Table S2. Response to dietary plant sterols/stanols in subjects according to APOE polymorphism

Reference	Experimental	Subjects	Response	Remarks
	Protocol			
Vanhanen	Parallel, 6 weeks:	Moderate	Total cholesterol: -0.44 mmol/L (-	Changes in LDL-C correlated
et al.	3.4 g/d sitostanol	hypercholesterolemia (n =	7.5%), LDL-C: -0.37 mmol/L (-10%).	to changes in plasma plant
$(1993)^{S1}$	(n=34) vs. controls	67)	E4 carriers: -11.8% LDL-C (<i>P</i> <0.05);	sterol.
	(n=33)	Controls: E3E3 (n=22) E3E4	E3E3: -6% LDL-C (NS).	Relatively large number of
		(n=10) E4E4 (n=1); M/F:	Decrease in absorption (plasma	E4E4.
		26/7, 43 years,	sitosterol and campesterol) and increase	Significant response in E4
		BMI=25.8kg/m ²	in cholesterol synthesis, both greater in	carriers but not in E3E3, no
		Sitostanol: E2E2 (n=1) E3E2	E4 carriers than E3E3.	significant difference between
		(n=16) E4E3 (n=12) E4E4		the two responses.
		(n=5); M/F: 21/13; 48 years;		
		BMI=25.2kg/m ²		
Miettinen	Parallel, 6 weeks:	Moderate	Small effects, plant sterols/stanols	Decrease in absorption
&	mayonnaise colza,	hypercholesterolemia >6	combined: -5% (<i>P</i> <0.05).	(plasma sitosterol and
Vanhanen	mayonnaise colza	mmol/L (n=31)	E4 (n=8): -0.28 mmol/L (-8%) LDL-C	campesterol) and increase in
$(1994)^{S2}$	+ 700 mg/d	M/F: 22/9, age=45±3 years,	(P<0.05); E3E3 (n=15): -0.06 mmol/L	cholesterol synthesis both
	sitosterol,	BMI=25.2±1.2 kg/m ²	(NS).	greater in E4 than E3E3.
	mayonnaise colza+			Same research group as above

	700 mg/d			ref ⁷⁴ .
	sitostanol,			
	mayonnaise colza			
	+ 800 mg/d			
	sitostanol esters			
Ishiwata et	Parallel, 4 weeks:	Healthy subjects	No difference in changes in total	Low fat and low cholesterol
al.	placebo $(n = 35)$	Control: E3 (n=19), E4	cholesterol or LDL-C between E3 (-	diet at baseline.
$(2002)^{S3}$	2.0 g/d stanols (n =	(n=11)	8.9%) and E4 (-10.4%).	
	34)	Group 2.0 g/d: E3 (n=21), E4		
	3.0 g/d stanols (n =	(n=10)		
	36)	Group 3.0 g/d: E3 (n=25), E4		
		(n=6)		
Tammi et	STRIP study	Healthy children (n=81, M/F:	No difference in total cholesterol and	Baseline concentration
al.	Crossover, 2 x 3	45/36, age 6 years)	LDL-C changes.	correlated with response.
$(2002)^{S4}$	months, margarine	E4 carriers (E4E4 or E3/E4)	In E4 carriers, -0.24 mmol/L (-8.4%)	Decreases in plasma plant
	rich in stanol esters	(n=24) vs. non carriers	LDL-C; in non-carriers, -0.20 mmol/L	sterols were similar in boys
	(1.6 g/d) vs.	(E2E3 or E3E3) (n=54)	(-7.6%) LDL-C.	and girls, but cholesterol
	control margarine		Absorption decreased in both groups	synthesis precursors increased
			but cholesterol synthesis increased only	more in girls.
			in E4 carriers.	
Geelen et	Crossover, 3	Healthy subjects E3E4 or	No influence of <i>APOE</i> genotype.	Young healthy subjects.

