,j−π0,j ≤ Dj). To consider the difference in event
prevalence and relative severities, this approach was done
for each event (j). In our setting, the quantity Dj is not a
fixed value, but rather a distribution fitted from elicited
experts’ opinions through a mixture of beta distributions
to consider some variability between experts. The setting
of prior distributions and decision thresholds are detailed
in the following subsections. Then, a practical example is
given using a simulated dataset that mimics the trial. A
summary of the general framework is presented in Fig. 1.
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Fig. 1 General framework describing the two steps of the decision rule building. This figure summarizes the general framework, divided in two
steps: 1 Fit margins from experts’ elicitation (Dj); 2 Sensitivity analysis to choose the prior and the decision thresholds

Bayesian non-inferiority approach
For each event j and arm i, let yi,j,n denote the observed
binary outcome for the nth subject, ni the total number of
observations and Yi,j = ∑ni

n=0 yi,j,n the number of events.
Following a Bayesian binomial model, we have

Yi,j ∼ Bin(ni, θi,j) (1)

where θi,j ∼ Beta(αi,j,βi,j) are considered as random

variables following a beta prior density. In this setting, the
posterior distribution of each θi,j is given by:

θi,j|Yi,j ∼ Beta(αi,j + Yi,j,βi,j + ni,j − Yi,j) (2)

Indexing by l the interim analysis, l ∈[ 1, . . . , L], we
will calculate for each event at each analysis the posterior
probability that the difference of events rates, θ1,j − θ0,j, is
higher than the acceptable difference distribution Dj:
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Table 1 Three methods of fitting used to model the physicians’
acceptable differences of rates of events

1 Option betamix function: For each pair (j, k), application of the
betamix function with 3 as maximal number of components of
the finite mixture.

2 Option manual mixture of 2 betareg function: The levels of the
observed values of dj,k,e were dichotomized. Then, we fit 2 Beta
distribution by applying the betareg function (or the equiva-
lent betamix function with 1 as the number of components) on
each level of dichotomisation. All levels of dichotomisation were
compared, from that separating the two left values from the oth-
ers, to that separating the two right values from the others. The
two distributions were then mixed by applying the weights w1,j
and w2,j = 1 − w1,j to each distribution. The weights w1,j ∈
(0, 0.05, 0.10, 0.15, . . . , 0.95, 1) were tested. The models obtained
with the different levels of dichotomisation and with the differ-
ent weights were compared using the criteria for goodness of fit
described in Section 1 of the Additional file 7. The fit with the lowest
criteria was retained for the comparison with the other 2 methods.

3 Option manual mixture of a betamix function and a betareg
function: A mixture of betamix function and manual mixture: We
mixed: (i) a first Beta distribution obtained on the left level of
dichotomisation (the one obtained with method 2), (ii) a mixture of
a second and a third distribution, obtained by applying to the right
level of dichotomisation the betamix function with 2 as the num-
ber of components. The weights given to those distributions were:
(i) for the first distribution the w1,j was obtained through method
2, (ii) for the second and third distribution, the weights w2,j and
w3,j were obtained through the ’betamix’ procedure, multiplied by
(1 − w1,j).

P
(
δlj

)
= P

(
θ1,j − θ0,j > Dj | Y l

1,j,Y
l
0,j

)

=
∫ 1

0

(
θ1,j−θ0,j>x|Y l

1,j,Y l
0,j,Dj = x

)
. P(Dj = x). dx

(3)

At the lth interim analysis, the Bayesian decision rule
will conclude that there is an unacceptable excess of event
j in the experimental arm if P(δlj ) ≥ τ lj , where τ lj is a
prespecified decision threshold.

