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Abstract
In addition to nourishing the embryo, extra-embryonic tissues (EETs) contribute to early em-

bryonic patterning, primitive hematopoiesis, and fetal health. These tissues are of major im-

portance for human medicine, as well as for efforts to improve livestock efficiency, but they

remain incompletely understood. In bovines, EETs are accessible easily, in large amounts,

and prior to implantation. We took advantage of this system to describe, in vitro and in vivo,
the cell types present in bovine EETs at Day 18 of development. Specifically, we character-

ized the gene expression patterns and phenotypes of bovine extra-embryonic ectoderm (or

trophoblast; bTC), endoderm (bXEC), and mesoderm (bXMC) cells in culture and compared

them to their respective in vivomicro-dissected cells. After a week of culture, certain charac-

teristics (e.g., gene expression) of the in vitro cells were altered with respect to the in vivo
cells, but we were able to identify “cores” of cell-type-specific (and substrate-independent)

genes that were shared between in vitro and in vivo samples. In addition, many cellular phe-

notypes were cell-type-specific with regard to extracellular adhesion. We evaluated the abil-

ity of individual bXMCs to migrate and spread on micro-patterns, and observed that they

easily adapted to diverse environments, similar to in vivo EEmesoderm cells, which en-

counter different EE epithelia to form chorion, yolk sac, and allantois. With these tissue in-

teractions, different functions arose that were detected in silico and corroborated in vivo at

D21–D25. Moreover, analysis of bXMCs allowed us to identify the EE cell ring surrounding

the embryonic disc (ED) at D14-15 as mesoderm cells, which had been hypothesized but

not shown prior to this study. We envision these data will serve as a major resource for the

future in the analysis of peri-implanting phenotypes in response to the maternal metabolism

and contribute to subsequent studies of placental/fetal development in eutherians.
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Introduction
Although differences exist among viviparous vertebrates (e.g., different fetal nutrition strate-
gies, different placental origins and complexities), all are characterized by the close apposition
and interaction (e.g., respiratory, nutritional) between maternal (uterine) and extra-embryonic
structures during gestation. Moreover, among amniotes (reptiles, birds, mammals), extra-em-
bryonic tissues (EETs) share the same ontogenetic origin and display the same four membranes
(amnion, chorion, allantois, yolk sac [1]). In addition to supplying nutrients to the embryo,
EETs contribute to early embryonic patterning [2], fetal tissue development [3], primitive he-
matopoiesis [4], de novo blood vessel formation–essential for chorio-allantoic placentas [5]–
and to fetal health in response to maternal nutrition.

Within the EET, the chorion is a bilayer of ectoderm and mesoderm, while the yolk sac and
allantois are bilayers of endoderm and mesoderm [6]. Among these extra-embryonic layers,
the ectoderm (or trophoblast) is the most well-known, and has long been studied in mammals
[7], while the endoderm has attracted more recent interest in the mouse due to its specification
and differentiation patterns [8]. However, the extra-embryonic (EE) mesoderm, though essen-
tial to EET formation, has only rarely been studied at pre-placental stages [9, 10]. This may be
due to the use of early implanting models in which it is not easily accessible (mouse, rat,
human) or to its under-appreciated function in comparison to the embryonic mesoderm,
which gives rise to a variety of cell types and organs [11].

Ungulates, however, are excellent models in which EE layers develop prior to implantation,
are easily accessible [12], and available in large amounts (due to exponential growth, or elonga-
tion), so that all extra-embryonic cell types are accessible. In addition, in pigs [13], sheep [14],
and horses [15], extra-embryonic mesoderm has been putatively observed prior to any sign of
primitive streak formation, but not unambiguously shown, due to the absence of molecular
markers for these early EE mesoderm cells [14]. In most other amniotes, mesoderm egresses
the embryo from the primitive streak [16] as the result of a developmental Epithelial-to-Mesen-
chymal Transition (EMT) [17, 18] which gives rise to all extra-embryonic and embryonic me-
soderm subtypes through a process that is spatially and temporally regulated [19] and controls
the exit from pluripotency [11]. In view of the radial mode of mesoderm formation in turtles
[20], its radial induction in chicks [20], or its radial differentiation from human embryonic
stem cells grown on micropatterns [21], independently of primitive streak formation, it would
be of great value to determine if the early EE cells that grow radially to the ED axis in bovines
are mesoderm cells.

To begin deciphering extra-embryonic complexity prior to placenta formation, we isolated
bovine extra-embryonic subtypes at Day 18 (D18), three days prior to implantation (D21), and
characterized them using in vivo, in vitro, and in silicomethods. Specifically, we were able to
identify: i) “cores” of cell-type-specific and substrate-independent genes that were shared be-
tween in vitro and in vivo samples, ii) in vitro culture conditions that allowed bTCs to better re-
semble trophoblast cells from in vivo D18 EET, including both the mono- and bi- nucleated
subtypes, and iii) new molecular markers to enable reconsideration of long-known features of
in vivo EETs at D14-15 and D21-25 (see experimental design in S1 Fig).