al.	weeks, control	E4E4 (n=31), E3E3 (n=57);	Total cholesterol: -0.36 mmol/L (7.4%)	
$(2002)^{S5}$	margarine vs. plant	25 ±11 years	in E3 vs0.31 (5.7%) in E4 (NS).	
	sterol rich		LDL-C:-0.34 mmol/L (12.2) in E3/3 vs.	
	margarine (3.2 g/d)		0.32 (9.8%) in E4 (NS).	
Plat &	Parallel, 8 weeks,	Normocholesterolemic	Differences between genotypes not	No difference in campesterol
Mensink	3 groups:	(n=112 [41M, 71F], BMI=	significant.	decrease. Lower increase in
$(2002)^{S6}$	controls, 3.8±0.6	23±2.8 kg/m², age=33±16	In E2: -0.31 mmol/L LDL-C; in E3: -	lathosterol for E3.
	g/d stanols from	years)	0.41 mmol/L LDL-C; in E4: -0.49	Other gene polymorphisms
	vegetable oil,	With stanols, n=70	mmol/L LDL-C.	without significant effect:
	4.0±1.8 g/d stanols	(E3=E3E3, n=41;		APOA4, SCARB1, HMGCR,
	from wood	E2=E2E2+E2E3+ E2E4 ,		CETP
		n=11; E4=E3E4+E4E4,		
		n=10)		
Lottenberg	Crossover, 4	Moderate	No difference between E3E3 and E3E4	E4E3 sample is less than half
et al.	weeks, margarine	hypercholesterolemia (7	for changes in total cholesterol and	the E3E3 group.
$(2003)^{S7}$	providing or not	mmol/L on average, n=60	LDL-C (-6.3% and -6.8% for E3E3 and	
	1.68 g/d plant	M+F, 20-60 years). E3E3	E3E4 respectively), but response	
	sterols	(n=35), E3E4 (n=16)	significant only in E3E3.	
Sanchez-	Parallel, 5 weeks,	Hypercholesterolemic	In E2 carriers: -12.7% LDL-C	At baseline, LDL-C higher in
Muniz et	control spread	subjects (M+F, n=217, 21 to	(<i>P</i> <0.01); in E3: -5.5% LDL-C	E4 and E3 than in E2. Similar
al.	(n=87), 1.1 g/d or	75 years)	(<i>P</i> <0.001); in E4: -5.6% LDL-C (NS).	changes in E3 and E4, but

$(2009)^{88}$	2.2 g/d plant	E2E3+E2E2 (n=26), E3E4+	TG lowering in E2 carriers.	since there were fewer E4
	sterols (n=120)	E4E4 (n=51), E3E3 (n=130);	Serum carotenoid decrease in E4.	subjects, the NS response in
		E2E4 (n=10) excluded		E4 might be a statistical power
				issue. High response in E2,
				only due to the fact that E2
				subjects with control spread
				had an increase in LDL-C. The
				LDL-C change in E2 carriers
				when compared only to
				baseline levels is much lower
				(figure 2).
Banuls et	Parallel, 3 months,	Moderate	No difference in response according to	Response not correlated with
al.	NCEP-ATIII diet	hypercholesterolemic	APOE.	LDL particle size at baseline.
$(2011)^{S9}$	+ low fat milk with	subjects (M/F: 22/53, 18-76	Average effect: -8.1% LDL-C.	Diet does not change LDL
	(n=41) or without	years, BMI=28 kg/m²).		particle size.
	(n=34) 2.0 g/d	In the group eating plant		Statistical power issue.
	plant sterols	sterols, E3 (n=24), E4		
	(sitosterol 70%,	(n=13), E2 (n=4).		
	campesterol 15%,			
	sitostanol 10%,			
	Unilever)			