Fit margins from experts’ elicitation
To evaluate the distribution of Dj, the acceptable differ-
ence of events rate between arms, we performed a formal
elicitation with several experts. A questionnaire was sent
to the two main investigators (1 obstetrician and 1 neona-
tologist) of each centre involved in the trial. They were
asked about (i) their own characteristics (age, sex, spe-
ciality, etc.), (ii) the maximum prevalence of events they
may tolerate in the experimental arm, given the expected
prevalence of each event in the control arm, (iii) the
weight of each event, that is the relative severity of the
outcomes, considering that death has maximum weight
equal to 100.
Let f̃j denote the estimated event rate in the full-dose

arm, based on the EPIPAGE-2 study (Additional file 1),
and hj,e the acceptable event rate in the half-dose arm

according to the eth expert, e ∈[ 1, . . . ,E]. The accept-
able difference between arms according to the eth expert
is: dj,e = hj,e − f̃j. For each event, the distribution of
the acceptable difference among the E experts was mod-
eled using a mixture of beta distributions, with a max-
imum of 3 distributions. Using the betamix function
(betareg package on R software [18, 19]), 3 different
estimation methods were adopted (the first mathemati-
cally driven and the other two empirically driven). See
Table 1 for details as well as Section 1 of the Additional
file 7. As results, the distribution of Dj will be denoted
as Dj ∼ f (a1,j, b1,j, a2,j, b2,j, a3,j, b3,j,w1,j,w2,j,w3,j), where
(a1,j, b1,j), (a2,j, b2,j) and (a3,j, b3,j) are parameters for the
3 beta distributions, and (w1,j,w2,j,w3,j) the correspond-
ing weights. Parameters will be omitted when mixtures
contain less than 3 distributions.

Sensitivity analysis to select the prior and the decision
thresholds
The sensitivity analysis aimed to compare the perfor-
mances of different priors and thresholds τ lj and to select
the most appropriate combination. In the reference arm,
θ0,j was imputed from historical data (Table 2) [17]. For the
experimental arm, five scenarios were considered, deter-
mined by the assumed true values of the response prob-
abilities (θ1,j). Let s be the scenario-index (s ∈[ 1, . . . , 5]),
and θ1,j,s denote the prevalence in the experimental arm of
the sth scenario. In the first scenario, the prevalence in the
experimental and control arms are the same (θ1,j,1 = θ0,j).
In the second scenario, the prevalence are lower in the
experimental than in the control arm (θ1,j,2 = 2/3 × θ0,j).
In the third to fifth scenario, the prevalence is higher in
the experimental than in the control arm (θ1,j,3 = 1.5×θ0,j,
θ1,j,4 = 2 × θ0,j and θ1,j,5 = 3 × θ0,j). For each scenario,
1000 trials have been generated, with ni = 162 (Additional
file 1), and Yi,j,s following the Eq. (1).
The observations of each trial were sampled in L interim

analyses. At each analysis, the analysis’ population will
include the patients of the actual analysis and the patients
of the l − 1 previous analyses.
To address the issues of how prior location and precision

may affect posterior inferences, we constructed an array of
P alternative priors, each obtained by specifying numeri-
cal values of two quantities, one that changes the prior’s
location E(π1,j − π0,j) and one that changes its precision
(see more details in Section 2 of the Additional file 7).

Choice of the prior and thresholds for the final analysis
The posterior distributions of θ1,j − θ0,j of the final
Lth analysis, were obtained through the Hamiltonian-
Monte Carlo method, using the rstan package [20,
21] carried out in R among the 5000 simulated tri-
als. The posterior probability that it is higher than
the acceptable difference distribution was calculated.
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Table 2 Prevalence of events assumed in each trial, according to the scenario and to the application data set, and weight and maximal
rates of misclassifications assigned to each event to build the decision rule

