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Primary malignant bone tumours, osteosarcomas, and Ewing sarcomas are rare diseases which occur mainly in adolescents and
young adults. With the current therapies, some patients remain very difficult to treat, such as tumour with poor histological
response to preoperative CT (or large initial tumour volume for Ewing sarcomas not operated), patients with multiple metastases
at or those who relapsed. In order to develop new therapies against these rare tumours, we need to unveil the key driving factors and
molecular abnormalities behind the malignant characteristics and to broaden our understanding of the phenomena sustaining the
metastatic phenotype and treatment resistance in these tumours. In this paper, starting with the biology of these tumours, we will
discuss potential therapeutic targets aimed at increasing local tumour control, limiting metastatic spread, and finally improving
patient survival.

1. Introduction

Primary bone sarcomas, osteosarcomas (OS), and Ewing
sarcomas (EW) are diseases occurring mainly in adolescent
and young adults and account for around 15% of child-
hood/adolescent cancers. First-line therapeutic strategies in
these diseases consisted in chemotherapy (CT) before and
after local treatment (including high-dose CT for high-
risk EW [1]) and a local treatment by surgery but also or
only by radiotherapy in EW. Some patients remain very
difficult to treat, such as tumour with poor histological
response to preoperative CT (or large initial tumour vol-
ume for EW not operated) [2, 3], patients with multiple
metastases at diagnostic [1, 4], or those who relapsed
[5].

In order to develop new therapies against these diseases
we need to unveil the founder molecular abnormalities
underlying the malignant characteristics and to broaden our
understanding of the phenomena sustaining the metastatic
phenotype and treatment resistance in these tumours. Both
diseases are sustained by different biology abnormalities but
also share some common characteristics (angiogenesis, etc.).

The main objective of this paper is to discuss potential
therapeutic targets aimed at increasing local control of the
primary tumour, limiting metastatic spread, and finally
improving patient survival. We then review preclinical data
and both paediatric and adult trials performed or ongoing
and choose to present them by pathway rather than by
tumour. Table 1 and Figures 1 and 2 present the same data
by tumour type.
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Figure 1: Targets and therapies in preclinical and clinical development in children and adolescent bone sarcomas. (A) Ewing sarcomas. (B)
Osteosarcomas. The different colors described the current clinical development of the drugs. (Red) Preclinical: EW and OS; (Orange) Phase
I: all paediatric studies; (Blue) Phase II: specific EW, OS, bone tumours; (Green) Phase III: specific EW and/or OS; (Black) Phase I or II in
adults: all solid tumours. ∗17-AAG is an HSP90 inhibitor which targets client proteins involved in all tumour characteristics.

2. Biology of Bone Tumours

2.1. Biology of Ewing Sarcoma: A Cell of Mesenchymal Origin
Driven by an Aberrant Fusion Protein, EWS-Ets. EW is
characterised by a group of translocations which oppose a
gene from the EWS family with a gene from the ETS family
arising in cells of mesenchymal origin [6]. The most frequent
translocation is t(11;22). It leads to an aberrant fusion
protein which is responsible for the malignant phenotype
[7]. EWS-Ets is a transcription factor with a DNA binding
domain (Ets; FLI1 in 85%) and a transcription enhancer
domain (EWS) [8]. The altered intrinsic EWS-FLI1 region
facilitates the formation of protein-protein interactions that
regulate the transcription of numerous genes and mRNA
alternative splicing [8]. Numerous biological pathways are
modulated by EWS-FLI1 activity: IGFR, PDGFR, VEGFR,
SHH pathway activation; Wnt, TGFβRII pathway inhibition,
and lead to the EW malignant phenotype: proliferation,
angiogenesis, immune system escape, metastatic potential,
and treatment resistance [8].

2.2. Biology of Osteosarcoma: Osteoblast or Cells of Mesenchy-
mal Origin with a Complex Biology Producing Osteoid Matrix.
OS is a malignant tumour that produces osteoid tissue.
Different mesenchymal components found in different OS
subtypes suggest that OS arise from a more pluripotent cell
than the osteoblast.