MacKay	Crossover, 4	Mildly hypercholesterolemic	In E3: -0.13 mmol/L LDL-C; in E4: -	Borderline interaction with
et al.	weeks, 25g	subjects (M/F: 24/39, age:	0.31 mmol/L LDL-C.	CYP7A1 rs3808607, in such a
$(2015)^{S10}$	margarine with 2.0	55.2 years, BMI=28.8	Significant effects in both groups, but	way that carriers of CYP7A1-
	g/d plant sterols or	kg/m²); preselected as	significantly higher in E4.	rs3808607 T/T and <i>APOE</i> E3
	without	possessing either high		(n=14) were the only group
		endogenous cholesterol		who did not benefit from the
		synthesis (n=24) or low		intervention (LDL-C change:
		endogenous cholesterol		+0.09 mmol/L).
		synthesis (n=39); E3 (E3E3,		ABCG8 rs4148217 (T400K)
		n=36 + E2E3, n = 4), E4		and CETP rs5882 (I405V)
		(=E4E3, n=18 + E4E4, n=5)		polymorphisms: no effect on
				the response.

Abbreviations: ABCG5/G8, ATP-binding cassette subfamily G member 5/8; APOA4, apolipoprotein A-IV; APOE, apolipoprotein E; CETP, cholesterol ester transfer protein; CYP7A1, cholesterol 7 α-hydroxylase; F, females; HMGCR, hydroxyl-methyl-glutaryl coenzyme A reductase; LDL-C: low-density lipoprotein cholesterol; M, males; NPC1L1, Niemann-Pick C1 Like 1 protein; NS, not significant; SCARB1, scavenger receptor BI; STRIP, Special Turku Coronary Risk Factor Intervention Project; TG, triglycerides

References

- S1. Vanhanen HT, Blomqvist S, Ehnholm C, et al. Serum cholesterol, cholesterol precursors, and plant sterols in hypercholesterolemic subjects with different apoE phenotypes during dietary sitostanol ester treatment. J Lipid Res. 1993;34:1535-1544.
- S2. Miettinen TA, Vanhanen H. Dietary sitostanol related to absorption, synthesis and serum level of cholesterol in different apolipoprotein E phenotypes. Atherosclerosis. 1994;105:217-226.
- S3. Ishiwata K, Homma Y, Ishikawa T, Nakamura H, Handa S. Influence of apolipoprotein E phenotype on metabolism of lipids and apolipoproteins after plant stanol ester ingestion in Japanese subjects. Nutrition. 2002;18:561-565.
- S4. Tammi A, Ronnemaa T, Miettinen TA, et al. Effects of gender, apolipoprotein E phenotype and cholesterol-lowering by plant stanol esters in children: the STRIP study. Special Turku Coronary Risk Factor Intervention Project. Acta Paediatr. 2002;91:1155-1162.
- S5. Geelen A, Zock PL, de Vries JH, Katan MB. Apolipoprotein E polymorphism and serum lipid response to plant sterols in humans. Eur J Clin Invest. 2002;32:738-742.
- S6. Plat J, Mensink RP. Relationship of genetic variation in genes encoding apolipoprotein A-IV, scavenger receptor BI, HMG-CoA reductase, CETP and apolipoprotein E with cholesterol metabolism and the response to plant stanol ester consumption. Eur J Clin Invest. 2002;32:242-250.
- S7. Lottenberg AM, Nunes VS, Nakandakare ER, et al. The human cholesteryl ester transfer protein I405V polymorphism is associated with plasma cholesterol concentration and its reduction by dietary phytosterol esters. J Nutr. 2003;133:1800-1805.

- S8. Sanchez-Muniz FJ, Maki KC, Schaefer EJ, Ordovas JM. Serum lipid and antioxidant responses in hypercholesterolemic men and women receiving plant sterol esters vary by apolipoprotein E genotype. J Nutr. 2009;139:13-19.
- S9. Banuls C, Martinez-Triguero ML, Lopez-Ruiz A, et al. Serum lipid responses to phytosterol-enriched milk in a moderate hypercholesterolemic population is not affected by apolipoprotein E polymorphism or diameter of low-density lipoprotein particles. Eur J Clin Nutr. 2011;65:255-261.
- S10. MacKay DS, Eck PK, Gebauer SK, Baer DJ, Jones PJ. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. Am J Clin Nutr. 2015;102:951-957.