Results

In vivo and in vitro extra-embryonic cell types
In a search for cell-type-specific phenotypes, we micro-dissected bovine extra-embryonic cells
from the ectoderm/trophoblast (bTC), mesoderm (bXMC), and endoderm (bXEC) (Fig 1A),
and assessed their features using validated markers (Fig 1B). In situ, trophoblast cells were
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small, containing intra-cytoplasmic dots of Furin; mesoderm cells had elongated forms and ex-
pressed Vimentin; while endoderm cells were larger in size, displaying large nuclei and cyto-
plasmic Alpha-Feto-Protein (AFP). A gene expression profiling analysis completed the initial
characterization of each cell type and, as previously reported in the literature, trophoblast cells
expressed IFN-tau, PAGs, and PTGs; mesoderm cells expressed HAND1, IGF2, andMMP2;
and endoderm cells expressed APLP2, DAB2, and FN1. The main outcome of this analysis was
that i) the trophoblast and mesoderm expressed high numbers of cell-specific genes, with the
trophoblast expressing by far the most, ii) many genes were expressed in both the trophoblast
and endoderm, and iii) the mesoderm shared more genes with the endoderm than with the tro-
phoblast (Fig 1C, lists of all genes: Tables 1–7 in S1 File).

To complement these molecular data with work at the cellular level, we used enzymatic di-
gestions and density gradients to separate out the different cell types in Day 18 EETs (Fig 2A),
then cultured the cells in vitro. Our characterization of these cells (Fig 2B) detected a minor de-
gree of ectopic labeling in bTC or bXEC cultures at the beginning of the culture period (16h),
but after 72h, each culture was enriched in only a single cell type. Within a week, cultures of
each cell type displayed distinct cell shapes, cytofilament networks, and cycling cell ratios (Fig
2C). Notably, two phenotypes often occurred within bXEC cultures, a mono-nucleated pheno-
type and a multi-nucleated one (Figure A in S2 Fig); we observed a similar distinction in vivo
between cells obtained close to the embryonic disc or far from it (proximal or distal; Figure B

Fig 1. Phenotypes of in vivomicro-dissected cell types at D18. (A) Schematic view of the extra-
embryonic tissues (EETs) that are in the vicinity of the embryonic tissues: ExEctoderm (or Trophoblast, in
magenta), ExMesoderm (red), ExEndoderm (green). (B) Co-immuno-fluorescence and confocal microscopy
(including z scans: Z) on whole D18 EETs with antibodies against reported in vivomarkers for the
Trophoblast (FURIN or PCSK3 [27]), ExMesoderm (VIMENTIN [66]), and ExEndoderm (AFP [67]). (C) Gene
profiling using the bovine 10K array (GPL7417, [26]). All expressed genes were considered. Scale bar:
10 μm.

doi:10.1371/journal.pone.0127330.g001

Molecular and Cellular Phenotypes of Extra-Embryonic Cell Types

PLOS ONE | DOI:10.1371/journal.pone.0127330 June 12, 2015 3 / 21



in S2 Fig). Because they were difficult to obtain on a regular basis, perhaps due to their size
(Figure C in S2 Fig), multi-nucleated bXECs were not analyzed separately but grouped together
with the other bXECs for the rest of the study.

Fig 2. Phenotypes of in vitro cultured cell types at D18. (A) Schematic view of whole EET surrounding the
embryonic disc (ED). Chorion (ch) is composed of ectoderm (or Trophoblast; magenta line) and ExMesoderm
(red), yolk sac (ys) of ExMesoderm and ExEndoderm (green). (B) bTCs, bXMCs, and bXECs were primarily
cultured on collagen (colIV) or plastic (where plastic means a tissue-culture-treated surface). Co-
immunofluorescence is shown at 16h, 72h, or a week of culture with the antibodies used in vivo (Fig 1:
Trophoblast—FURIN, ExMesoderm—VIM, or ExEndoderm—AFP) as well as phase-contrast images of each
cell type after 72h of culture. (C) Immunodetection of cytoskeleton organization and cell proliferation with pan-
Keratins (KRTs) and Ki67 respectively, after 1 week of culture. Scale bar: 10 μm.

doi:10.1371/journal.pone.0127330.g002
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Different cellular basics in vitro
Next, we evaluated the adhesive and proliferative properties of each extra-embryonic cell type
across a panel of extracellular matrix (ECM) components: collagen I, collagen IV, fibronectin,
laminin, Matrigel, poly-DL-lysin, and vitronectin. As determined with impedance technology,
each cell type had a specific adhesive profile and a specific adhesion kinetic for each ECM com-
ponent (Fig 3A). For example, bTCs needed about 12h to spread on collagen I, collagen IV, or
Matrigel, and had a 4-5h doubling time during their growth phase on these components (21-
27h; Fig 3B). bXECs took about the same amount of time to seed into the wells but, unlike
bTCs, also adhered to fibronectin and plastic. They grew slowly on these matrices, displaying a
10-12h doubling time during the early growth phase (21-27h; Fig 3B). In contrast, bXMCs easi-
ly adhered to all extracellular matrices (in less than 4h) with the exception of laminin, on
which very little growth was observed in the first 16-18h. On all other matrices, bXMC dou-
bling time during the early growth phase (6-10h; Fig 3B) varied from 3-6h depending on the
ECM component: 3h on collagen I, Matrigel, and poly-L-lysin, but 6h on collagen IV, fibronec-
tin, and vitronectin.

