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Abstract

Oncolytic immunotherapy is based on the use of non-pathogenic replicative
oncolytic viruses (OV) that infect and kill exclusively tumor cells. Recently, we showed
that the spontaneous oncolytic activity of the Schwarz strain of measles virus (MV)
against human malignant pleural mesothelioma (MPM) depends on defects in the
antiviral type | interferon (IFN I) response in tumor cells. In this study, we identify the
most frequent defect as the homozygous deletions (HD) of all fourteen IFN | genes
(IFN-o and IFN-B) that we found in more than half of MV-sensitive MPM cell lines.
These HD occur together with the HD of the tumor suppressor gene CDKN2A also
located in the 9p21.3 chromosome region. Therefore, the IFN I~ MPM cell lines
develop a partial and weak IFN | response when they are exposed to the virus
compared to normal cells and MV-resistant MPM cell lines. This response consists in
the expression of a restricted number of IFN-stimulated genes that do not depend on
the presence of IFN I. In addition, the IFN I~ MPM cell lines infected by MV also
develop a pro-inflammatory response associated with a stress of the endoplasmic
reticulum. Our study emphasizes the link between HD of IFN | encoding genes and

CDKNZ2A gene in MPM and sensitivity to MV oncolytic immunotherapy.



Introduction

Oncolytic immunotherapy is a developing strategy to treat cancer that is based
on the use of non-pathogenic replicative oncolytic viruses (OV). OV exclusively
replicate in and kill tumor cells, and stimulate the antitumor immune response 1.
Indeed, viral replication is often favored in tumors due to the presence of an
immunosuppressive environment and defects in several pathways in tumor cells such
as apoptotic or antiviral pathways that are normally used to prevent viral replication 2.

Attenuated vaccine strains of measles virus (MV) such as Edmonston or
Schwarz strains display a spontaneous oncolytic activity against numerous tumor cell
types 2 4. These strains use the CD46 molecule as a second receptor to infect human
cells, unlike the pathogenic strains that mainly use the CD150 molecule ° . Tumor
cells often overexpress CD46 to escape complement-mediated cytotoxicity ” 8. This
expression at high density favors the infection of tumor cells by attenuated MV °.We
and others have shown that the oncolytic activity of MV also depends on deficiencies
of the antiviral type | interferon (IFN 1) response in tumor cells 1012, All nucleated cells
are able to detect viral infection using intracytoplasmic pattern recognition receptors
13 In the case of MV, cytosolic helicases such as RIG-1 and MDAS5 detect the viral RNA
and send a signal to the nucleus via IRF3, NF-KB. This signal induces the secretion of
IFN | that protects infected and neighboring cells from further viral replication. Indeed,
exposure to IFN | induces the expression of hundreds of IFN-stimulated genes (ISG)
in cells that express the IFN-o/-p receptors (IFNAR). These ISG are directly or
indirectly responsible for the antiviral activity. Some of these ISG, such as ISG15 or
ISG54 (IFIT1), can be directly activated in response to the virus via IRF3 without the

need of IFN I, whereas others require IFN | and IFNAR signaling®3-15,



Malignant pleural mesothelioma (MPM) is a cancer of the pleura often due to
chronic asbestos exposure . Treatments of MPM include chemotherapy,
radiotherapy and surgery, and are of limited efficacy, urging the development of new
therapeutic approaches, such as oncolytic immunotherapy. In a recent study, we
reported that fifteen out of twenty-two human malignant pleural mesothelioma (MPM)
cell lines were sensitive to Schwarz MV oncolytic activity due to defects of their antiviral
IFN | response 0. Eleven out of these fifteen MPM cell lines were unable to secrete
IFN | (IFN-B and IFN-a) in response to MV making them permissive to the viral
replication that ended up killing them. However, these cell lines were able to control
viral replication and to resist MV oncolytic activity if they were previously exposed to
IFN I, suggesting that the defects of the IFN | response were located upstream of
IFNAR. The seven others MPM cell lines as well as four types of healthy cells were
able to produce type | IFN when exposed to MV and thus block viral replication and
cell lysis.

In this study, we aimed at further identifying the defects of IFN | response
present in MPM tumor cells, that make them sensitive to MV oncolytic activity. We also
wanted to characterize their impacts on the cellular response to the virus. We show
that the most frequent defect in MPM is the homozygous deletions (HD) of all genes
encoding IFN | (IFN-a and IFN-B) that were found in eight out of the fifteen MV-
sensitive MPM cell lines. These frequent HD of IFN | encoding genes in MPM that
occur together with the HD of CDKN2A gene represents a therapeutic target that can

be exploited with OV such as Schwarz MV to induce immunogenic death of tumor cells.



Materials and methods
Cell culture

Human MPM cell lines (from Meso 4 to Meso 225) were established in our
laboratory from pleural effusions collected by thoracocentesis, and genetically
characterized 1. All patients gave their informed consent. All cell lines were maintained
in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum,
100U/mL penicillin, 100ug/mL streptomycin and 2mM L-glutamine (all reagents from
Gibco-Invitrogen) and cultured at 37°C in a 5% CO2 atmosphere. Normal peritoneal
mesothelial cells MES-F were purchased from Tebu-bio, pulmonary fibroblasts CCD-
19Lu from the ATCC-LGC Standards, and pulmonary endothelial cells HMVEC-L from
Lonza. These cells were cultured in their specific media according to the
manufacturers' recommendations. The bronchial epithelial cells were obtained and
cultured as previously described 18 Cells were routinely checked for Mycoplasma
contamination using the PlasmoTest™ from InvivoGen.

The eighty MPM cell lines used to confirm the HD of IFNB1 gene were early
passages of primary tumor cells established at INSERM U1162 laboratory, Paris, from
surgical resection, pleural biopsies, or malignant pleural fluid of confirmed MPM cases,

obtained from several French hospitals with patient’s consents 1% 20,

MV infection, IFN and inhibitor treatments

Live-attenuated Schwarz vaccine strain of measles virus (MV), MV recombinant
for the enhanced green fluorescent protein (MV-eGFP) and MV recombinant for the
cherry protein (MV-ch) were produced and purified as previously described 21. Infection
of cells with MV lasted 2h at 37°C. Viral inoculum was then replaced by fresh culture

medium, unless otherwise indicated. Type | IFN treatment was performed by adding



rhiIFN-a2a and rhlIFN-Bla (ImmunoTools) at 1,0001U/mL and type Il treatment was
done by adding rhlL-29 at 10ng/mL during 48h. The IFN | pathway was inhibited by
ruxolitinib, a chemical inhibitor of janus-associated kinases (JAK1, JAK2 and JAK3), at
1uM three days before infection and added every days during the time of the

experiment.

MV replication assay

Three days before infection, cells were seeded in 6-well plates at a density of
0.5x10° cells/well for the MPM cell lines with or without ruxolitinib. A day before
infection, cells were seeded in 96-well plates, at a density of 10,000 cells/well. Infection
was performed at multiplicity of infection of 1 (MOI 1) and fluorescence at 610nm was
analyzed every day during 9 days using a ChemiDoc™ MP imaging system (Bio-Rad).
Quantification was done with the Image Lab 4.1 Software (Bio-Rad) with the relative
fluorescence corresponding to the ratio between the fluorescence measured in treated

and non-treated cells.