Event

Death IVH [1] NEC [2] Retinopathy

Simulation study

All scenarios Prevalence in FD arm 0.39 0.15 0.06 0.04

Scenario A Prevalence in HD arm 0.39 0.15 0.06 0.04

Good decision [3] Acc Acc Acc Acc

Scenario B Prevalence in HD arm 0.26 0.10 0.04 0.03

Good decision [3] Acc Acc Acc Acc

Scenario C Prevalence in HD arm 0.58 0.23 0.09 0.06

Good decision [3] U U Acc Acc

Scenario D Prevalence in HD arm 0.78 0.30 0.12 0.08

Good decision [3] U U U U

Scenario E Prevalence in HD arm 1.00 0.45 0.18 0.12

Good decision [3] U U U U

Weight[4] 100 88 70 60

Maximal misclassifications rates

Class amisclassifications [5] 0.10 0.10 0.10 0.10

Class bmisclassifications [6] 0.10 0.16 0.25 0.30

Data set for application

Prevalence in FD arm 0.39 0.15 0.06 0.04

Prevalence in HD arm 0.47 0.23 0.12 0.08

Good decision [3] U U U U

HD arm: half-dose arm; FD arm: full-dose arm
1IVH: Intraventricular haemorrhage
2NEC: Necrotizing enterocolitis
3Good decision= What have been considered as good decision for each scenario and event: “Acc” if the difference of prevalence of events is Acceptable, “U” if the difference is
Unacceptable
4Weight = Relative severity of the event according to the experts
5Class amisclassifications rate: Trials that conclude that the difference between arms is Unacceptable, among trials with acceptable difference
6Class bmisclassifications rate: Trials that conclude that the difference between arms is Acceptable, among trials with unacceptable difference

Then, we calculated, the overall number of misclassifi-
cations obtained when applying the decision rule with
different decision thresholds τLj at the final analysis, with
τLj ∈ (0.50, 1.00). Considering the contingency table pre-
sented below, we defined two types of misclassifications:

Truth
The difference is Acceptable The difference is Unacceptable

Conclusion of the
decision rule

The difference is Unacceptable A = Class amisclassification D
The difference is Acceptable C B = Class bmisclassification

The rates of class a and class b misclassifications are =
A/(A + C) and = B/(B + D), respectively.
This work was repeated for each event, using the P pri-

ors. Then, the most appropriate prior was selected, along
with the thresholds τLj for each event, that is those that
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gave acceptable rates of class a and b misclassifications.
Let p∗ denote the selected prior and τ∗Lj the selected
decision thresholds at the L analysis for the event j.

Choice of the thresholds for the interim analyses
To construct the decision rule to be applied at each pre-
vious interim analysis, the simulation has been repeated
for the L interim analyses, using the p∗ elected prior. The
decision thresholds τ lj were defined as follows: (i) for the
final analysis, τ∗Lj was the one defined through the previ-
ous step, (ii) for the first analysis, τ∗1j has been set to 0.95,
(iii) for l ∈ (2, L− 1), four decreasing functions have been
tested to define τ lj (see Table 3). The overall number of
misclassifications obtained with those different functions
has been compared. Then, the most appropriate function
and thresholds τ∗lj have been selected.

Results
Fit margins from experts’ elicitation
Among the 78 experts to which the questionnaire was
sent, 44 answered (56.4%) (Table 4), including 43 who
provided answers about acceptable rates of events in the
half-dose arm.
Figure 2 presents the histogram of the acceptable dif-

ferences of IVH among the E experts (dj,e), the fits (Dj)
obtained through the 3 different methods, and their crite-
ria for goodness of fit. For the other events, see Additional
file 2. The Additional file 3 summarizes the mixtures
retained for the acceptable differences Dj.

Sensitivity analysis to select the prior and the decision
thresholds
A good sequential decision rule is supposed to help in
making a good decision, that is to advise when to stop the
trial when the prevalence of events is truly unacceptable
and to not stop when the difference is acceptable. Table 2
summarizes what was considered as a “good decision”
according to each scenario and events (see more details in
the Section 3 of the Additional file 7).
The maximum rate of class a misclassifications has

been set to 0.10. For class b misclassifications, we set
a maximum inversely proportional to the weight of the
event according to the experts (Table 2). Denote by
Wj the median weight of the j event among the E
experts (Wj ∈[ 0, 100] and Wdeath = 100), the max-
imal rate of class b misclassifications has been set to:
Max(class bmisclassification)j = 0.1 + 0.50 × 100−Wj

100 .