OS belong to the spectrum of genetic predisposition
to cancer syndromes (Li Fraumeni, hereditary retinoblas-
toma, Rothmund-Thomson, Werner syndromes). Molec-
ular abnormalities influence various tumour characteris-
tics and may be implicated in several biological path-
ways: sustaining proliferative signalling (IGFR, SHH/GLI,
PDGFR, c-KIT), evading cell growth suppressors (p53,
RB, CDK), resisting cell death (ERK activation, proapop-
totic molecule inhibition, antiapoptotic molecule activation
Bcl2, syndecan-2, autophagy inhibition), enabling repli-
cative immortality (telomerase), increasing angiogenesis
(VEGFR, IGFR, PDGFR, HIF1α), and activating invasion
and metastasis, genome instability (p53, Rad51, GADD45),
evading immune destruction (IFN), reprogramming energy
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metabolism and hypoxic driven therapeutic resistance
(HIF1α, GLUT1), and interacting with the bone microenvi-
ronment (RANK/RANKL/OPG).

3. Therapeutic Options for Bone Sarcomas

3.1. EWS-FLI1 Inhibition in Ewing Sarcomas. The fusion
protein EWS-FLI1, exclusively expressed in EW tumour cells,
is an ideal target for specifically treating EW without affecting
normal cells.

Decreased EWS-FLI1 expression by antisense oligonu-
cleotides [9] or RNA [10], small interference RNA (siRNA)
through nanoparticles [11], inhibits cell proliferation and
tumour growth of EW xenografts. The pharmacological
delivery of these large molecules in patients is not yet
solved. Mithramycin has been identified by high-throughput
screening as another inhibitor of the EWS-FLI1 oncogenic
transcription factor and has shown in vitro and in vivo activ-
ity against EW [12]. Mithramycin is currently being tested at
the NCI against EW in children and adults (NCT01601570).

An alternative strategy is to target the interaction between
EWS-FLI1 and its partner proteins in the transcriptional
complexes in order to inhibit EWS-FLI1 function. YK-4-279

inhibits EWS-FLI1/RNA helicase A (RHA) interaction and
induces apoptosis and tumour regression in EW models [13].

Trabectedin is an alkylating agent with increased efficacy
in EW compared to other paediatric sarcomas (e.g., OS;
rhabdomyosarcoma) through EWS-FLI1 inhibition [14, 15].
However, in children/adolescents, compassionate use of
trabectedin and phases I/II trials yielded only one complete
response (CR) lasting 6 months and stable diseases (SD) in
5 EW [14, 16–18]. In OS, only 2 partial responses (PR) out
of 27 treated patients were observed. Tolerance in paediatric
phases I/II trials [14, 16] was acceptable (thrombocytopenia,
reversible hepatic toxicity).

Combined inhibition of EWS-FLI1 (oligonucleotide) and
EWS-FLI1-modulated pathways (e.g., mTOR) increased the
antitumour effect (apoptosis, in vivo tumour regression)
[19].

3.2. Inhibition of Growth Factor Signalling Pathways. Most
of the signalling pathways are involved in cell proliferation
and resistance to apoptosis. They are mediated by proteins
with kinase activity (tyrosine TK or serine SK kinases),
located on the tumour cell surface, in the cytoplasm, or
the nucleus. These proteins could be inhibited by two dif-
ferent approaches: monoclonal antibodies directed against
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extramembrane receptor and small molecule inhibitors of
the intracellular kinase domain.

3.2.1. The IGF-1R/PI3K/AKT/mTOR Pathway. The IGF-1R
pathway plays an important role in paediatric cancers,
including OS/EW [20]. Both tumours have a peak incidence
at puberty, and OS occur in an area of a high bone growth
rate at long bone metaphyses, suggesting a role of growth
hormone and IGF-1. Like others, the IGF-1R pathway acti-
vates downstream pathways PI3K/Akt/mTOR and stimulates
OS/EW cell survival and angiogenesis through HIF-1α and
VEGF secretion.