Confocal microscopy

MPM cell lines were seeded in 8-well silicone cultivation chamber (IBIDI ®) at a
density of 0.5x105cells/well and then infected with MV at MOI 10 during 12h. Cell
membrane cells were labeled with WGA, a lectin marker, at 5ug/mL for 10min at room
temperature. Cell were fixed with 4% paraformaldehyde for 20min at room
temperature, cell and nuclear membranes were permeabilized for 5min at 20°C with
absolute methanol and then blocked in PBS 0.1% BSA (Sigma Aldrich) at 4°C
overnight. Cells were incubated 5min in PBS 0.1% BSA 0.1% saponin (Sigma Aldrich)

and then with anti-IRF3 and NF-kB primary antibodies (Cell Signaling Technology) for



1h, followed by incubation with DyLight 488-coupled secondary antibodies (Life
Technologies™) for 20min. Both were diluted in PBS 0.1% BSA 0.1% saponin and
incubated at room temperature. Finally, nucleus were labeled by Hoescht 5min at room
temperature. Labeled cells were directly viewed with a confocal microscope (Nikon
A1RSI). The images were recorded with NIS Element software (Version 3.6, Nikon)
and processed with the software Fiji 2. Ratio of the nuclei/cytoplasm fluorescence

intensity was measured with the software Volocity software (Perkin-Elmer).

Real-time RT-gPCR

MPM cell lines and healthy cells were seeded in 6, 12 or 24-well plates at a
density of 0.5, 0.25 or 0.1x108cells/well respectively. Then, cells were treated with
Type | or 1l IFNs or ruxolitinib or/and infected with MV at MOI 1 during 48h or at MOI
10 during 12h. Total cell RNA was extracted using the Nucleospin® RNA 1l kit
(Macherey-Nagel) and 0.5ug or 0.25ug total RNA was reverse transcribed using MMLV
reverse transcriptase (Invitrogen). PCR reactions were conducted using QuantiTect
primer assays (Qiagen) and Maxima SYBR Green/ROX gPCR Master Mix (Fisher
Scientific) according to the manufacturer's instructions. Gene expression was analyzed
in treated or non-treated cells using QuantiTect primers pairs for Mx1, TLR3, IRF7,
STAT1, XAF1, IFIT1, DDX58 (RIG-I), OAS1, IRF3, RELA (p65) and CXCL10. Gene
expression was expressed as relative expression compared to the expression of a
housekeeping gene that encodes the human large ribosomal protein (RPLPO) and in
fold change (AACt = (Ct gene non-treated - Ct RPLPO non-treated) — (Ct gene treated

- Ct RPLPO treated)).



Genomic PCR
Genomic DNA was extracted with the Nucleospin® Blood kit (Macherey-Nagel)
according to the manufacturer's instructions. 250ng of genomic DNA was amplified

according Phusion hot start Il high fidelity DNA polymerase protocol (thermo scientific).

The following primers were used: 5-GGTCGTTTGCTTTCCTTTGC-3' (forward) and 5'-
AGCAATTGTCCAGTCCCAGA-3' (reverse) for IFNB1 gene. A two steps cycling
protocol was used with 1 cycle during 30s at 98°C, then 30 cycles of amplification 10s
at 98 °C and 1min at 72 °C, following by a final extension 7min at 72°C. The Genomic
PCR on the eighty MPM cell lines of the validation series was performed as described

in supplemental material and methods.

Genomic array analysis

Genomic DNA was extracted with Nucleospin® Blood kit (Macherey-Nagel)
according to the manufacturer's instructions. DNA (500 ng) was processed and
hybridized to Affymetrix CytoScanHD Array according to the manufacturer’s
instructions (Affymetrix, Santa Clara, CA). The detection, determination and
visualization of gains, losses were performed using Affymetrix Chromosome Analysis
Suite software (ChAS v3.1.1.27). All obtained data have been uploaded on GEO

Omnibus site (GSE134349).

Analysis of The Cancer Genome Atlas (TCGA) database

Available alteration data (copy number variation, mutation and fusion) for
CDKNZ2A, IFNA2, IFNB and several genes that encodes protein implicated in the IFN
| response were retrieved from cBioPortal, an online portal for accessing data from

TCGA project (http://www.cbioportal.org).



Transcriptomic study

MPM cell lines and healthy cells were seeded in 6-well plates at a density of
0.5x106¢ells/well. Then, cells were treated with Type | IFN or infected with MV at MOI
1 during 48h. Total cell RNA was extracted using the Nucleospin® RNA Il kit
(Macherey-Nagel). For each sample, a mix of an equal amount of RNA from three
separate experiments was done. Transcriptome analysis was performed with
Affymetrix human Gene 2.0 ST arrays according to the manufacturer’s protocol. Briefly,
total RNA (300 ng) was labeled and cRNA (antisens RNA) was synthetized using the
Affymetrix WT cDNA Synthesis and Amplification Kit. After cleanup protocol, SSDNA
(sense single stranded DNA) was synthetized, fragmented and labeled with biotin.
Biotin-ssDNA was hybridized onto microarrays according to the manufacturer’s
instructions. After 16 h at 45 °C, microarrays were washed and stained using Affymetrix
fluidics station 450 and scanned with an AffymetrixGeneArray scanner 3000 7G. Raw
data were normalized using the Robust Multichip Algorithm (RMA) in Bioconductor R.
Then all quality controls and statistics were performed using Partek GS® (version 6.6
Copyright© 2012 Partek Inc., St. Louis, MO, USA). To find differentially expressed
genes, classical analysis of variance (ANOVA) was performed for each gene and pair
wise Tukey’s post hoc tests between groups. P-values and fold changes were used to
filter and select differentially expressed genes. Interaction, pathway and functional
enrichment analyses were carried out with [PA (Ingenuity® Systems,
www.ingenuity.com, USA). All data obtained by microarray analysis have been

uploaded on GEO Omnibus site (GSE117668).



Western-blotting

MPM cell lines were seeded in 6-well plates at a density of 0.5x10%cells/well.
Then, cells were treated with IFN | or infected with MV at MOI 1 during 48h. Cells were
lysed in RIPA buffer containing a Protease Inhibitor Cocktail (Sigma) and denaturated
at 95°C for 5min in Laemmli buffer with 10% B-mercaptoethanol. 20ug of proteins for
cellular lysate were separated by SDS-polyacrylamide gel electrophoresis on 8% gels
and transferred to PVDF membranes. Blots were incubated with anti-MX1 (clone
M143, Dr. Georg Kochs, University Medical Center Freiburg, Germany), TLR3, STAT1,
XAF-1, RIG-I, RSAD2, OAS1, IFIT-1 or actin primary monoclonal antibodies (Cell
Signaling Technology), followed by incubation with HRP-coupled secondary antibodies
(Jackson Immuno research). Proteins were revealed using Enhanced

Chemiluminescence Detection ECL (BioRad).
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Results
The IFN | response controls MV replication and oncolytic activity.

