Table S1

Response to dietary plant sterols/stanols in subjects with mutations for sitosterolemia and familial hypercholesterolemia

Genotype	Experimental	Subjects	Response	Remarks
(Reference)	Protocol			
Heterozygotes for	2-week run-in: 40	Parents of a homozygote,	Total cholesterol: -11% and -12%; LDL-	2 subjects only, with normal
sitosterolemia	g/d margarine,	both	C: -11%.	baseline plasma plant sterol
(Stalenhoef et al.	35% fats, 0.3%	hypercholesterolemic,	Plasma plant sterols: +139% (father)	concentrations. Father:
2001) ^{S1}	plant sterols (120	obese and 52 years old,	$(26.5 \rightarrow 63.3 \text{ mmol/L}) (1.08 \rightarrow 2.58 \text{ mg/dl})$	campesterol=9.8 µmol/L (0.39
	mg/d)	BMI=33.9 and 35 kg/m ²	and +83% (mother) (19.8→31.5 mmol/L)	mg/dL), sitosterol=11.2 μmol/L
	4 weeks same diet		(0.95→1.29 mg/dl).	(0.46 mg/dL). Mother:
	+ 8.3% plant			campesterol=8.4 µmol/L (0.34
	sterols (3.3 g/d)			mg/dL), sitosterol=10.7 µmol/L
				(0.44 mg/dL).
				33 controls with plasma
				campesterol=13.1 µmol/L (0.52
				mg/dL); sitosterol=8.9 μmol/L
				(0.37 mg/dL).
Heterozygotes for	2.2 g/d plant sterol	12 obligate heterozygotes,	LDL-C: -11.2% with low fat diet, -5.9%	With the 12-week diet,
sitosterolemia	esters, 6 weeks and	50% with moderate	additional change with plant sterol after 6	heterogeneous response: LDL-C
(Kwiterovitch et al.	12 weeks + low fat	dyslipoproteinemia, 1/3	weeks but not 12 weeks.	increased in one subject.
2003) ^{S2}	diet	with high plasma plant	Plasma campesterol: +119%, sitosterol:	

		sterol levels	+54%.	
			Similar response as subjects without	
			ABCG5/G8 mutation.	
Heterozygotes for	Crossover, 3 diets	7 heterozygotes, age 34	Similar decrease in total cholesterol and	Smaller decrease in total
sitosterolemia	(control, with 2.0	years, BMI=22.2kg/m ² ,	LDL-C in both groups, significant	cholesterol and LDL-C with
(Kratz et al. 2007) ^{S3}	g/d sterols, with	total cholesterol=5.81	changes with stanols: -0.31 mmol/L (-	sterols than with stanols.
	2.0 g/d stanols) in	mmol/L, LDL-C=3.09	6%) total cholesterol (<i>P</i> =0.04), -0.23	
	random order, 6	mmol/L	mmol/L (-9%) LDL-C (<i>P</i> =0.06).	
	weeks each	10 controls, age 30 years,	No difference in plasma plant sterol	
		BMI=21.9 kg/m², total	changes, as percentages, between the two	
		cholesterol=5.07 mmol/L,	groups.	
		LDL-C=2.54 mmol/L	Plasma plant sterol changes with sterols:	
		Non hypercholesterolemic	+14.5 μmol/L (+0.59 mg/dL, +23%) in	
		subjects	heterozygotes, +4.9 µmol/L (+0.20	
			mg/dL, +20.5%) in controls.	
			Plasma plant sterol changes with stanols:	
			-34.2 μmol/L (-1.40 mg/dL, -54.2%) in	
			heterozygotes, -12.2 μmol/L (-0.50	
			mg/dL, -50.6%) in controls.	
Heterozygotes for	Crossover, random	10 heterozygotes for	Similar decrease in total cholesterol and	Heterozygotes: 31.1 µmol/L
sitosterolemia	order, 4 weeks	ABCG8 S107X	LDL-C in the two groups.	(1.27 mg/dL) plasma plant

(Myrie et al.	each diet: 1.6 g/d	(Hutterites), 15 healthy	LDL-C: - 10.7% in heterozygotes vs9%	sterols, increased to 39.7 µmol/L
2012) ^{S4}	sterols vs. control	controls, 34 years,	in controls.	(1.62 mg/dL).
		BMI=29.9 kg/m ²	Plasma sitosterol: +9% in heterozygotes	Controls: 20.2 µmol/L (0.82
			vs. +6% in controls.	mg/dL) increased to24.0 µmol/L
			Plasma campesterol: +40% vs. +28%	(0.98 mg/dL).
			(NS).	Plasma plant sterols increased
			Total plant sterols: +28% vs. +20% (NS).	more in heterozygotes than in
				controls but absorption and
				synthesis rates were similar in the
				two groups (stable isotope
				methods).
Meta-analysis	4 weeks-3 months	Age: 2 to 69 years	2.3 g/d sterols and 2.8 g/d stanols	13 studies of which 6 were
Heterozygotes for	sterols /stanols in	average total cholesterol at	(children): -11% total cholesterol, -14-	included in the review and 4 in
FH (Moruisi et al.	spreads (4 studies)	baseline: 7.0 mmol/L (2.7	15% LDL-C	the meta-analysis.
2006) ^{S5}	2 studies with	g/l)	1.6 g/d sterols (children): -7.4% total	No data on plasma plant sterols.
	granules (12.0 g/d	LDL-C: 5.4 mmol/L (2.09	cholesterol, -10.2% LDL-C.	With 12.0 g/d (granulates), HDL-
	and 24.0 g/d	g/l)	2.5 g/d sterols (adults): -8% total	C declined by 15%.
	sterols) were	In the meta-analysis:	cholesterol, -10% LDL-C.	
	excluded from the	n=124 FH; 6.5±1.9 weeks	Meta-analysis: -0.65 mmol/L total	
	meta-analysis	intervention; 2.3±0.5 g/d	cholesterol (-0.88 mmol/L0.42	
		sterols/stanols	mmol/L), -0.64 LDL-C (-0.86 mmol/L	

0.43 mmol/L).	
,	

Abbreviations: ABCG8, ATP-binding cassette subfamily G member 8; FH, familial hypercholesterolemia; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol

References

- S1. Stalenhoef AF, Hectors M, Demacker PN. Effect of plant sterol-enriched margarine on plasma lipids and sterols in subjects heterozygous for phytosterolaemia. J Intern Med. 2001;249:163-166.
- S2. Kwiterovich PO, Jr., Chen SC, Virgil DG, Schweitzer A, Arnold DR, Kratz LE. Response of obligate heterozygotes for phytosterolemia to a low-fat diet and to a plant sterol ester dietary challenge. J Lipid Res. 2003;44:1143-1155.
- S3. Kratz M, Kannenberg F, Gramenz E, et al. Similar serum plant sterol responses of human subjects heterozygous for a mutation causing sitosterolemia and controls to diets enriched in plant sterols or stanols. Eur J Clin Nutr. 2007;61:896-905.
- S4. Myrie SB, Mymin D, Triggs-Raine B, Jones PJ. Serum lipids, plant sterols, and cholesterol kinetic responses to plant sterol supplementation in phytosterolemia heterozygotes and control individuals. Am J Clin Nutr. 2012;95:837-844.
- S5. Moruisi KG, Oosthuizen W, Opperman AM. Phytosterols/stanols lower cholesterol concentrations in familial hypercholesterolemic subjects: a systematic review with meta-analysis. J Am Coll Nutr. 2006;25:41-48.