With different anti-IGF-1R monoclonal antibodies, chil-
dren/adolescents suffering from relapsed/refractory EW
achieved SD in phase I trials [21] and an objective response
rate of 10–15% in paediatric/adult phase II trials [22–24].
SD was observed in relapsed/refractory OS patients (SCH
717454, P04720, unpublished data, NCT00617890) [25].

Predictive factors of response remain insufficiently
known. Reduced activity in an IGF system might be asso-
ciated with tumour progression and poor response to treat-
ment [26], high expression levels of IGF-IR, IR, and IGF-I
mRNAs with increased survival, and high circulating IGF-1
levels with a low risk of progression [27].

Unfortunately, the median duration of EW response
was only 5–7 months [22, 23], probably because tumour
cells escape IGF-1R inhibition, through AKT or through
activation of other signalling pathways (e.g., other TK
receptors, mTOR) [28]. These observations have prompted
clinical researchers to consider using either a combination of
monotargeted inhibitors or multitargeted inhibitors.

Rapamycin, the mTOR inhibitor, was first used in
children to prevent graft rejection. mTOR is an intracy-
toplasmic SK regulated by AKT. In OS cells, rapamycin
inhibits proliferation through ezrin [29], a protein involved
in intracellular signal transduction and migration [30]. In
paediatric EW, phospho-mTOR overexpression is correlated
with survival [31]. Paediatric phase I trials of everolimus [32]
and temsirolimus [33] have demonstrated a good tolerance
profile. One OS patient treated with everolimus achieved
prolonged SD out of 5 patients treated with mTOR inhibitors
[32]. The phase II trial of ridaforolimus in advanced bone
and soft tissue sarcomas obtained a low response rate <2%
(2/4 responders had OS), but 28% obtained a clinical benefit
[34]. A double blind phase III maintenance trial comparing
ridaforolimus and placebo (SUCCEED trial) in advanced
bone and soft tissue sarcoma after stabilisation or response
with CT has included 50 bone sarcoma patients showing an
increased progression free survival (PFS) in patients treated
with ridaforolimus [35]. A paediatric phase II is ongoing
in refractory/relapsed OS, in Brazil (NCT01216826). All
these mTOR inhibitors inhibit TORC1. However, two mTOR
complexes participate in two functionally disparate protein
complexes, TORC1 and TORC2, both being associated with
oncogenesis. TORC2 and subsequent AKT activation is
suggested to induce resistance to TORC1 inhibition, and
the dual TORC1/TORC2 small molecule inhibitor is being
developed in adults (OSI-027, NCT00698243).

Strategies targeting the IGF-1R/PI3K/AKT/mTOR path-
way simultaneously at several levels are being evaluated.
An adult phase I combination of the anti-IGF1-R antibody
cixutumumab and temsirolimus showed good tolerance and
tumour regression of more than 20% in 5/17 (29%) EW
patients who remained on study for 8 to 27 months, with
a CR in 1/6 of EW patients who previously developed
resistance to a different IGF-1R inhibitor antibody [36]. The
phase II in younger patient with refractory (1–30 tears) or
relapsed sarcomas is ongoing (NCT01614795) in USA. A
phase I-II trial of ridaforolimus combined with the anti-
IGF1R antibody Dalotuzumab is ongoing (NCT01431547)
in children in Europe and USA. Dual PI3K/mTOR inhibitors
are being tested in an adult phase I trial and a dual
mTOR/DNA-PK inhibitor (CC-115) in an adolescent/adult
phase I trial (NCT01353625).

3.2.2. Multitarget Inhibitors. Imatinib mesylate inhibits
PDGFR, c-KIT, and BCR-ABL. High expression of c-KIT
and PDGFR is observed in EW/OS [37] and associated
with low EFS but not with poor response to CT [37].
Imatinib appeared to exhibit anti-EW activity in vitro and
in xenografts [38]. Expression of imatinib targets is not
sufficient to confer drug sensitivity [39]. Several phase II
trials have shown some stabilisation of bone sarcomas (3/20
EW, 7/26 OS) with a median PFS <2 months [40, 41]. In a
COG paediatric phase II trial, only 1/24 EW achieved a PR
[42]. Preclinical data showed increased antitumour activity
of imatinib when combined with doxorubicin and vincristine
[43] in EW or ifosfamide in OS.