In a previous study, we demonstrated that the sensitivity of MPM cell lines to
MV oncolytic activity depends on defects of the antiviral IFN | response in tumor cells
10 To confirm the role of the IFN | response on MV oncolytic activity we performed a
first experiment where we exposed four MV-resistant MPM cell lines and two types of
healthy cells (MESF mesothelial cells and CCD-19Lu fibroblast) to MV encoding the
cherry fluorescent protein (MV-ch) in presence of the JAK1 and JAK2 inhibitor
ruxolitinib that blocks the IFNAR signaling. We observed that heathy and MPM cells
were resistant to MV-ch replication in absence of ruxolitinib (Figure 1A and 1B). This
was probably due to the expression of ISG, as MV induce the expression of MX1, TLR3
and IRF7 in healthy and MV-resistant MPM cells (Figure 1C). However, adding
ruxolitinib prevented ISG expression, releasing therefore the break on MV replication.

These results prove that MV replication and lytic activity are highly sensitive to
a functional IFN | response and that defects in this signaling pathway in MPM tumor

cells make them sensitive to the MV oncolytic activity.

IRF3 and NF-KB signaling is functional in MV-resistant and MV-sensitive MPM cell
lines.

We then sought to identify the defects in the IFN | response affecting MPM cell
lines that are sensitive to MV replication. We determined if the IRF3, IRF7 and NF-KB
proteins were functional in MV-sensitive MPM cell lines and allowed the signal
transduction from pattern recognition receptors (PRR) to the nucleus.

First, we assessed the expression of IRF3, IRF7 and RELA genes that encode

IRF3, IRF7 and p65, a sub-unit of NF-KB respectively (Figure 2A). IRF3 and RELA

11



were constitutively expressed in all cell groups. IRF7 was expressed at low basal level
in MV-resistant MPM cell lines and barely detectable in healthy cells and MV-sensitive
MPM cell lines. 48h after exposure to MV, we observed that IRF3 and IRF7 expression
was increased in healthy cells and MV-resistant MPM cell lines but was not induced in
MV-sensitive MPM cell lines. On the opposite, RELA expression increased after MV
infection in the three groups. We tried to measure earlier at 12h or 24h the induction
of IRF3, IRF7 and RELA expression in response to MV without success (data not
shown).

We then studied IRF3 and NF-KBp65 nuclear relocation 12h after MV exposure
at high MOI by confocal microscopy. Without virus, IRF3 and p65 were not activated
and were located mainly in the cytoplasm. After infection, we observed that both
transcription factors relocated to the nucleus of MV-resistant MPM cells, as well as to
the nucleus of MV-sensitive MPM cells (Figure 2B and 2C). No significant difference
in the intensity of nuclear relocation was observed between the two groups (Figure
2D).

Altogether these results show that MV is well detected by MPM cell lines, even
in cells that failed to produce IFN I. Detection of MV is then followed by a signal that

reaches the nucleus via the relocation of IRF3 and p65 transcription factors.

The most frequent defect of the IFN | response in MV-sensitive MPM cell lines is HD
of the genes encoding IFN-« and IFN-4.

Since the PRR signaling is functional in MV-sensitive MPM cell lines, the defects
are probably located in the nucleus at the level of genes encoding IFN I. We thus
performed a genomic PCR on six MV-resistant and the fifteen MV-sensitive MPM cell

lines to assess the presence of the IFNB1 gene that encodes IFN-B (Figure 3A).
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Whereas six MV-resistant and seven MV-sensitive MPM cell lines had at least one
copy of the IFNB1 gene, eight out of the fifteen MV-sensitive MPM cell lines had a HD
of the IFNB1 gene: Meso 11, Meso 13, Meso 31, Meso 47, Meso76, Meso 96, Meso
163 and Meso 225.

The IFNB1 gene is located on the chromosome 9 next to a cluster of thirteen
genes encoding the IFN-a cytokines and close to the tumor suppressor gene CDKN2A
that encodes p16'™NK4A and p14ARF (Figure 3B). In the next experiment, we measured
the size of the deletions of the chromosome 9 region where the IFNB1 gene is located.
We performed a cytogenetic study by Cytoscan™ that allowed analyzing the genome
of the eight MPM cell lines that have lost the IFNB1 gene and 4 MV-resistant MPM cell
lines (Figure 3B). This technique covers the entire human genome with specific probes
spaced by 1Kb in average. We observed in the MV-sensitive MPM cell lines that the
bi-allelic deletion of IFNB1 genes located at the 21.08Mb position encompassed all the
genes encoding the IFN-a cytokines between the 21.17 and 21.44Mb positions and
extend after the CDKN2A gene located at the 21.97Mb position. We also found that
the four MV-resistant MPM cell lines had at least one copy of the gene encoding the
IFN | cytokines. However, in three out of the four MV resistant tumor cell lines the two
alleles of the CDKN2A gene were deleted. Only the cell line Meso61 conserved one
copy of the CDKN2A gene.

Then we sought to confirm the frequent HD of the CDKN2A and IFNB1 genes
on another bio-collection of 78 short term-cultured MPM cell lines (Figure 3C). We
found the HD of the CDKN2A and IFNB1 genes in 57 (73%) and 18 (23%) out of the
78 MPM cell lines respectively. 17 (30%) out of the 57 MPM cell lines that have lost
the CDKNZ2A gene have also lost the IFNB1 gene and 17 (94%) out of 18 MPM cell

lines that have lost the IFNB1 gene have also lost the CDKN2A gene (94%). One MPM
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cell lines, MPM_51, lost only the two copies of the IFNB1 gene while keeping the
CDKN2A gene. Interestingly, the IFNB1 gene HD was significantly more frequent in
MPM with a sarcomatoid component, the most aggressive form of the disease (Fisher’'s
exact test, p-value=0.0085), i.e. 17% of epithelioid MPM, 45% of biphasic MPM and
50% of sarcomatoid/desmoplastic MPM.

Then we wanted to determine if other alterations of the IFN | pathway exist in
MPM and to estimate their frequencies. Thus, we looked by the cbioportal.org website
(http://www.cbioportal.org) in the TCGA database on 87 MPM patients for alterations
of CDKN2A, IFNA2 and IFNB1 genes, but also at several other genes that encodes
protein implicated in the IFN | response (Figure 4A). We observed 43.8%, 18.4% and
9.2% of CDKN2A, IFNA2 and IFNB1 genes HD respectively. We found no other
alteration on these genes except one fusion for CDKN2A. The genes encoding the
other proteins of IFN | response pathway were rarely altered with two patients out of
eighty-seven having a STAT1 alteration and several patients showing a unique
alteration either on DDX58 (RIG I), IFIH1 (MDAS5), STAT1, STAT2, JAK1 or JAK2. The
alteration of DDX58 and IFIH1 were found in patients with IFN | genes HD, whereas
alterations of STAT1, STAT2, JAK1 or JAK2 were found in patients without.

To determine if the IFN | gene HD have a role in MV-replication permissivity, we
used CRISPR-cas9 technology and lentiviral transduction to knock out the IFNB1
genes of the four MV-resistant MPM cell lines in order to determine if it was sufficient
to make them permissive to MV replication (Supplemental Figure 1). We found that
IFNB1 inactivation was sufficient to make Meso45 permissive to MV replication
(Supplemental Figure 1A and 1B). For the three other cell lines, it was not sufficient
and the inactivation of some of the 13 genes encoding IFN-oo may be required

(Supplemental Figure 1C). We also restored the IFNB1 gene and its promoter in 5 of
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the 8 IFN I~ MPM cell lines by lentiviral transduction. Replication of MV was strongly
reduced in 4 MPM cell lines (Mesol1, Meso013, Meso47 and Mes0225) and moderately
in the last one (Mes0163) (Supplemental Figure 2). Altogether these results show that
IFNB1 expression is often sufficient to block MV replication, but IFNA genes may also
play a role.