Because of its rapid adhesion to fibronectin (FN1; Fig 3A), FN1 micro-patterns were used to
further evaluate the flexibility of individual bXMCs in four spatial distributions (a round
shape, a crossbow shape, an [I], and a [Y]; on the same slide), each printed in three sizes. The
best results, i.e. the highest percentage of cell spreading, was found with the medium-sized
crossbow shape (15.1%) and the large-sized [Y] shape (12.2%), which both had an adhesion
phase lasting only 1.5h. However, no pattern remained empty; at least 100 cells spread in each
(i.e. 3.7%; Fig 4A). Depending on the spatial distribution of the FN1, we did see that cytofila-
ments, centrosomes, and nuclei organized themselves differently (Fig 4B), while stress fibers
appeared stronger upon the non-adhesive edges of the cells (Fig 4C and 4D).

Next, we further evaluated the in vitro response of bTCs to two different ECM components,
collagen IV and Matrigel, and found substrate-specific modulation in gene expression, cell
morphology, and cell fate (Fig 5). Specifically, we used reverse transcription (RT) PCR to exam-
ine four major genes of the bovine trophoblast: first, IFN-tau, which is expressed by the mono-
nucleated cells (the major trophoblast subtype of D18 EET) and encodes a protein that is se-
creted at a high level a few days prior to implantation [22]; and also Prolactin (or PRL [23]),
boPAG1 [24], and DLX3 [25], which are specifically or highly expressed only in the bi-nucleat-
ed cells (the trophoblast cell type that appears by D18 in vivo and represents about 20% of this
cell layer prior to implantation). Following 48h of growth on either collagen or Matrigel, we ob-
served a decrease in bIFNτ expression (Fig 5B), but after a week of growth, a weak signal was
still detectable. IFNτ was also secreted in the medium by bTCs grown on Matrigel for a week
(23 kDa, as expected; Fig 5C), but cells grown on collagen IV decreased production of this pro-
tein by 48h, and it was no longer detectable at later measurement intervals (72h and 1wk). Sim-
ilarly, boPAG1 and PRL ceased to be expressed after 48-72h of growth on collagen IV, but were
still detected on Matrigel after a week of growth (Fig 5B). Furthermore, PRL secretion (25 kDa)
actually increased after a week on Matrigel (Fig 5C). Likewise, Cited 1 (expressed in both cell
types in vivo [26]) reached its peak expression after 1 week, which was even more than the ex-
pression levels in Day 18 EETs (not shown), whereas c93 (SOLD1/SSLP1, specific to the mono-
nucleated cell type [27]) was expressed at constant levels at all time points. Finally, DLX3 was
expressed at higher levels in the bi-nucleated cells when bTCs were grown on Matrigel than on
collagen IV (Fig 5D). Beyond this, though, bi-nucleated cells were neither counted nor sepa-
rately analyzed, but incorporated into the rest of the bTC data. On Matrigel, bTCs also formed
vesicles that detached from the monolayer and floated in the medium (Fig 5A and 5E), resem-
bling those collected at low abundances in uterine flushes 18 days after artificial insemination
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(1.5%; Fig 5F). When co-cultured with bXECs, the vesicles spread on top of them in less than
24h (Fig 5E), mimicking what occurs in vivo at locations in the D18 EET where mesoderm cells
have not migrated yet.

Different gene cores in vivo and in vitro
To learn more about each cell type and account for the confounding influences of ECMs, a
gene profiling study was performed on bTC, bXEC and bXMC primary cell cultures and the in
vivomicro-dissected cells from D18 extra-embryonic tissues. The results of this analysis
showed that, for each cell type, the gene profiles of three independent cultures clustered togeth-
er with their respective in vivomicro-dissected cell types (Fig 6A), regardless of the time point
(3 days or a week) or the ECM substrate used (collagen IV, Matrigel, or plastic). In total, 191
differentially expressed genes (DEGs) were identified, which clustered into four main “cores”:
trophoblast, endoderm, mesoderm, and epithelium (Fig 6A; Tables 1–4 in S2 File). A few
DEGs did not cluster into one of the cores, suggesting that these genes were expressed in

Fig 3. Dynamicmonitoring for cell adhesion and proliferation. The adhesion and proliferation of bTCs, bXECs, and bXMCs on seven ECM components
were individually monitored using the xCELLigence System; measurements were taken every 5 minutes during the first 16h and every 30 minutes during the
last 24h of the assay. (A) Adhesion profiles are illustrated at the indicated time intervals (12–16 hours for bTCs and bXECs, 7–12 hours for bXMCs) on the left
panels. For each cell type and ECM component, the adhesion index is indicated as the slope (1/hr; right panel). (B) Proliferation profiles are illustrated at the
indicated time intervals (21–27 hours for bTCs and bXECs, 6–10 hours for bXMCs) on the left panels. For each cell type and ECM component, the
proliferation index is indicated as the doubling time (right panel). The slope and doubling time of each growth curve were calculated using RTCA 1.2 software.

doi:10.1371/journal.pone.0127330.g003

Fig 4. Plasticity of bXMCs. bXMC spread on four fibronectin patterns (disc, crossbow, I, or Y) of three sizes
each [68]. (A) Number of cells that spread on each pattern. Cells were labeled with antibodies against (B) α
and γ tubulins (green, magenta respectively), DAPI (blue), and (C) F-actin (red). (D) Over ten F-actin labeling
images were averaged and color coded with the rainbow look-up table to highlight intensity (i.e tension)
variations. Scale bar: 10 μm.

doi:10.1371/journal.pone.0127330.g004
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multiple cell types. However, the number of DEGs shared among cell types here was much
lower than the number of shared genes in our previous gene expression analysis of in vivo
micro-dissected cells (Fig 1C, Tables 1–7 in S1 File), because that initial analysis included all
expressed genes, while our second analysis was restricted to only those genes that were
differentially expressed.

