1 Table S3.

3

2 Experimental protocols of studies on plant sterols/stanols according to sterol transporter polymorphisms

Reference	Protocol	Subjects	Polymorphisms
Plat et al.	Parallel, 8 weeks, 3 groups:	Normocholesterolemic (n=112)	ABCG5 1810C/G (Q604E);
(2005) ^{S1}	controls, 3.8±0.6 g/d stanols from		ABCG8 1895C/T (A632V) and
	vegetable oil, 4.0±1.8 g/d stanols		1199C/A (T400K)
	from wood		
Gylling et	Parallel, 1 year, 3 groups:	Moderate	ABCG5 Q604E; ABCG8
al.	controls, plant stanols (2.13 g/d),	hypercholesterolemic (n=282)	A632V, T400K, Y54K and
$(2009)^{S2}$	plant sterols (2.15 g/d)		D19H
Zhao et al.	Crossover, 2 x 4 weeks, with 4	Hypercholesterolemic (n=82)	<i>ABCG5</i> Q604E; <i>ABCG8</i> T400K
$(2008)^{S3}$	weeks washout between plant		and D19H; 872C/G (L272L) and
	sterols (2 g/d) vs. control diet		NPC1L1 3929 G/A (Y1291Y)
MacKay et	Crossover, 2 x 4 weeks, 25g	Mildly hypercholesterolemic	<i>ABCG8</i> T400K
al.	margarine with 2 g/d plant sterols	(n=63) either with high	
(2015) ^{S4}	or without	endogenous cholesterol	
		synthesis (n=24) or low	
		endogenous cholesterol	
		synthesis (n=39)	
bbreviation	s: ABCG5/G8, A	ATP-binding cassette	subfamily G

5/8

- S1. Plat J, Bragt MCE, Mensink RP. Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. J Lipid Res. 2005;46:68-75.
- S2. Gylling H, Hallikainen M, Raitakari OT, et al. Long-term consumption of plant stanol and sterol esters, vascular function and genetic regulation. Br J Nutr. 2009;101:1688-1695.
- S3. Zhao HL, Houweling AH, Vanstone CA, et al. Genetic variation in ABC G5/G8 and NPC1L1 impact cholesterol response to plant sterols in hypercholesterolemic men. Lipids. 2008;43:1155-1164.
- S4. MacKay DS, Eck PK, Gebauer SK, Baer DJ, Jones PJ. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. Am J Clin Nutr. 2015;102:951-957.