We then sought to determine if these HD are also frequent in other cancers. In
the TCGA, we looked at copy number alterations of CDKN2A, IFNA2 and IFNB1
genes. Mesothelioma is the second cancer with the most frequent CDKN2A HD after
glioblastoma multiforme (Figure 4B and 4C). Nine types of cancer, including lung
squamous cell carcinoma, have a frequency of CDKN2A HD superior to 20% that
always correlate with lower frequencies of IFNA2 and IFNB1 HD. Mutations of the IFN
| genes, IFNA2 and IFNB1, are rare in all cancers and absent in MPM meaning that
alteration of IFN | genes in cancer occurs mainly by HD (Figure 4C).

Since IFN | gene HD are also frequent in lung cancer, we used the canSAR

database https://cansar.icr.ac.uk/cansar to randomly select eleven lung cancer cell

lines with four of them having IFN | genes HD to determine their permissivity to MV
replication (Supplemental Figure 3). First, we confirmed by genomic PCR that IFN |
genes were absent in the four cell lines (Supplemental Figure 3A). Then, we exposed
the eleven lung tumor cell lines to MV-cherry and measured cherry fluorescence during
9 days. We observed that the four IFN I-/- lung cancer cell lines were permissive to MV
replication and that in presence of IFN | this permissivity was lost for three of them
(Supplemental Figure 3B). five of the seven other lung cancer cell lines with at least
one copy of the IFN | genes were also permissive suggesting that, like in MPM, other

defects beside IFN | gene HD affect the IFN | pathway in lung cancer.
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Altogether these results show that IFN | genes HD are frequent in cancers where

CDKN2A gene HD is a malignancy driver.

MPM cell lines that have lost IFN | genes develop a partial IFN | response and a
proinflammatory program after exposure to MV.

We then wanted to characterize how the MPM cell lines that have lost IFN |
encoding genes (IFN I”- MPM cell lines) respond to MV or exogenous IFN | (IFN-a2a
and IFN-Bla). Thus we performed a transcriptomic analysis on four types of healthy
primary cells (G1: CCD19Lu fibroblasts, HMVEC endothelial cells, MESF peritoneal
mesothelial cells and CEB lung epithelial cells), on four MV-resistant MPM cell lines
(G2: Meso4, Meso045, Meso61 and Meso173) and on the eight IFN I~ MPM cell lines
(G3: Mesol11, Meso013, Meso31, Meso47, Meso76, Mes096, Meso163 and Mes0225)
(Figure 5, Supplemental Figure 4).

First we analyzed the expression of genes encoding type I, 1l and Il IFN and
their receptors (Figure 5A-B). Constitutive expression of these genes was comparable
in the three groups (Figure 5B). After 48h of MV exposure, expression of IFNB1 gene
was induced only in some healthy cells (G1) and in resistant MPM lines (G2) and
absent from IFN I’ MPM cell lines (G3), whereas no expression of the IFNAs genes
was observed (Figure 5A). Expression of type Il IFN genes (IFNL1, IFNL2 and IFNL3)
was strongly increased after exposition to MV in MPM cell lines (G2 and G3), but not
in healthy cells (G1). We also observed that MV had no effect on expression of all IFN
receptors. Furthermore, exposure of the different groups to exogenous IFN | had no
effects on the expression of genes encoding type I, Il and Il IFN and their receptors.

Then, we investigated the expression of ISG by the three groups of cells in

response to MV or type | IFN (Figure 5C-5D). When healthy cells (G1) and resistant
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MPM lines (G2) were exposed to MV, we observed the overexpression of a large
panels of ISG (Figure 5C) which encode proteins with varied antiviral functions 23. In
response to IFN |, G1 and G2 expressed a similar set of ISG, although at a lower level.
The MV resistant MPM cell lines (G2) developed a weaker response to MV and IFN |
compared to healthy mesothelial cells, but the basal expression of these genes was
often higher in G2 compared to G1 (Figure 5, Supplemental Figure 4), especially in
Meso4 and to a lower extent Meso45 and Mesol73 (Figure 5D). In contrast, the
constitutive expression of these genes was lower in IFN I~ MPM cell lines (G3)
compared to healthy mesothelial cells. In response to MV, IFN I”- MPM cell lines (G3)
expressed a limited set of genes, such as RSAD2, IFIT1, OAS1 and DDX58 compared
to G1 and G3 cells (Figure 5C). Other genes such as IFI35, IFIT1M, XAF1 and TLR3
expressed in response to MV in G1 and G2, failed to be expressed in G3 cells.
However G3 cell lines were able to express these genes after exposure to IFN I.
Altogether these results show that IFN I~ MPM cell lines (G3) develop a partial IFN |
response characterized by the expression of a limited set of ISG independently of IFN
| expression that does not succeed in controlling MV replication. The other set of ISG
that requires IFN | is not expressed in response to MV by IFN I~ MPM cell lines
resulting in absence of MV replication control.

We also detected in G3 a particular set of ISG that were expressed mainly in
response to MV, but that were not or weakly expressed in the two other groups of cells,
such as TNFAIP3, ATF3, IRF1 and CCL2 (Figure 5C and 5D, lower panels). This result
suggests that in absence of IFN I, IFN I”- MPM cell lines develop an alternative
response to MV compared to the two other groups of cells. Thus, we analyzed the
expression of genes other than ISG in the three groups in response to MV or

exogenous IFN | (Supplemental Figure 5) and using Ingenuity Pathway Analysis
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(Ingenuity® Systems) we identified canonical cellular pathways that are induced by the
virus in the three groups (Figure 5E). In G1 and G2, the virus mainly induced pathways
that are typical of the IFN | response such as “Activation of IRF by Cytosolic Pattern
Recognition Receptors” and “Interferon Signaling” pathways. In the G3, the IFN |
response was also induced by MV, but we observed that numerous other pathways
were activated contrary to G1 and G2. These pathways can be summarized in two
main types: an inflammatory response with activated pathways such as “TNFR2
Signaling”, “IL-17A Signaling in Gastric Cells”, “IL-6 Signaling”, “iINOS Signaling”,
“‘Death Receptor Signaling” and “TNFR1 Signaling” and an endoplasmic reticulum
stress response characterized by activated pathway such as “Unfolded protein
response”, “Protein Ubiquitination Pathway” and “Endoplasmic Reticulum Stress
Pathway”.

Altogether these results show that before being lysed by MV, IFN I MPM cell
lines engage transcriptionally in a partial, dysfunctional IFN | response characterized

by the expression of a limited set of ISG. In addition, these cells develop an

inflammatory response associated with an endoplasmic reticulum stress response.

Partial and weak expression of proteins encoded by ISG in IFN |- MPM cell lines
exposed to MV.