The genes in the “Trophoblast Core” included many that have been reported in elongating
trophoblasts (D12-D18: AKR1B1, GATA2, GATA3, PAG2, PCSK3, TKDP [28]), trophoblast

Fig 5. ECM composition affects gene expression in bTCs. (A) Phase-contrast images of bTCs after 16h, 48h, 72h, and a week of culture on collagen IV
(colIV) or Matrigel (mat). Note the formation of a vesicle (white arrow) after a week of culture on Matrigel. (B) RT-PCR on IFN-tau, PAG1, PRL, and c93/
SOLD1/SSLP1 in bTCs cultured for 16h, 48h, 72h, and a week on collagen IV, as compared to week-old Matrigel cultures and to samples from in vivoD18
EETs. (C) Secretion of IFN-tau and PRL into the bTC culture media: 16h, 48h, 72h, and one week on collagen IV or Matrigel. (D) Immunofluorescent
detection of DLX3 in bTCs after a week of culture on collagen IV or Matrigel, as compared to whole in vivoD18 EET. Note the strong expression of DLX3 in
nuclei of the bi-nucleated cells (white arrows). (E) bTC vesicles (developed after 1 week on Matrigel) were co-cultured with bXEC. By 24h of co-culture, they
had spread on top of the bXEC layer. (F) In vivo bTC vesicles, recovered from uterine flushes at D18.

doi:10.1371/journal.pone.0127330.g005
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cell lines (bovine CT1, D10-11: GATA2, GATA3, PAG [29]), early trophectoderm (bovine D7
blastocysts: FABP5, GATA2, SLC15A1 [30]), or chorionic trophoblast stem cells (PEG3 [31]).
Most genes, however (41 out of 56), were new in the bovine trophoblast, including some in-
volved in cell adhesion regulation and epithelial sheet morphogenesis. Genes in the “Endoderm
Core” were mostly unreported from the EE endoderm, with 9 out of 24 linked to the regulation
of cell proliferation and cytokinesis. Altogether, bovine EE endoderm cells shared more genes
with mouse visceral subtypes (VE and ExVE: APOE, EHF, ELF1, FN1, GATA6, IGF2, IRF2BP2,
PDGFRA, PLAU, SDC4, TCF19, VEGFA) than with the mouse parietal subtype (LAMB1,
SPARC, STRA6) or mouse endoderm stem cells (DAB2, NOTCH2 [32]). The genes from the
“Epithelium Core” were expressed in both endoderm and trophoblast cells, including genes for
ECM adhesion (ITGB2), cell junctions (CRKL, GJB5, RABAC1), epithelial functions (BTBD7,
MYO9B), metabolic processes, or nutrient transport. The “Mesoderm Core” also contained
genes previously unreported in the bovine EE mesoderm, involved either in histone modifica-
tion or in the cell response to mechanical stimulus (n = 12/48). Altogether, bovine mesoderm
cells shared genes with in vitro differentiated mesoderm (from mouse embryonic stem cells;
CDX2,MEST, TBX3,WNT5B), mesendoderm (PDGFRA), human in vitromesoderm

Fig 6. Differential gene expression among extra-embryonic cell types. (A) Hierarchical clustering and functions of 191 differentially expressed genes
(DEGs). DEGs are clustered into three distinct cell types (Trophoblast, ExEndoderm, ExMesoderm) and four groups of genes (“core trophoblast”, “core
epithelium”, “core ExEndoderm”, and “core ExMesoderm”). Samples are displayed in the vertical axis, genes on horizontal axis. Log2-transformed signal
intensities are depicted with color: high expression levels in red, intermediate expression levels in black, and low expression levels in green. (B) Top
biological functions of the four gene clusters using Ingenuity Pathway Analysis (IPA).

doi:10.1371/journal.pone.0127330.g006
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progenitors (CD56/NCAM1,HAND1, TGFBR1, VIM), and bovine in vivo extra-embryonic me-
soderm (HAND1) [9–11, 27, 33].

Unique mesoderm signatures
Beyond the above-mentioned differences, the “Mesoderm Core” was the only cluster for which
one of the top-listed functions was “cellular movement”, a logical result given the fact that
XMCs in amniotes originate from an EMT process. When compared to bovine embryonic
discs, bXMCs showed increased expression of key EMT regulators (SNAI1, TWIST1, ZEB2)
and effectors (e.g., VIM,MMP2; Fig 7A), together with decreased expression of CDH1,

Fig 7. Unique features of D18 bXMCs. (A) Microarray analysis (upper panel) and RT-PCR (lower panel) demonstrate gene expression changes typical of a
developmental EMT (from an embryonic disc at D18 to XMCs). (B-D) Microarray data reveal signatures associated with mesenchymal stem cells,
angiogenesis, and hematopoietic niche in bXMCs and in vivoD18-D25 EETs (GSE13013). (E) Western Blot analysis shows TGFB2/3 precursor secretions
by bXMCs cultured for 16h, 48h, 72h, and a week on plastic. (F) Consistent with in silico data, we found evidence of blood vessels in the allantois (as
revealed by the expression of theHOXA9 pro-angiogenic transcription factor [69, 70]) and blood islands in the yolk sac (as evidenced by a vitelline and a
mesenchymal layer (VIM+) that surrounds erythrocyte precursors, i.e. round nucleated erythroblasts expressing more CD47 than CD44 [71–73]).

doi:10.1371/journal.pone.0127330.g007
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TSPAN13, or VCAN, and genes associated with cytoskeleton reorganization (KRT19,MSN,
VIM) that altogether allow epithelial cell remodeling, delamination, and migration. Consistent
with this observation, bXMCs migrated slowly on FN1 tracks (movie from the World Cell Race
2011, using a time lapse recording system; S3 Fig), but divided on Matrigel.