Dasatinib which inhibits Src and BCR-ABL shows in
vitro cytostatic and antimigration effects and no apoptosis
in EW [44]. Src plays a role in OS cell adhesion/migration
through a decrease in FAK, but its inhibition does not
prevent metastasis [45], suggesting that Src plays a secondary
role in this process. A phase I paediatric trial showed similar
dasatinib pharmacokinetics in children and adults [46].

Sorafenib inhibits BRaf, c-KIT, PDGFR, VEGFR, and
RET. In OS, sorafenib inhibits proliferation of tumour
growth, angiogenesis (VEGF), invasion (MMP2), and the
emergence of pulmonary metastases (Erzin/β4-intégrin/
PI3K) and induces apoptosis [47]. A phase II trial of 35
patients ≥14 years with OS under 2nd/3rd-line therapy
achieved 14% of objective responses (3PR, 2MR) and 29%
of tumour control (12 additional SD). Tumour control lasted
≥6 months for 8 patients. The median PFS and survival were
4 and 7 months, respectively [48].

Sunitinib inhibits Flt3, c-KIT, PDGFR, and VEGF. Effi-
cacy was observed with in vivo models of most paediatric
tumours, including 4/5 EW xenografts [49]. In a paediatric
phase I trial, the main toxicities were haematological and
cardiac for children previously treated with anthracyclines
[50, 51].

Pazopanib inhibits VEGFR1–3, PDGFRα/β, and c-KIT.
Pazopanib showed activity in paediatric in vivo tumour mod-
els when used as a single agent (EW, EFS [52]) or combined
with metronomic topotecan (OS, tumour regression [53]).
A phase II study of pazopanib in relapsed bone sarcomas



8 Sarcoma

is ready to begin in Europe. The phase I in children with
solid tumours showed good tolerance [54]. The combination
pazopanib/everolimus is currently being tested in an adult
phase I (NCT01430572). Furthermore, there is increasing
information that mTOR inhibition can reverse resistance to
growth receptor inhibition in other solid tumours including
breast cancer [55, 56].

3.2.3. Cell Growth Inhibition Dependent on Cell Cycle Regula-
tors. The CDK (cyclin-dependent kinase) inhibitor dinaci-
clib induces in vitro OS apoptosis [57]. The phase I/II
trial of Rexin-G, a pathotrophic nanoparticle bearing a
cytocidal cyclin G1 construct, in relapsed OS showed low
toxicity, 2/3 SD, and survival lasting 7 months- [58].
Aurora A plays a crucial role during mitosis. The Aurora
A inhibitor, MLN8237, led to prolonged CR in in vivo
EW/OS models [59]. Two Aurora A inhibitors, MLN8237
(NCT01154816/NCT00739427) and AT9283 (NCT00985-
868/NCT01431664), are under development in paediatric
phase I/II studies. The Polo-like kinase 1 (PLK1) selective
inhibitor, BI 2536, exerted antiproliferative effects and
induced mitotic death in OS cell lines [60].

MDM2 is an oncoprotein that negatively regulates p53
and is overexpressed in p53 wild-type cancers. The MDM2
inhibitor, nutlin-3, activates the p53 signalisation pathway
leading to major tumour regressions in OS xenografts
through apoptosis [61, 62]. This effect is also seen in p53
wild-type EW and can be increased by either NF-κB inhibi-
tion [63] through TNF-alpha [64] or HDAC inhibitors [65].
An adult phase I of an oral MDM2 inhibitor (RO5503781)
is ongoing in solid cancers (NCT01462175) and a study in
sarcoma in preparation.