The transcriptomic study pointed out two types of ISG: the ISG that are
transcribed in response to MV without the presence of IFN I, and the ISG that are
transcribed only in presence of IFN I. Thus, in the next experiment we wanted to
confirm the transcriptomic study by gRT-PCR and to measure by western-blot the level

of proteins encoded by these two types of ISG (Figure 6).
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First, we analyzed four ISG expressed in response to MV without the presence
of IFN I: RSAD2 (Viperin), IFIT1 (ISG56), OAS1 and DDX58 (RIG I). The expression
of these ISG measured by RT-gPCR was increased by both, MV and IFN I, in IFN 17
MPM cell lines, confirming results from the transcriptomic study (Figure 6A). By
western-blot, we observed a stronger basal expression of these proteins in MV-
resistant MPM cell lines, especially Meso4 and Meso45, compared to IFN 17~ MPM cell
lines thereby suggesting a constitutively activated IFN | response in MV-resistant cells
(Figure 6B). The expression of these proteins was upregulated after exposure to MV
or IFN I in all MV-resistant MPM cell lines. In contrast, in IFN 17 MPM cell lines, MV
induced only low levels of these proteins, whereas IFN | induced a higher expression
similar to what was observed in MV-resistant cells.

We then confirmed by RT-gPCR that the expression of the ISG XAF1, TLR3
and STAT1 was only induced by IFN I in IFN I~ MPM cell lines and not by exposure to
MV (Figure 6C). The proteins encoded by this IFN I-dependent ISG are also more
constitutively expressed in MV-resistant MPM cell lines compared to IFN |7~ MPM cell
lines (Figure 6D). In MV-resistant MPM cell lines, MV as well as IFN | induced a strong
expression of these proteins. In contrast, except for Meso0163, MV did not induce these
proteins in IFN I~ MPM cell lines, whereas they were expressed at high level in
response to IFN I.

Altogether these results show that IFN I~ MPM cell lines develop a weak and
partial IFN | response at the protein level that is not sufficient to control MV replication.
They also point out that two of the four MV-resistant MPM cell lines display a high

constitutive level of proteins involved in the antiviral IFN | response.
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Discussion

In this study, we demonstrated that the sensitivity of human MPM cells to the
attenuated MV oncolytic activity is often due to IFN | genes HD. These frequent
deletions are associated with the simultaneous HD of the tumor suppressor gene
CDKN2A also located in the 9p21.3 chromosome region. These co-deletions are
frequent in other cancers such as glioblastoma multiforme, melanoma or lung
squamous cell carcinoma. We also showed that IFN I7- tumor cells that are sensitive
to MV oncolytic activity are able to detect the virus and respond by relocating IRF3 and
NF-KB in the nucleus. Thus, before being lysed by MV, the IFN |- tumor cells engage
in a partial IFN | response characterized by the weak expression of a limited number
of ISG compared to the large panel of ISG that are expressed by healthy cells and MV-
resistant MPM exposed to MV. The IFN I/~ tumor cells also develop a pro-inflammatory
response and endure a stress of the endoplasmic reticulum that are hallmarks of
immunogenic cell death. Our work provides a better understanding of MV oncolytic
activity against MPM.

Inactivation of the tumor suppressor gene CDKN2A is a key driver of
mesothelioma 18 24, HD of CDKN2A and also of the IFN | genes have been described
in MPM as soon as the nineties, but these studies mainly focused on the CDKN2A
locus and failed to estimate the frequency of IFN | gene HD 2> 2% In our study, we
showed that 36% of the MPM cell lines (8/22) from our collection have lost both copies
of the IFNB1 gene while they all lost the two copies of CDKN2A except Meso61 (data
not shown). However, a majority of these MPM cell lines have more than ten passages
in vitro and there could be a culture bias that makes CDKN2A’- MPM cell lines easier
to establish. To get a more accurate estimation of the IFN | genes HD frequency in

MPM, we measured this frequency in a series of eighty short term MPM cell lines. We
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found that 71% and 23% of these cell lines have lost the two copies of CDKN2A and
IFNB1 genes respectively. These percentages probably better reflect the reality as
they correspond to the 60% to 74% of CDKN2A HD found by fluorescence in situ
hybridization 2730, Interestingly IFNB1 HD are more frequent in mesothelioma cell lines
with a sarcomatoid component (biphasic, sarcomatoid and desmoplastic MPM) with
47% of them harboring these deletions. In the TCGA public database, we found that
43.8% and 9.2% of MPM frozen tumor samples lost the two copies of CDKN2A and
IFNB1 genes respectively. However these results are likely underestimated, since they
are obtained by high-throughput sequencing of tumor biopsies that contains healthy
cells which can hide HD only present in tumor cells as it was demonstrated for BAP1
gene, also frequently deleted in MPM 3,

IFEN | genes HD is not the only defect of the IFN | response in MPM. Indeed,
seven out of the fifteen MV-sensitive cell lines have at least one copy of the IFNB1
gene. Three of them behave like IFN I MPM cell lines by failing to produce IFN I in
response to MV, whereas the other four produce IFN | in response to MV, but failed to
control viral replication 0. This converging selection of tumor cells toward inactivation
of the IFN I response strongly suggests that the IFN | genes HD are not just a collateral
damage of the loss of the CDKN2A locus, but probably bring additional advantages for
tumor development in MPM.

Among cancers that have lost IFN | genes, glioblastoma multiforme displays the
highest frequency of these HD (16.4% for IFNB1 and 25.7% for IFNA2). This cancer is
also one of the most studied for oncolytic immunotherapy with different viruses such
as herpes simplex, adenovirus and parvovirus 32 32, Recently, the group of Evanthia
Galanis reported in human tumor xenograft models in mice and by monitoring ten

glioblastoma patients receiving MV oncolytic immunotherapy that the main
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transcriptional signature associated with resistance was the presence of a constitutive
activation of the IFN | response in tumor cells 34. This gene signature can be used to
predict which patients are likely to respond to MV oncolytic immunotherapy. We also
found a constitutive activation of the type | IFN pathway in several MV-resistant MPM
cell lines compared to healthy cells , whereas none of the eight IFN |- MPM cell lines
present a constitutive activation of the IFN | pathway.

In four out of five IFN I-/- MPM cell lines, restoration of the IFNB1 genes led to
the blocking of MV replication without the need to restore IFNA genes, whereas in the
last one, blocking was partial and may require restoration of some IFNA genes. We
focused on the IFNB1 gene since after 48h of MV exposure, it was the most expressed
IFN | genes in resistant MPM cell lines. We also inactivated the IFNB1 genes in the
four MV-resistant MPM cell lines and only one tumor cell line became permissive to
MV replication. Inactivation of IFNB1 gene was not sufficient for the other three cell
lines. Altogether these results show a major contribution of the IFNB1 gene in
controlling MV replication, but IFNA genes may also play a role.

