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A commentary on

Analysis of SUMO1-conjugation at synapses

by Daniel, J. A., Cooper, B. H., Palvimo, J. J., Zhang, F. P., Brose, N., and Tirard, M. (2017). eLife
6:e26338. doi: 10.7554/eLife.26338

There is a large and growing literature on protein SUMOylation in neurons and other cell
types. While there is a consensus that most protein SUMOylation occurs within the nucleus,
SUMOylation of many classes of extranuclear proteins has been identified and, importantly,
functionally validated. Notably, in neurons these include neurotransmitter receptors, transporters,
sodium and potassium channels, mitochondrial proteins, and numerous key pre- and post-synaptic
proteins (for reviews see Martin et al., 2007b; Scheschonka et al., 2007; Craig and Henley, 2012;
Luo et al., 2013; Guo and Henley, 2014; Henley et al., 2014; Wasik and Filipek, 2014; Peng
et al., 2016; Schorova and Martin, 2016; Wu et al., 2016). Furthermore, several groups have
reported SUMO1-ylated proteins in synaptic fractions using biochemical subcellular fractionation
approaches, using a range of different validated anti-SUMO1 antibodies (Martin et al., 2007a;
Feligioni et al., 2009; Loriol et al., 2012; Luo et al., 2013; Marcelli et al., 2017) and many studies
have independently observed colocalization of SUMO1 immunoreactivity with synaptic markers
(Martin et al., 2007a; Konopacki et al., 2011; Gwizdek et al., 2013; Jaafari et al., 2013; Hasegawa
et al., 2014; Ghosh et al., 2016). Tirard and co-workers (Daniel et al., 2017) directly challenge
this wealth of compelling evidence. Primarily using a His6-HA-SUMO1 knock-in (KI) mouse, the
authors contest any significant involvement of post-translational modification by SUMO1 in the
function of synaptic proteins.

ON WHAT BASIS DO DANIEL ET AL. ARGUE AGAINST SYNAPTIC

SUMOYLATION?

Most of the experiments reported by Daniel et al. use a knock-in mouse that expresses
His6-HA-SUMO1 in place of endogenous SUMO1. Using tissue from these mice, followed
by immunoprecipitation experiments, they fail to biochemically identify SUMOylation
of the previously validated SUMO targets synapsin1a (Tang et al., 2015), gephyrin
(Ghosh et al., 2016), GluK2 (Martin et al., 2007a; Konopacki et al., 2011; Chamberlain
et al., 2012; Zhu et al., 2012), syntaxin1a (Craig et al., 2015), RIM1α (Girach et al.,
2013), mGluR7 (Wilkinson and Henley, 2011; Choi et al., 2016), and synaptotagmin1
(Matsuzaki et al., 2015). Moreover, by staining and subcellular fractionation, they also
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fail to detect protein SUMOylation in synaptic fractions or
colocalization of specific anti-SUMO1 signal with synaptic
markers. On this basis, they conclude there is essentially no
functionally relevant SUMO1-ylation of synaptic proteins.

WHAT ARE THE REASONS FOR THESE

DISCREPANCIES?

Inefficiency of His6-HA-SUMO1

Conjugation and Compensation by

SUMO-2/3
A major cause for concern is that there is 20–30% less
SUMO1-ylation in His6-HA-SUMO1 KI mice than in wild-
type (WT) mice (Tirard et al., 2012; Daniel et al., 2017).
Moreover, in the paper initially characterizing these KI mice,
Tirard et al. showed that while total protein SUMO1-ylation
is reduced, total SUMO2/3-ylation is correspondingly increased
(Tirard et al., 2012). Thus, His6-HA-SUMO1 conjugation is
significantly impaired and most likely compensated for by
increased conjugation by SUMO2/3. Crucially, however, Daniel
et al. do not examine modification by SUMO2/3 at any point in
their recent study.