3.3. Resistance to Cell Death. Resistance to apoptosis is a
key element in tumour progression and chemoresistance
[66]. Its mechanisms are increased survival signals (growth
factors/TK receptors, downstream pathways), overexpression
of antiapoptotic molecules (Bcl-2, Bcl-XL, FAK in OS),
underexpression of proapoptotic molecules (Bim in OS),
or resistance to cell death receptors Fas/FasL (Fas ligand)
or TRAIL. The BCL2 inhibitor, navitoclax, is developed in
adult refractory tumours in combination with docetaxel.
Toxicity is acceptable, and a few responses (2 PR, 5
SD) have been achieved [67]. TRAIL-induced apoptosis in
murine models inhibits EW/OS tumour growth, decreases
osteolysis, prolongs survival, and decreases lung metastases
from OS [68]. Combining them with imatinib further
increased TRAIL effect on tumour growth and metastases
in in vivo EW models [69]. The fully human monoclonal
antibody directed against DR5 (human death receptor 5),
conatumumab, activates caspases, and induces apoptosis
[70]. Phases I/II of conatumumab combined with the anti-
IGF1R antibody AMG479 in advanced sarcomas showed
only SD (1OS/1EW) [71] and combined with doxorubicin
did not show advantages compared to doxorubicin alone in
advanced soft-tissue sarcomas [72]. IAPs (inhibitor of apop-
tosis proteins) inhibit caspase-dependent apoptosis. Smac, a
mitochondrial protein, binds to IAPs, impedes the formation

of the protective complex IAP/caspase, and facilitates caspase
degradation by the proteasome. The Smac mimetic, LCL161,
increases survival of paediatric in vivo models, including
5/6 OS and glioblastomas [73]. The adult phase I trial of
LCL161 in solid tumours (NCT01098838) has just been
completed, and a combination trial with paclitaxel is ongo-
ing (NCT01240655). The X-linked IAP antisense oligonu-
cleotide (XIAP ASO-AEG35156) in paediatric tumour cell
lines decreases XIAP in OS, RMS, and EW and sensitizes OS
to doxorubicin, etoposide, and vincristine [74]. Poly(ADP-
ribose) polymerase (PARP) inhibitors induce apoptosis and
tumour CR in EW models, and EWS-FLI1 fusion genes
maintain the expression of PARP1, a DNA damage response
protein and transcriptional coregulator, thereby enforcing
oncogene-dependent sensitivity to PARP-1 inhibition [75].
Inhibition of survivin induces apoptosis [76] and reverts CT
resistance (etoposide, cisplatin, and doxorubicin) in OS cell
lines [77].

Autophagy, a cell survival process implicated in tumouri-
genesis and chemoresistance [78], participates, through
HMGB1, in OS resistance to doxorubicin, cisplatin,
and methotrexate. HMGB1 inhibition by siRNA restores
chemosensitivity [79]. HMGB1 binds to Beclin1, which
regulates the formation of the Beclin1-PI3KC3 complex
and promotes autophagy. The 2-O,3-O-disulfate heparin
(ODSH) is a low molecular weight anticoagulant with anti-
inflammatory activity but low anticoagulant activity [80].
It might exhibit an antitumour action through inhibition
of heparinase (invasion), selectins (pulmonary metastatic
spread), and RAGE II which is no longer able to bind to
HMGB1 (proinflammatory and proautophagy roles).

Replicative immortality through the restoration of
telomerase activity in cancer cells induces resistance to cell
death. Telomerase activity is present in 85% of metastases
(100% EW, 75% OS), but in only 12% of primary OS/EW
tumours and associated with shortened telomeres and
decreased patient survival [81]. The telomerase inhibitor,
TMPyP4, inhibits telomerase enzyme activity, but inhibi-
tion of cell growth depends on the cellular context [82].
Telomerase activity is induced by EWS-FLI [83]. Telomerase
is inhibited by suramin in OS [84] and imatinib [85],
doxorubicin [86], or irradiation [87] in EW.

3.3.1. Inhibition of Angiogenesis and Hypoxia-Driven Resis-
tance via mTOR Inhibition. Angiogenesis forms new cap-
illaries from preexisting vessels, and vasculogenesis is the
formation of new vessels from bone-marrow-derived pro-
genitor cells [88]. PDGFR, VEGF, VEGFR and their down-
stream pathways (PI3K/AKT) are implicated in angiogenesis,
VEGFR, and Notch (DLL4) in vasculogenesis, explaining the
antiangiogenic effect of the multitargeted therapies described
above. These receptors are overexpressed in OS/EW and
associated with a poor prognosis [89, 90]. After cyto-
toxic CT, the number of bone marrow progenitor cells
increases, promoting expansion of residual tumour cells or
micrometastases [88]. Hypoxia increases these phenomena,
especially through induction of HIF1α expression [91],
a factor associated with increased OS/EW aggressiveness
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[92, 93] and metastatic potential. HIF1α expression is also
induced by PI3K/AKT/mTOR, RAS/MAPK pathways, and
calcium signalling. HIF1α plays an additional role in bone
sarcoma cell proliferation and apoptosis [94] and modulates
EWS-FLI expression in EW [92].