In absence of IFN | genes, MPM cell lines exposed to MV develop a weak and
partial IFN | response characterized by the expression of a limited number of ISG, such
as RSAD2, IFIT1, OAS1 and DDX58. They fail to express other ISG, such as XAF1,
TLR3, STAT1 and MX1 that need the presence of IFN | to be expressed. This group
of ISG that can be directly activated by IRF3 independently of IFN | as a part of the
early antiviral response is not sufficient to control MV replication. In addition to this
weak and partial IFN | response, IFN |- MPM cell lines also develop a pro-inflammatory
response such as TNFR1/TNFR2, IL-17A, IL-6, INOS signaling and a stress of the
endoplasmic reticulum. This corroborates the in vivo model described by the group of

Michael Diamond where IFNAR” myeloid cells that are equivalent to the IFN |- MPM
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cell lines in our study develop an exacerbated pro-inflammatory TNF-a response when
infected by the West Nile virus 3°. Our and their studies show that in absence of the
IFN | signaling, the pro-inflammatory response is amplified. This pro-inflammatory
response and the stress of the endoplasmic reticulum are probably part of the
immunogenic cell death induced by MV replication. We and other showed that tumor
cells lysed by MV are immunogenic by releasing tumor-associated antigens and
danger signals from cellular or viral origins 3643, These signals induce the maturation
of myeloid and plasmacytoid dendritic cells that are in turn able to cross-present tumor
antigens to T cells. Thus our study identify the frequent IFN | genes HD as a
therapeutic targets to induce cell death of tumor cells with oncolytic MV for the

treatment of MPM.

23



Acknowledgements

We thank Philippe Hulin and the cellular and tissular core facility of Nantes
University (MicroPiCell) for their expertise in video microscopy. We thank Juliette
Desfrancois and the core facility of flow cytometry (Cytocell). We thank Elise Douillard,
Magali Devic, Emilie Maurenton and Nathalie Roi, for excellent technical expertise on
genomic analysis. We Thank Sébastien Jacques and the genomic core facility of

Institut Cochin (Genom’ic).

24



References

1. Achard C, Surendran A, Wedge ME, et al. Lighting a Fire in the Tumor
Microenvironment Using Oncolytic Immunotherapy. EBioMedicine 2018;31:17-24.

2. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol
2012;30:658-670.

3. Guillerme JB, Gregoire M, Tangy F, et al. Antitumor virotherapy by attenuated
measles virus (MV). Biology (Basel) 2013;2:587-602.

4. Robinson S, Galanis E. Potential and clinical translation of oncolytic measles
viruses. Expert Opin Biol Ther 2017;17:353-363.

5. Dorig RE, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor
for measles virus (Edmonston strain). Cell 1993;75:295-305.

6. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor
protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993;67:6025-6032.
7. Fishelson Z, Donin N, Zell S, et al. Obstacles to cancer immunotherapy:

expression of membrane complement regulatory proteins (MCRPS) in tumors. Mol
Immunol 2003;40:109-123.

8. Ravindranath NM, Shuler C. Expression of complement restriction factors
(CD46, CD55 & CD59) in head and neck squamous cell carcinomas. J Oral Pathol
Med 2006;35:560-567.

9. Anderson BD, Nakamura T, Russell SJ, et al. High CD46 receptor density
determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res
2004,64:4919-4926.

10. Achard C, Boisgerault N, Delaunay T, et al. Sensitivity of pleural mesothelioma
to oncolytic measles virus depends on defects of the type | interferon response.
Oncotarget 2015;Nov 2.

11. Berchtold S, Lampe J, Weiland T, et al. Innate immune defense defines
susceptibility of sarcoma cells to measles vaccine virus-based oncolysis. J Virol
2013;87:3484-3501.

12.  Noll M, Berchtold S, Lampe J, et al. Primary resistance phenomena to oncolytic
measles vaccine viruses. Int J Oncol 2013;43:103-112.

13. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a
complex web of host defenses. Annu Rev Immunol 2014;32:513-545.

14. Grandvaux N, Servant MJ, tenOever B, et al. Transcriptional profiling of
interferon regulatory factor 3 target genes: direct involvement in the regulation of
interferon-stimulated genes. J Virol 2002;76:5532-5539.

15. Nakaya T, Sato M, Hata N, et al. Gene induction pathways mediated by distinct
IRFs during viral infection. Biochem Biophys Res Commun 2001;283:1150-1156.

16. Yap TA, Aerts JG, Popat S, et al. Novel insights into mesothelioma biology and
implications for therapy. Nat Rev Cancer 2017;17:475-488.

17. Gueugnon F, Leclercq S, Blanquart C, et al. Identification of novel markers for
the diagnosis of malignant pleural mesothelioma. Am J Pathol 2011;178:1033-1042.
18. Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-
mesenchymal transition in primary airway epithelial cells from patients with asthma by
transforming growth factor-betal. Am J Respir Crit Care Med 2009;180:122-133.

19. de Reynies A, Jaurand MC, Renier A, et al. Molecular classification of malignant
pleural mesothelioma: identification of a poor prognosis subgroup linked to the
epithelial-to-mesenchymal transition. Clin Cancer Res 2014;20:1323-1334.

25



20. Tranchant R, Quetel L, Tallet A, et al. Co-occurring Mutations of Tumor
Suppressor Genes, LATS2 and NF2, in Malignant Pleural Mesothelioma. Clin Cancer
Res 2017;23:3191-3202.

21. Combredet C, Labrousse V, Mollet L, et al. A molecularly cloned Schwarz strain
of measles virus vaccine induces strong immune responses in macaques and
transgenic mice. J Virol 2003;77:11546-11554.

22.  Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for
biological-image analysis. Nature methods 2012;9:676-682.

23.  Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are
effectors of the type | interferon antiviral response. Nature 2011;472:481-485.

24. Jean D, Daubriac J, Le Pimpec-Barthes F, et al. Molecular changes in
mesothelioma with an impact on prognosis and treatment. Arch Pathol Lab Med
2012;136(3):277-293.

25. Cheng JQ, Jhanwar SC, Klein WM, et al. p16 alterations and deletion mapping
of 9p21-p22 in malignant mesothelioma. Cancer Res 1994;54:5547-5551.

26. Xio S, Li D, Vijg J, et al. Codeletion of pl5 and pl6 in primary malignant
mesothelioma. Oncogene 1995;11:511-515.

27. Monaco SE, Shuai Y, Bansal M, et al. The diagnostic utility of p16 FISH and
GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol
2011;135:619-627.

28. Chiosea S, Krasinskas A, Cagle PT, et al. Diagnostic importance of 9p21
homozygous deletion in malignant mesotheliomas. Modern pathology : an official
journal of the United States and Canadian Academy of Pathology, Inc 2008;21:742-
747.

29. Dacic S, Kothmaier H, Land S, et al. Prognostic significance of p16/cdkn2a loss
in pleural malignant mesotheliomas. Virchows Arch 2008;453:627-635.

30. lllei PB, Rusch VW, Zakowski MF, et al. Homozygous deletion of CDKN2A and
codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural
mesotheliomas. Clin Cancer Res 2003;9:2108-2113.

31. Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, et al. High-density array-CGH with
targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21
in mesothelioma. Proc Natl Acad Sci U S A 2016;Nov 22;113(47):13432-13437.

32. Kaufmann JK, Chiocca EA. Glioma virus therapies between bench and bedside.
Neuro Oncol 2014;16:334-351.

33.  Marchini A, Bonifati S, Scott EM, et al. Oncolytic parvoviruses: from basic
virology to clinical applications. Virology journal 2015;12:6.

34. Kurokawa C, lankov ID, Anderson SK, et al. Constitutive Interferon Pathway
Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy.
Journal of the National Cancer Institute 2018.

35. Pinto AK, Ramos HJ, Wu X, et al. Deficient IFN signaling by myeloid cells leads
to MAVS-dependent virus-induced sepsis. PLoS Pathog 2014;10:e1004086.