The Mesoderm Core also contained DEGs linked to mesenchymal stem cells (n = 10; e.g.,
CD44, TGFB3), angiogenic processes (n = 9), or the hematopoietic niche (n = 5; CCL5,
COL1A2, PDGFRA, POSTN, SPP1). These genes also appeared in in vivo-developed EETs at
D18, D25, or both, as confirmed with a dataset from a previous study (GEO accession number
GSE13013; Fig 7B–7D). These in silico data were further supported ith biological data from
both in vitro and in vivo samples demonstrating that: i) TGFB2/3 precursors were secreted by
bXMC cultures, ii) CD44 was expressed in the chorion, iii) the formation of blood vessels and
blood islands was observed in the yolk sac (Fig 7E and 7F), and iv) COL1A2 has been previous-
ly reported in EET [34].

Given the extent to which bXMC cultures shared patterns of gene expressions with D25
EETs, we searched for genes that might be shared between bXMCs, bXECs, and earlier-devel-
oping EETs, specifically: i) those at D15, when EE mesoderm cells are forming, originating by
EMT from the epiblast of the embryonic disc (ED), and ii) those at D12, prior to EE mesoderm
formation. To do so, we qualitatively assessed the gene expression profiles of EETs and EDs at
D12 and D15 (data not shown), compared them to the profile of the in vitro cultures, and se-
lected genes that seemed most relevant for a basic comparison of D12 to D15 EDs. As a result,
the genes that appear to play an important role in early EE mesoderm formation are CD44,
HAND1, and SDF1: HAND1 was expressed by bXMCs and in vivo D15 tissues (ED+EET),
while CD44 and SDF1 were expressed by bXECs and in vivo D12 tissues (ED+EET). Using
these three genes and two mesoderm markers (Brachyury, BMP4), we analyzed the bovine
early EE mesoderm in order to compare our results with those previously obtained from sheep,
in which early EE mesoderm was described as i) appearing at a pre-streak stage and ii) being
mesoderm due to its histological position, though negative for two early mesoderm T-
box genes (Brachyury−Eomesodermine–) [14]. We first observed at D15 that the EE meso-
derm–surrounding the ED on its ventral side and extending in the elongation axis like the crin-
oline of dresses from the 19th century–did not express Brachyury transcripts but did express
HAND1 mRNA (and VIM), while the EE endoderm expressed CD44 (Fig 8A–8D). At an earli-
er D15 stage, EE mesoderm cells expressed BMP4 transcripts, though no “crinoline” and no
streak were morphologically detectable yet (Fig 8E). At both stages (crinoline: +/-), we noticed
that the EE endoderm expressed: i) SDF1 (Fig 8F) and ii) CD44 prior to, and concomitantly
with, EE mesoderm migration (VIM+ cells; Fig 8G–8I).

Discussion
We isolated, cultured, and characterized the cell types that make up bovine EET three days
prior to implantation. We used a complementary approach which utilized both dynamic moni-
toring of cellular properties as well as gene profiling data, and our results make a substantial
contribution to knowledge of these cell types, particularly through the gene “cores” that identi-
fied (in vivo as well as in vitro) previously undescribed genes in the trophoblast, mesoderm,
and endoderm that were related to cytokinesis, cell response to mechanical stimuli, epithelial
functions, and nutrient transport. Additionally, the cultured cells developed for this study serve
not only to supplement the panel of pre-existing trophoblast cells, but also to address the pauci-
ty of EE endoderm cells and, more importantly, the lack of EE mesoderm cells. These cell lines,
together with the markers used here, provide new tools to revisit long-known histological fea-
tures of D15 to D25 EETs.
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Unique cell types three days prior to implantation
Bovine trophoblast cell lines (mostly long-term cultures) have been previously described at
both pre- and post-implanting stages [35], but such data are scarce for endoderm cells (charac-
terized at earlier stages only: D7-8) and lacking entirely for mesoderm cells. In addition, despite
sharing the “pre-implanting” descriptor, cells derived from these stages can vary significantly,
as developmental differences are considerable between D7 and D18: D7-D10 embryos are
spherical blastocysts while in D12-D18, they are already highly differentiated [36], and can in
fact be 5–15 days post-implantation in rodents, primates, or lagomorphs. Therefore, cell deri-
vation at these stages does not lead to equivalent phenotypes, as confirmed by a comparison of

Fig 8. Nascent mesoderm and crinoline formation. (A, D, E) Whole mount in situ hybridization (WISH) with Brachyury, HAND1, or BMP4 DIG-labeled
riboprobes. (B) Brachyury WISH with VIM, CD44, DAPI co-immunofluorescence. (C, F) Cross-sections from tissues in B and E, respectively. (F) SDF1
(CXCL12) immunostaining after a BMP4WISH. (G-I) VIM, CD44, DAPI co-immunofluorescence. A to F: Dorsal views, G to I: ventral views. T: trophoblast,
ExEn: extra-embryonic endoderm, ExM: extra-embryonic mesoderm.