Given that SUMO modification is notoriously difficult to
detect, the 20–30% reduction in His6-HA-SUMO1 compared to
wild-type SUMO1 conjugation will make it evenmore technically
challenging.Moreover, this deficit in SUMO1-ylationmay well be
offset by an increase in SUMO2/3-ylation of individual proteins,
but this likely compensation was not tested. Because these deficits
alone could explain why Daniel et al. failed to detect SUMO1
modification of the previously characterized synaptic substrate
proteins, it is surprising that they did not attempt to recapitulate
the SUMO1-ylation of the target proteins under the endogenous
conditions in wild-type systems used in the original papers since
this approach would circumvent potential issues of ineffective
conjugation or localization of the His6-HA-SUMO1.

Lack of Functional Studies on the

Substrates They Examine
Daniel et al. confine their studies to immunoblotting and
immunolabeling. However, these techniques address only one
aspect of validating a bone fide SUMO substrate. It is at
least as important to examine the effects of target protein
SUMOylation in functional assays. Function-based approaches
such as electrophysiology or neurotransmitter release assays are
not reported or even discussed by Daniel et al. This is an
extremely important omission. We argue that simply because
SUMO1-ylation of a protein is beneath the detection sensitivity
in a model system that exhibits sub-endogenous levels of
SUMO1-ylation, does not mean that protein is not a functionally
important and physiologically relevant SUMO1 substrate.

Insensitivity or Inadequate Use of Assay

Systems
Failure to Detect GluK2 SUMOylation
GluK2 is a prototypic synaptic SUMO1 substrate that has been
validated in exogenous expression systems, neuronal cultures,

and rat brain (Martin et al., 2007a; Konopacki et al., 2011;
Chamberlain et al., 2012; Zhu et al., 2012).

Daniel et al. attempt to detect SUMOylation of GluK2 using
immunoprecipitation experiments from the His6-HA-SUMO1
KI mice. However, a key flaw in this experiment is that the
C-terminal anti-GluK2 monoclonal rabbit antibody used does
not recognize SUMOylated GluK2 because its epitope is masked
by SUMO conjugation. Thus, due to technical reasons, the
experiment shown could not possibly detect SUMOylated GluK2
whether or not it occurs in the KI mice.

Subcellular Fractionation and Immunolabeling
Daniel et al. perform subcellular fractionation and
anti-SUMO1 Western blots to compare His6-HA-
SUMO1 KI and SUMO1 knockout (KO) mice.
In the KI mice they fail to detect SUMO1-ylated
proteins in synaptic fractions. Importantly, however,
they do not address what happens in WT mice,
which, unlike the KI mice, exhibit normal levels of
SUMO1-ylation.

While the authors provide beautiful images of SUMO1
immunolabeling in neurons cultured from WT, His6-HA-
SUMO1 KI mice, and SUMO1 KO mice, in stark contrast
to previous reports using rat cultures (Martin et al., 2007a;
Konopacki et al., 2011; Gwizdek et al., 2013; Jaafari et al., 2013),
they detect no specific synaptic SUMO1 immunoreactivity in
neurons prepared from WT mice. We note, however, that the
nuclear SUMO1 staining in neurons from His6-HA-SUMO1 KI
mice is weak, and even weaker in WT neurons. Given that a
very large proportion of SUMO1 staining is nuclear, these low
detection levels would almost certainly rule out visualization of
the far less abundant, but nonetheless functionally important,
extranuclear SUMO1 immunoreactivity.

IN CONCLUSION

Given these caveats, we suggest that the failure of Daniel
et al. to detect synaptic protein SUMO1-ylation in His6-
HA-SUMO1 KI mice is due to intrinsic deficiencies in this
model system that prevent it from reporting the low, yet
physiologically relevant, levels of synaptic protein modification
by endogenous SUMO1. In consequence, we question the
conclusions reached and the usefulness of this model for
investigation of previously identified and novel SUMO1
substrates.
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