36. Delaunay T, Violland M, Boisgerault N, et al. Oncolytic viruses sensitize tumor
cells for NYESO-1 tumor antigen recognition by CD4+ effector T cells. in revision
2017;Dec 26;7(3):€1407897.

37. Achard C, Boisgerault N, Delaunay T, et al. Induction of immunogenic tumor cell
death by attenuated oncolytic measles virus. J Clin Cell Immunol 2015;in press.

38. Achard C, Guillerme JB, Bruni D, et al. Oncolytic measles virus induces Tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by
human myeloid and plasmacytoid dendritic cells. Oncoimmunology 2016;6:€1261240.

26



39. Donnelly OG, Errington-Mais F, Steele L, et al. Measles virus causes
immunogenic cell death in human melanoma. Gene Ther 2011.

40. Gauvrit A, Brandler S, Sapede-Peroz C, et al. Measles virus induces oncolysis
of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8
response. Cancer Res 2008;68:4882-4892.

41. Guillerme JB, Boisgerault N, Roulois D, et al. Measles virus vaccine-infected
tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic
cells. Clin Cancer Res 2013;19:1147-1158.

42. Fonteneau JF, Guillerme JB, Tangy F, et al. Attenuated measles virus used as
an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncolmmunology
2013;2:€24212.

43. Galanis E, Atherton PJ, Maurer MJ, et al. Oncolytic measles virus expressing
the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res
2015;75:22-30.

27



Figure legends

Figure 1: The IFN | response controls MV replication and oncolytic activity. Cells were
treated 3 days before infection with ruxolitinib (1uM) and infected with MV encoding
cherry fluorescent protein (MV-ch) (A and B) or with MV (C-D) at MOI=1. Viral
replication of MV-ch was followed by measuring cherry fluorescence at 610 nm during
9 days in healthy cells (A) or in MV-resistant MPM cell lines (B). Relative RNA
expression of three ISG, Mx1, TLR3 and IRF7, was studied 48h after infection by RT-
gPCR in healthy cells (C) or in resistant MPM cell lines (D). RPLPO gene expression
was used as reference and indicated values are means + SEM of relative expression

of three independent experiments. NI = non-infected, ruxo = ruxolitinib.

Figure 2: IRF3 and NF-KB signaling is functional in MV-sensitive cells. (A) Cells were
infected at MOI=1 during 48h and IRF3, IRF7 and RELA (NF-KB p65) genes
expression was studied by RT-qPCR with RPLPO gene expression used as reference.
Indicated values are means * SEM of relative expression of three independent
experiments. NI = non-infected. ns=non-significative, * p<0.05; *p<0.01; **p<0.001,
(Wilcoxon-Mann-Whitney test). (B) Cells were infected at MOI=10 during 12h. Then
localization of IRF3 and NF-kBp65 was determined using IRF3 and NF-kBp65 specific
monoclonal antibodies and a Dylight 488-conjugated secondary antibodies (green).
Membranes were labelled with a lectin marker WGA (red) and nucleus with Hoescht
(blue). Fluorescence was analyzed by confocal microscopy. (C) Ratio of the
nuclei/cytoplasm fluorescence intensity was measured with the software Volocity

software on more than 100 cells.
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Figure 3: Frequent bi-allelic deletion of the genes encoding IFN-a and IFN-B in MV-
sensitive MPM cell lines. (A) Genomic DNA of MPM cell lines was extracted and
presence of the IFNB1 gene was analyzed by PCR with IFNB1 primers
(chr9:21077267-21078217). (B) Analysis of the copy number of the chromosome
9p21.3 chromosome region containing IFN | and CDKN2A genes was performed on
extracted DNA from MPM cell lines. Each blue dot represents a genomic probe. Red
lines represent location of IFNB1, IFNA2 and CDKN2A genes. (C) Analysis of the copy
numbers of the IFNB1 and the CDKN2A genes was determined on genomic DNA of
78 short term-cultured MPM cell lines. Genomic DNA was amplified by PCR using
IFNB1 primers (chr9:21077267-21078217) and the deletion status was determined
based on the presence of an amplification by capillary electrophoresis. INFB1 and
CDKN2A deletion status, and histologic types are indicated in the heat map (DEL.: bi-
allelic deletion; WT: wild-type; MME: epithelioid MPM; MMB: biphasic MPM; MMS:

sarcomatoid MPM; MMD: desmoplastic MPM; ND: not determined).

Figure 4: Bi-allelic deletion of IFN | encoding genes are frequent in mesothelioma and
other cancers. (A) Frequency of alteration of genes coding for protein implicated in the
IFN | response in mesothelioma. (B) Frequency of CDKN2A, IFNA2 and IFNB1 genes
bi-allelic deletions in different types of cancer. (C) Frequency of alteration of CDKN2A,
IFNA2 and IFNB1 genes in different types of cancer. These results were obtained from
TCGA database using cbhioportal.org website. GBM=Glioblastoma multiforme,
DLBC=diffuse large B-cell ymphoma, LGG=Low grade glioma, ACC=adenoid cystic
carcinoma, pRCC=papillary renal cell carcinoma, ccRCC=clear renal cell carcinoma,

cRCC= chromophobe renal cell carcinoma, AML=acute myeloid leukemia.

29



Figure 5: Partial IFN | and proinflammatory response from IFN I-/- MPM cell lines
exposed to MV. Cells were infected with MV at MOI=1 or treated with IFN | (IFN-a and
IFN-B) during 48h. Equal amounts of RNA from three separate experiments were
mixed. Transcriptome analysis was performed with Affymetrix human Gene 2.0 ST
arrays. (A) Differential expression of the IFN genes and their receptors were analyzed
comparing the MV infected or IFN | treated cells with untreated cells. (B) Basal
expression of the IFN genes and their receptors were analyzed comparing untreated
cells with untreated healthy mesothelial cells MESF. (C) Differential expression of the
interferon stimulated genes (ISG) were analyzed comparing the MV infected or IFN |
treated cells with untreated cells. (D) Basal expression of the ISG were analyzed
comparing untreated cells with untreated healthy mesothelial cells MESF. (E)
Canonical pathway study was carried out with Ingenuity Pathway Analysis (Ingenuity®

Systems) for each group and binary logarithm of fold change was defined.

Figure 6. MV exposure induce a partial and weak expression of proteins encoded by
ISG in IFN I’- MPM cell lines. Cells were infected with MV at MOI=1 or treated with IFN
| (IFN-a and IFN-B) during 48h. (A) RNA expression of four ISG induced by MV in IFN
I~ MPM cells (RSAD2, IFIT1, OAS1 and DDX58) analyzed by RT-gPCR with RPLPO
gene expression used as reference. Results are expressed as means + SEM of relative
expression of three independent experiments and are also expressed as AACt
between conditions MV and NI (MV), and conditions IFN | and NI (IFN 1). ns=non-
significative, * p<0.05; **p<0.01; ***p<0.001, one-way ANOVA (Kruskal-Wallis test) (B)
Protein expression of ISG induced by MV in IFN |- MPM cells (RSAD2, IFIT1, OAS1
and RIG 1) analyzed by western-blot with actin protein expression used as a reference.