doi:10.1371/journal.pone.0127330.g008
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trophoblast CT-1 cells (derived from D10-D11 embryos [37]) with ours. The former resembled
those of an ovoid stage (D12-D13 [36]), while the latter resembled those of a filamentous stage
(D18) (bi-nucleated cells; DLX3, PAG1, PRL expression). Similarly, some of the bXECs dis-
played a multi-nucleated phenotype (S2 Fig) that had not previously been observed in endo-
derm cell cultures (D10-12; cow or pig endoderm: CE-1, CE-2 [37]; PE-1, PE2 [38]). Thus, the
bTCs and bXECs developed here reveal their value in the novel phenotypes exhibited (molecu-
lar and cellular) and the fact that these cell lines were obtained from the same EET and from
few culture passages (when others often exceed 50). In the future, these cell lines will be indis-
pensable in efforts to decipher, both in vivo and in vitro, the complexity of peri-implanting
extra-embryonic tissues.

Confusing markers or partial knowledge?
In this work as in others, some reputed in vivomarkers, such as IFN-tau (Fig 5), disappeared in
vitro after a few days. Similarly, several observations, from the literature and from the present
study, call into question current techniques/markers for identifying trophoblast cells. First, tro-
phoblast cells that were derived from early embryos (D7-8) and cultured over 50 passages [35]
expressed late pre-implanting markers that the original biopsies did not. Second, bTCs grown
on Matrigel closely resembled in vivo EET (D18) due to the growth factors/chemokines [39]
influencing bTC responses (Figs 4 and 5). Finally, CT-1 trophoblast cells (D10-11) that were
co-cultured with endometrial cells or incubated with uterine flushes mimicked cells in the im-
plantation stages (D22-23, [40]). With regard to the debate about defining trophoblast identity,
both in vivo and in vitro [41], we thus pose the question: are a few markers enough, is a larger
network needed, or is an epigenetic signature better? Obviously, in the current work, some
markers (in the trophoblast core) were maintained in vitro better than IFN-tau was, which
prompts us to suggest a new approach for cell-type definition: first, to define robust sets of
markers for each EE cell type, as proposed here with the in-vivo/in-vitro-conserved “cores”,
and second, to decipher gene regulation networks (transcriptional, epigenetic [41]) in order to
improve knowledge of basic EE cellular behaviors in diverse micro-/macro-environments.

Beside cell-type-specific patterns, we also observed ones in common: shared by all cell types,
by endoderm and mesoderm, or by ectoderm and endoderm (epithelium core; Fig 6). For ex-
ample, primitive endoderm and nascent mesoderm both originate from the embryonic lineage,
at D8-9 and D14-15, respectively. In sharing a common origin and migratory phenotype, they
also share markers (e.g., TIAM1, ZYX). However, endoderm cells retain their epithelial nature
and harbor an intermediate (or “squamous”) phenotype [42]. An intermediate phenotype is
also present in implanting trophoblast cells due to a partial EMT (D22) but at D17 [43], EMT
markers identify only mesoderm, rather than trophoblast, cells (Fig 7). Long-known from his-
tological studies but poorly described at the molecular level, this shared squamous pattern may
have its origins in the epithelium core described here of genes shared between ectoderm and
endoderm. This reinforces the need for studies that clarify the landscape of EE markers across
elongation and implantation stages.

Cell-type-specific cellular biologies
The improved performance of bTCs on collagen substrates derives from the activity of ITGB5
(a reputed pan-trophoblast adhesion receptor [43, 44]) but also of numerous components [45]
of integrin-mediated adhesion (adhesome) or focal adhesion (FA), among which: actin regula-
tors (LASP1), adaptors (GN2BL1, GRB2, GRB7), GAPs (DLC1, GIT1, RASA1), GEFs (ARH-
GEF12), or Tyr-phosphatases (PTPRF, PTPN6). Consistent with their slow rate of spread and
columnar nature in vivo, bTCs have been observed to express the highest number of cadherin-
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adhesion genes (cadhesome: e.g., DLC1, GJB5, SHROOM3, TJP2) and form vesicular structures
when ECM-cell contacts weaken [46].

In contrast, bXMCs easily spread and proliferated over several substrates, including fibro-
nectin. This is likely because they express integrins (ITGAV, ITGB1) that cooperate during ri-
gidity sensing [47] and the LIM+ genes that mediate mechanotransduction (e.g., TES, ZYX
[48]). Indeed, in vivo EE mesoderm cells sense their environment and react to it, changing
their geometries in space or time thanks to their acto-myosin cytoskeleton or to the MMP pro-
teolysis of the ECM components [49]. They can thus appear either rounded or elongated
(VIM+ cells; Fig 8H and 8I). In addition, bXMCs expressed SRF-target genes (VCL,WDR1
[50]) and migrated individually (S3 Fig) like embryonic mesoderm cells [50], or in chains (Fig
8) like mesenchymal cells [51].

In vitromonitoring of cellular dynamics can mirror the in vivo interplays and inputs from
cell-ECM and cell-cell contacts [52]. This was demonstrated here by the performance of each
extra-embryonic cell type on laminin (Fig 3), an ECM component involved in the regulation of
EMT [53] on which only bXMCs were able to grow. Such monitoring efforts, particularly when
linked with gene profiling, have the potential to reveal much about the fine-tuned processes
that govern EET development.

bXMC applications for the study of in vivo EE development
Because D18 bXMCs shared patterns of gene expression with D15 and D25 in vivo EETs, we
used these cultures to facilitate an examination of primitive hematopoiesis/angiogenesis and
EE mesoderm formation.