Table 3 Four functions applied to define the thresholds at each
of the interim analyses

1 A uniform function: τ lj = τ∗11j for all l ∈ (1, 11).

2 A linear function: τ lj = a × l + b,

3 A linear function with an exponential transformation: τ lj = a × expl + b,

4 A linear function with a logarithm transformation: τ lj = a × log(l) + b.

Table 4 Main characteristics of the experts who answered to the
elicitation questionnaire

Characteristics N = 44

Age, median (IQR) 46 (39.75-55)

Male sex, n(%) 28 (64)

Number year of being MD [1], median (IQR) 17 (0.75-22.5)

Specialty, n(%)

Neonatologist 22 (50)

Obstetrician 22 (50)

Type of establishment, n(%)

University hospital 33 (75)

Position, n(%)

Hospital practitioner 21 (48)

Professor 21 (48)

Others 2 (4)

History of school of statistics/epidemiology, n(%) 28 (64)

History of being PI [2] of a trial, n(%) 29 (66)

IQR = Interquartile Range
1MD: medical doctor
2PI: Principal investigator

Selection of the prior and thresholds for the final analysis
Figure 3 shows the number of posterior misclassifica-
tions at the final analysis according to each prior and
final threshold for IVH. See Additional file 4 for the other
events. In an effort to construct a homogeneous deci-
sion rule, we selected the same prior for all of the events.
Several priors gave acceptable rates of misclassifications
(prior 1, 3, 4, 5, 8, 9 and 13). We arbitrarily chose the prior
Number 9. Conversely, we applied different final thresh-
olds τ∗Lj for each event, as they are influenced by the
prevalence of events and by the acceptable difference δlj
(Table 5).

Selection of the thresholds for the interim analyses
In our case-study, we set L = 11. The number of misclas-
sifications obtained by applying the 4 functions defining τ lj
are presented in the Additional file 5. We retained the lin-
ear function with an exponential transformation because
it maintained the overall rate of misclassifications under
the prespecified acceptable rates. The 3 other functions
increased the rate of class amisclassifications over 0.10.
Table 5 summarizes the thresholds finally retained in

the decision rule, τ∗lj , and the overall rates of misclassifi-
cations. Figure 4 gives the distribution of the conclusions
and misclassifications among the trials, at each interim
analysis and in total, for IVH. Additional file 6 represents
the distribution of the conclusions and misclassifications
for the other events. Finally, Fig. 5 presents the overall
numbers or misclassifications obtained by applying this
decision rule, according to the scenario.
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Fig. 2 Histogram of the acceptable difference of severe intraventricular haemorrhage between arms, and mixtures of Beta distributions fitted from
experts’ elicitation, through 3 different methods, with their criteria for goodness of fit. The histogram represents the acceptable difference of IVH
among the E experts (dj,e). The 3 lines represent the fits of this difference (Dj), obtained through the 3 different methods. The legend gives the
parameters of the fits and their criteria for goodness of fit

Application to data
We applied our method to a simulated dataset for the
BETADOSE trial. In this dataset, we considered that the
final sample size was 1571 per arm, with ni = 162 for
children born before 28 weeks. The prevalence of events
was sampled as detailed in Table 2. For all events, a
good decision of this trial was considered to conclude
an “Unacceptable” difference using the same explanation
given before (Section 3 of the Additional file 7). Table 6
summarizes the results at the end of the trial (expressed as
observed prevalence) and the Bayesian sequential results,
using the rule built in the previous step (Table 5).
At the 6th analysis, since the posterior probabilities

became higher than the prespecified threshold τ∗6j for
death, the trial was stopped because of a potential unac-
ceptable increase of deaths in the experimental arm. If
the trial had continued, it would have stopped at the 10th
analysis because of IVH.

Discussion
Motivated by the desire to deal with settings where rare
but serious events have to be monitored during an non-
inferiority trial, we have proposed a methodology that
provides a practical way to help in the decision making at
each interim analysis.
Our approach has the advantage of incorporating

experts’ opinions about the non-inferiority margins. As
a consequence, it can be used as an alternative in cases
where historical placebo-controlled data aren’t available.