(C) RNA expression of four ISG that are not induced by MV in IFN I”- MPM cells (XAF-
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1, TLR3, STAT1 and Mx1) analyzed by RT-gPCR with RPLPO gene expression used
as reference. Results are expressed as means + SEM of relative expression of three
independent experiments. (D) Protein expression of ISG that are not induced by MV in
IFN I MPM cells (XAF-1, TLR3, STAT1 and Mx1) analyzed by western-blot with actin

protein expression used as a reference.
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Supplemental Figure 1. Knock out of the IFNB1 genes in MV-resistant MPM cell lines is not
sufficient to make them permissive to MV replication. The four MV-resistant cell lines Meso4,
Meso45, Meso61 and Meso173 were transduced using the lentiviral vector plentiCrisprV2 encoding
the RNA guide 5'-GCCTCCCATTCAATTGCCAC-3’ (Genscript, Netherlands) to break the IFNB1 gene at
the location encoding the Leucine 42. (A) Meso45 or Meso45 IFNB1ko were exposed to MV-eGFP.
After four days, eGFP fluorescence was analyzed by microscopy (A) or cytometry (B). (C) the four
original or IFNB1 Ko MV-resistant MPM cell lines were exposed to MV-eGFP. Meso13 MPM cell line
was used as a positive control. After four days, eGFP fluorescence was analyzed by flow cytometry.

Results represent the mean with standard deviation of three independent experiments.
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Supplemental Figure 2. Transduction of the IFNB1 gene and its promoter in IFN I”-MPM cell lines
blocks MV replication. The five IFN |7~ MPM cell lines Meso11, Meso13, Meso47, Meso163 and
Meso0225 were transduced using the lentiviral vector pLx307 (Addgene, #98377) with insertion
between Xhol (3) - Mlul of the IFNB1 gene and its promoter (NC_000009.12: 21,077,051-21,079,050;
Genscript, Netherlands). (A) non-transduced (NT) and /IFNB1 transduced (IFNB1) MPM cell lines were
plated at 10,000 cells/wells in 96 well plates. One day latter, they were exposed to MV-Cherry at
MOI=1 and Cherry fluorescence was measured every day during 9 days. Results represent the mean
with standard deviation of three independent experiments. (B) non-transduced (NT) and /FNB1
transduced (IFNB1) MPM cell lines were plated at 500,000 cells/wells in 6-well plates. One day latter,
they were cultured alone (NI) or with MV-Cherry at MOI=1 (MV). Two days later, expression of IFNB1
was measured by RT-PCR relative to RPLPO gene expression.
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Supplemental Figure 3: Lung cancer cell lines with IFN | genes HD are permissive to MV replication. Lung cancer cell lines NCHI-H23, NCHI-H358, NCHI-
H441, NCHI-H460, NCHI-H838, NCHI-H1437, NCHI-H1650, NCHI-H1755, NCHI-H1838, NCHI-H1975 and NCI-H2228 were purchased from Igcstandards-
atcc.org. They were cultured in the same conditions as MPM cell lines as described in material and methods (A) Genomic DNA of lung cancer cell lines was
extracted and the presence of the IFNB1 gene was analyzed by PCR with IFNB1-specific primers (chr9:21077267-21078217) as described in material and
methods. (B) lung cancer cell lines and the MPM cell line Meso61 used as negative control were plated at 10,000 cells/wells in 96 well plates and were
treated or not with 1,000 u/ml of IFN-0.2 and IFN-B. One day latter, they were exposed to MV-Cherry at MOI=1 and Cherry fluorescence was measured
every day during 9 days. Results represent the mean with standard deviation of three independent experiments.
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Supplemental Figure 4. Partial IFN | response
from IFN I7- MPM cell lines exposed to MV.
Cells were infected with MV at MOI=1 or
treated with IFN | (IFN-a and IFN-B) during 48
hours. For each sample, equal amounts of
RNA from three separate experiments were
mixed. Transcriptome analysis was performed
with Affymetrix human Gene 2.0 ST arrays
according to the manufacturer’s protocol. (A)
Differential expression of the IFN genes and
their receptors were analyzed comparing the
MV infected or IFN | treated cells with
untreated cells. (B) Basal expression of the
IFN genes and their receptors were analyzed
comparing untreated MV-resistant MPM (G2)
or untreated IFN I/~ MPM cells (G3) with
untreated healthy cells (G1). (C) Differential
expression of the interferon stimulated genes
(ISG) were analyzed comparing the MV
infected or IFN | treated cells versus
untreated cells. (D) Basal expression of the
ISG were analyzed comparing untreated MV-
resistant MPM (G2) or untreated IFN I/~ MPM
cells (G3) with untreated healthy cells (G1).
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Supplemental Figure 5. Proinflammatory response from IFN I’- MPM cell lines exposed to MV. Cells were infected with MV at MOI=1 or
treated with IFN | (IFN-a and IFN-B) during 48 hours. For each sample, equal amounts of RNA from three separate experiments were
mixed. Transcriptome analysis was performed with Affymetrix human Gene 2.0 ST arrays according to the manufacturer’s protocol. (A
and C) Expression of genes other than ISG that are induced in the three groups by MV or IFN |. Genes expression was analyzed comparing
the MV infected or IFN | treated cells with untreated cells (NI). (B and D) Basal expression of genes other than ISG that are induced in
MPM cell lines by MV and IFN | (G3). Basal expression was determined by comparing untreated MV-resistant and IFN |-/- MPM cell lines
with untreated healthy cells.



Genomic PCR

For the eighty MPM cell lines of the validation series, genomic DNA was
extracted using a standard isopropanol precipitation procedure. PCR was performed
on genomic DNA (40 ng) using Phusion U Multiplex PCR according to the
manufacturer’s protocol (Thermo Scientific). The same couple of primers as above was
used for the IFNB1 gene and the following couple was used for the IFNB1 promoter 5'-
GCCTCCACAGATACCAAAATCA-3' (forward) and 5-AAGCCTCCCATTCAATTGCC-
3" (reverse). The following primers were used for CDKN2A : 5
CGGTAGGGACGGCAAGAGAG-3' (forward) and 5'-
CCTGTAGGACCTTCGGTGACTGA-3' (reverse), and for  ARID1A 5'-
TTCGCAACTGGACTTTCTCTC-3' (forward) and 5'-
TCAAAATTAGCTAAACTTCCAACC-3' (reverse). IFNB1 was amplified by PCR
including an initial denaturation step at 98°C for 30 s; 40 cycles including denaturation
at 98°C for 10s, annealing at 60°C for 30s, extension at 72 °C for 30s; and a final
extension at 72°C for 7min. CDKN2A and ARID1A genes were amplified by touchdown
PCR including an initial denaturation step at 94°C for 15min; 40 cycles including
denaturation at 94°C for 30s, annealing at different temperatures for 30s (2 cycles at
62°C, 2 at 61°C, 2 at 60°C, 3 at 59°C, 3 at 58°C, 4 at 57°C, 4 at 56°C, 5 at 55°C and
15 at 54°C), extension at 72°C for 1min; and a final extension at 72°C for 5min. PCR
products were analyzed on a QIAxcel capillary electrophoresis system (Qiagen).
ARID1A was used as a control to verify the quality of the amplification. CDKN2A status
was checked based on previous available data; gene expression and mutational status
on this gene (21). For association study with histologic types, the Fisher’s exact test

was performed using GraphPad Prism version 6 software.