Consistent with the mesoderm’s contribution to early post-implantation EET functions
[54], we identified molecular signs of a hematopoietic niche, blood islands, and early blood
cells in the bovine yolk sac (Fig 7F). In addition, the expression ofHOXA9, which is considered
pro-angiogenic, in the proximal allantois coincided with an angiogenic process.HOXA9 is un-
usual in that it is physically located with other HOXA genes at the 5’ end of theHOX cluster
[55] but unlike its neighboring genes, had not been previously reported in murine or bovine
allantoises. Another gene, CD44, was expressed at D25 in chorionic cells of in vivo bovine
EETs; this gene is a reputed marker for mesenchymal stem cells, endothelial cells, and angio-
genic-promoting activities [56]. As indicated by the above outcomes, researchers who attempt
to isolate early post-implantation mesoderm subtypes will benefit from the choice of appropri-
ate core genes (for example, CD56; S4 Fig).

Concerning EE mesoderm formation, we showed that: i) CD44 expression accompanied or
preceded VIM+ cell migration towards extra-embryonic territories and ii) EE mesoderm cells
were in contact with SDF1+ EE endoderm cells (Fig 8). Even though CD44 cleavage by MMP9
was reported to be favorable to cell migration, necessary to connect ECM and intra-cellular sig-
naling [57], and essential to allow the fine-tuning of this signaling by ECM/BM (basement
membrane) components in mouse embryos [58], this is the first time a study has shown CD44
and SDF1 expression at this stage in bovine embryos. Notably, SDF1 and its receptors
(CXCR4, CXCR7) have been reported to be cues for directional migration in other tissues or
species [59, 60], so finding them at the endoderm/mesoderm interface in bovine EETs is very
promising. Nonetheless, in the absence of time-lapse imaging or functional studies, one may
only hypothesize that MMP2-mediated proteolysis of SDF1 (CXCL12) favors EE mesoderm
migration, or that constitutive SDF1 expression is transformed by the migrating cells
(CXCR7+) into a directional cue by SDF1 receptors (CXCR4, CXCR7 [60]). In support of this
hypothesis, though, bovine EE mesoderm cells in the present study expressed both MMP2 and
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CXCR7. SDF1 and CD44 expression by EE endoderm could thus help the migration and/or
differentiation of EE mesoderm cells.

As shown here, the EE crinoline or ring that surrounds the ED (before a streak is morpho-
logically visible) is composed of cells that express HAND1 or BMP4 transcripts (Fig 8D and
8E). They are thus mesoderm, as hypothesized in sheep [14]. At this stage however (Fig 8E), an
antero-posterior axis may be accounted for by a thinner posterior pole. Unfortunately, no anti-
body against the bovine Brachyury protein was available to allow us to test whether a streak
was being formed simultaneously on the same ED (instead of on another embryonic disc of a
similar stage). Unlike in pig and rabbit embryos, the ED was not positive for BMP4 (although it
was at an early D13-14 stage; unpublished data) and the ring of BMP4+ cells was not prominent
in any direction. Whether this observation may indicate the presence of a new structure for an-
terior pre-gastrulation differentiation [61] awaits further studies.

Conclusion
Taken together, this work integrates in vitro, in vivo, and in silico data; bridges the fields of cell
biology and EE development; and proposes new gene cores that will open avenues to distin-
guish EE subtypes or enable functional studies of isolated EE cell types. All of these are neces-
sary steps for future refined characterizations [62] and cell fate studies, in which ECM
geometries also take part in cellular differentiation [63].

In this respect, our results on early EE mesoderm cells shed light on an in embryo phenome-
non in which EE mesoderm expands in a radial mode, but in a slightly different way from that
observed in rabbits or pigs, and thus pave the way for future studies on the anterior differentia-
tion of the embryonic tissues at the onset of gastrulation, maybe as early as D12- 13. Coming
out at a time when mesoderm precursors appear to be the earliest committed cells to exit pluri-
potency [63], some of our mesoderm core markers may help in evaluating EE mesoderm in-
volvement in bovine stem cell differentiation studies (iPS [64]).

In this work, we also started deciphering the complexity of EETs pre- and early post-im-
plantation, a period of great importance to studies of livestock and medicine since peri-implan-
tation defects often result in feto-placental pathologies (e.g., IUGR) or miscarriage. Despite
this, early EE phenotypes have been poorly described, due to the difficulty of accessing EETs
prior to placenta formation and the overwhelming historical focus on the trophoblast, which
forms the major uterine interface and placental component.

Because of the ease of access to EETs in the bovine model, we are able to show that the com-
plexity of these tissues originates in their cell types (specific proliferative and adhesive proper-
ties, unique molecular signatures) and hypothesize, in view of conserved epithelial-
mesenchyme interactions in other tissues ([59], Fig 8), that it may also derive from the interac-
tions of the cell types. If so, bovine and human models may instruct each other much more
than expected at first glance.

Materials and Methods
Embryo collection, cell isolation, western blotting, microarray analysis, RT-PCR, immunos-
taining and imaging, whole-mount in situ hybridization in S3 and S4 Files.