We have proposed to keep the variability among experts
and used a distribution instead of a discrete margin.
Indeed, we could have averaged all experts’ opinions, but
this will not have reflected all potential variability. In a
simulation study, we compared our approach to the use
of average values (see Additional file 9). We found that
the use of a mixture gave different results than the use of
the mean of the experts’ opinions. Indeed, the difference
between the two approaches increased as the variabil-
ity among experts increased. Moreover, we could have
weighted experts’ opinions according to some pertinent
covariates. In a previous work, Thall et al. compared dif-
ferent ways to weight physicians’ opinion using mixture
priors of the parameter of interest [22]. The authors found,
according to their design, that posterior quantities appear
to be insensitive to how physicians are weighted, so we
decided to weight all physicians equally. In our case, the
variability among experts was kept in order to reflect all
potential opinions, that is the distribution across all the
range of potential margins. Our method can be applied
whatever the values are in between zero and one.
One limitation of our motivating example is that the

majority of the experts set the acceptable difference to
zero, whereas zero is not a possible value for a non-
inferiority margin. When generalizing this method to
another non-inferiority trial, we suggest to investigators to
remind the experts that the margin cannot be set to zero.
Because the prior chosen for a Bayesian analysis needs

to be well documented and robust to its parameter
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Fig. 3 Plots of posterior class a and class bmisclassifications according to the decision thresholds for each of the 13 pairs of priors for severe
intraventricular haemorrhage. This figure represents the posterior rates of misclassifications for each pair of priors. Prior 1 is the non-informative
prior, with α1,j = α0,j = β1,j = β0,j = 1; Prior 2 to 13 are distinguished by (i) the means for the difference between the two arms: E(π1,j − π0,j) = 0
for prior 2, 3, 4 and 5; E(π1,j − π0,j) = median(dj,e) for prior 6, 7, 8 and 9; and E(π1,j − π0,j) = π0,j for prior 10, 11, 12 and 13; (ii) their precision: 1 for
prior 2, 6 and 10; 1/3 for prior 3, 7 and 11; 1/10 for prior 4, 8 and 12; and 1/20 for prior 5, 9 and 13. For each prior, the red solid line represents the
number of posterior class amisclassifications (trials that conclude that the difference between arms is Unacceptable, while it is not true) at the final
analysis, according to each final threshold. The blue solid line represents the number of posterior class bmisclassifications (trials that conclude that
the difference between arms is Acceptable, while it is not true)

choices, we performed an extensive sensitivity analy-
sis evaluating non-informative and informative priors
and several thresholds. Thresholds retained were varying
between events, allowing us to consider the differences
in prevalence, and in margins and severity conferred by

clinicians to each event. Likewise, when we repeated this
work in the subgroup of premature infants born after 28
weeks (results not shown), the thresholds were different,
reflecting the higher rarity of events and the different
margins.
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Table 5 Final decision rule retained through the sensitivity
analysis: thresholds to be applied at each interim analysis and
final overall rates of misclassifications, according to the event

Event
Death IVH [2] NEC [3] Retinopathy

Thresholds τ∗lj [1], to applied in analysis
1 0.95 0.95 0.95 0.95
2 0.95 0.95 0.95 0.95
3 0.95 0.95 0.95 0.95

4 0.95 0.95 0.95 0.95
5 0.949 0.949 0.950 0.949
6 0.948 0.948 0.949 0.948
7 0.944 0.944 0.948 0.946
8 0.934 0.933 0.944 0.938
9 0.907 0.903 0.932 0.918
10 0.832 0.821 0.902 0.862
11 0.63 0.60 0.82 0.71

Overall rate of errors
Class amisclassifications [4] 0.09 0.09 0.10 0.10
Class bmisclassifications [5] <0.01 0.07 0.20 0.27

1τ∗lj : threshold to apply in the Bayesian decision rule for the event k in the
subgroup j, at the l interim analysis: the rule will conclude that their is an
unacceptable excess if P(δlj ) ≥ τ lj
2IVH: Intraventricular haemorrhage
3NEC: Necrotizing enterocolitis
4Class amisclassifications: Trials that conclude that the difference between arms is
Unacceptable, while it is not true
5Class bmisclassifications: Trials that conclude that the difference between arms is
Acceptable, while it is not true