Real-time impedance curve
Real-time impedance curves of the isolated cells were recorded using the xCELLigence System
(Roche). A 96-well E-Plate (Roche) was coated with seven different substrates (all 100 μg/ml):
collagen I (Invitrogen; in acetic acid), collagen IV (Invitrogen; in DMEM), fibronectin (Invitro-
gen; in DMEM), laminin (Invitrogen; in DMEM), Matrigel (BD Biosciences; in DMEM; at this
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concentration, Matrigel does not form a gel), poly-L-lysine (Sigma; in water), and vitronectin
(Invitrogen; in water). Substrates were left for 2 hr at room temperature, and then rinsed with
DMEM, left to dry overnight at 4°C, and rinsed again in DMEM before plating of the cells. The
cells (50,000/well for trophoblast and 5,000/well for endoderm/mesoderm) were seeded in trip-
licates onto the 96-well E-Plate. Impedance was measured every 5 minutes during the first 16
hours and then every 30 min for 3 days. Background measurement was performed on 100 μl
DMEMmedium that contained 10% fetal calf serum (FCS).

Micro-dissection of the three in vivo extra-embryonic cell populations
To isolate the three extra-embryonic cell populations, frozen D18 bovine conceptuses were sec-
tioned into 10-μm slices. From these, the trophoblast, extra-embryonic endoderm, and extra-
embryonic mesoderm cells were micro-dissected, using the laser pressure catapulting tech-
nique adapted from a previous study [65]. Briefly, 4–6 serial frozen sections of D18 bovine con-
ceptuses were mounted onto ready-to-use PALMmembrane slides [0.17-mm polyethylene
naphthalate (PEN)] and stored on ice until microdissection. The Robot- MicroBeam (PALM)
focused the laser (60 nm) on the specimen, with appropriate energy settings to enable the cata-
pulting of the selected areas into the microfuge cap. Samples were covered with 100 μl of TRI-
zol (Invitrogen) and stored at -80°C. For RNA extraction, 100 μl of TRIzol and 40 μl of
chloroform were added to each sample, mixed, and centrifuged for 15 min at full speed at 4°C.
The supernatant was measured and transferred in a new tube, and then the same volume of
70% ethanol was added. Samples were mixed by pipetting. Purification of total RNA was per-
formed with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol.

Flow cytometry
The concentration of cells in suspensions (after plating for bTC or directly after isolation on
the Percoll gradient for bXMC) was determined and 1x106 cells were transferred to fluores-
cence-activated cell sorting (FACS) polypropylene tubes, incubated with labeled primary anti-
bodies, and analyzed on a FACS LSRII flow cytometer (BD Biosciences). Color compensation
was preliminarily set by using Compbeads (BD Biosciences). Two-color live-gating acquisition
was used to optimize settings and acquire data. Up to 10,000 events were collected and stored
electronically for subsequent analysis with DIVA and FlowJo software. A control tube for each
of the chromogens used contained equivalent amounts of isotype standards.

Supporting Information
S1 Fig. Experimental design and key pieces of data. To begin deciphering extra-embryonic
complexity prior to placenta formation, we isolated bovine extra-embryonic subtypes at Day
18 (D18), three days prior to implantation (D21), and characterized them using in vivo, in
vitro, and in silicomethods. The abbreviations used in the figure but not defined within the text
are as follows: IF—immuno-fluorescence; MNC—mono-nucleated cells; BNC–bi-
nucleated cells.
(TIF)

S2 Fig. In vitro and in vivo extra-embryonic endoderm phenotypes at D18. F-actin and
DAPI labeling of endoderm cells (A) in vitro and (B) in vivo. In (B): large-field images captured
through MosaiX acquisition (upper panel) and pan-keratin labeling (lower panel). (C) The
evolution of endoderm cell area in vivo, computed in stages [from D7-D9 (spherical blasto-
cysts) to D18 embryos (filamentous conceptuses)] from measurements of endoderm cell areas
and counts of trophoblast cell numbers fromMosaiX images. Similar characteristics have been
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reported from mono- and multi-nucleated cell types in sheep [71]. Included are the typical
elongating stages described in [27, 74]: ovoid (D12-D13), tubular (D14), and early filamentous
(D15-D18).
(TIF)

S3 Fig. Motility movie, bXMCs, World Cell Race 2011.
(MP4)

S4 Fig. Flow cytometry analysis of CD56+ cells, reported as the earliest human mesoderm
precursors in vitro [33] and representing 10% of in vivoD18 EET. See also Fig 7B.
(TIF)

S1 File. Gene lists corresponding to the D18 micro-dissected EE cell types (Fig 1C). 186
common genes between the three cell types-trophoblast, ExEndoderm and ExMesoderm-
(Table 1). 262 common genes between Trophoblast and ExMesoderm (Table 2). 401 common
genes between ExEndoderm and ExMesoderm (Table 3). 1193 common genes between Tro-
phoblast and ExEndoderm (Table 4). 596 genes only expressed by ExEndoderm (Table 5). 867
genes only expressed by ExMesoderm (Table 6). 2545 genes only expressed by Trophoblast
(Table 7).
(XLS)

S2 File. Gene IDs corresponding to DEG cores. For each list, all Expressed Sequenced Tags
(ESTs) have been listed (Genbank accession number, GB), as not all have a gene ID (HUGO
term). Core Trophoblast (Table 1). Core Endoderm (Table 2). Core Mesoderm (Table 3). Core
Epithelium (Table 4).
(XLS)

S3 File. Primers (Table 1) and Antibodies (Table 2).
(XLS)

S4 File. Methods detailed elsewhere [75–82].
(DOC)
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