To choose the best priors and stopping thresholds, the
rates of misclassifications have been computed and com-
pared. As the two types of misclassifications are moving
in opposite directions, we had to find a compromise
between the two. Since we do not want to wrongly con-
clude too often an inferiority of the experimental arm,
we decided to set a maximum for class A misclassifi-
cation at 0.10, to be more permissive in terms of class
B misclassifications and to adapt this permissiveness to
the severity of each event. To define the stopping thresh-
olds at each interim analysis, simulations have compared
several initial thresholds and four decreasing functions
of τ . The purpose of this study was to find the best
thresholds in order to have good functional properties
of the design, i.e. do not stop frequently at the begin-
ning when it is wrong and do not continue until the end
when we have to stop. Finally, as we dealt with some rare
events, overall rates of class A and B misclassifications
were relatively high. This has to be put in balance with
frequentist type I and type II error rates that sometimes
have to be compromised, especially in the case of rare
secondary events.
When generalizing this method to another trial, this

work needs to be repeated before the analysis of the real
data; the maximal rates of class A and B misclassifications

Fig. 4 Distribution of the successive conclusions and errors, obtained by applying the decision rule to the 5000 simulated trials, at each interim
analysis and in overall, for severe intraventricular haemorrhage. The left part of the plot represents the conclusions at each interim analysis. The right
part represents the overall count of conclusions among the 11 analyses. The upper part of the plot represents the trials with an Acceptable
difference between arms: orange area correspond to trials that conclude that the difference between arms is Acceptable, while it is true; red area
correspond to trials that conclude that the difference between arms is Unacceptable, while it is not true (class amisclassifications). The bottom part
of the plot represents the trials with an Unacceptable difference between arms: green area correspond to trials that conclude that the difference
between arms is Unacceptable, while it is true; blue area correspond to trials that conclude that the difference between arms is Acceptable, while it is
not true (class bmisclassifications)
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Fig. 5 Distribution of the overall conclusions and errors, obtained by applying the decision rule to the 5000 simulated trials, according to the event
and the scenario. This plot presents the overall numbers or misclassifications obtained by applying this decision rule, according to the 5 scenario
and to the 4 events. The left part of the plot represents the trials with an Acceptable difference between arms: orange area correspond to trials that
conclude that the difference between arms is Acceptable, while it is true; red area correspond to trials that conclude that the difference between
arms is Unacceptable, while it is not true (class amisclassifications). The right part of the plot represents the trials with an Unacceptable difference
between arms: green area correspond to trials that conclude that the difference between arms is Unacceptable, while it is true; blue area correspond
to trials that conclude that the difference between arms is Acceptable, while it is not true (class bmisclassifications). IVH: Intraventricular
haemorrhage; NEC: Necrotizing enterocolitis
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have to be balanced, considering the setting, and the
parameters of the decision rule have to be adapted in
consequence, namely the prior, the margins and the deci-
sion thresholds. Finally, after having pre-specified all these
parameters, the decision rule can be applied by the statis-
tician to the unblinded data, and presented to the Data
Safety Monitoring Board. In order to apply this methodol-
ogy, we already designed a non-inferiority trial that should
start in few months, using the same statistical approach in
an other setting.
In conclusion, our approach was found to be efficient in

dealing with safety monitoring of rare and non-rare events
in a non-inferiority context. It requires a strong collabora-
tion between physicians and the trial statisticians for the
benefit of all.

Conclusion
We proposed a practical way to help to assist with deci-
sions on safety dichotomous events at each interim anal-
ysis of a non-inferiority trial. This Bayesian design is
suitable for rare events and for non-rare events. It incor-
porates experts’ opinions on margins, so it can be con-
structed without historical placebo-controlled data. This
Bayesian sequential approach could be applied as a com-
plement to the frequentist analysis, so both Data Safety
Monitoring Boards and investigators can benefit from
such an approach.
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