Bevacizumab is an anti-VEGF IgG1 monoclonal anti-
body which inhibits VEGF/VEGFR-1 and VEGFR-2 inter-
actions and VEGF-dependent angiogenesis. Tolerance in
children/adolescents is good with a few side effects (pro-
teinuria, thrombotic risk). A randomised phase II trial
of bevacizumab combined with vincristine/topotecan/cyclo-
phosphamide in first recurrent EW showed good tolerance
(COG-AEWS0521, NCT00516295). A phase II trial com-
bining bevacizumab with CT (MAP/MAPIE: methotrex-
ate/adriamycin/platinum/ifosfamide/etoposide) as 1st-line
therapy in OS is ongoing (NCT00667342).

Cediranib which inhibits VEGFR delayed tumour growth
in 3/3 EW and 4/5 OS (1 CR) in in vivo models [95].
This delay in tumour growth was further increased when
cediranib was combined with rapamycin, an mTOR inhibitor
but not when combined with CT (vincristine, cyclophos-
phamide, cisplatin) [96]. DLL4 inhibitors are being tested
in phase I in adults (neutralising antibody REGN421,
NCT00871559). SDF-1α/CXCR4 inhibition might also make
it possible to target vasculogenesis, especially in tumours
resistant to anti-VEGF therapies [88].

mTOR and topoisomerase I inhibitors decrease HIF-1α
accumulation leading to a major antitumour effect mainly
when combined [97]. An SFCE (Société Française des Cancers
de l’Enfant) paediatric phase I trial (RAPIRI, NCT01282697)
combining rapamycin/irinotecan is ongoing.

3.4. Inhibition of the Metastatic Phenotype. Each step of the
metastatic process could be targeted by different therapeutic
classes [98]. OS invasion of the host extracellular matrix
depends on the Notch/Hes1 pathway [99]. Its inhibition
by gamma secretase inhibitors prevents the formation of
metastases and induces tumour regression [9]. In EW,
Notch is involved in neural differentiation, proliferation, and
apoptosis, but its inhibition in established tumour models
yielded a poor antitumour effect [100]. Paediatric phase
I trials with the gamma secretase inhibitors MK-0752 in
leukemia and CNS tumours showed good tolerance [101,
102].

Migration and the passage in the systemic circulation
depend on the Met/HGF pathway [103, 104]. The ALK/MET
inhibitor, crizotinib (PF-2341066), decreased proliferation,
survival, invasion, and clonogenicity in vitro, tumour
growth, and osteolysis in in vivo OS models [103, 105,
106]. A phase II for patients ≥15 years is about to start in
patients with MET or ALK-driven sarcoma and lymphomas
(CREATE, NCT01524926).

Resistance to anoikis and the capacity to escape the
immune system allow tumour cells to survive in the blood-
stream. Anoikis is an apoptotic death induced by the
loss of intercellular and cell/extracellular matrix contacts
and depends on Src/PI3K/AKT and Wnt/β-catenin/NF-κB
pathways. In OS, GIN, the GSK3beta inhibitor stimulates

the Wnt/β-catenin pathway and induces intranuclear pas-
sage of β-catenin [107]. A phase I of the LY2090314
(GSK3 inhibitor)/pemetrexed/carboplatin combination is
ongoing in adults with progressive solid tumours, with good
tolerance and restoration of β-catenin expression [108].
DDK1 inhibitors interfere with the Wnt pathway and bone
metabolism. Adult phase I studies with monoclonal anti-
DDK1 antibodies (LY2812176, NCT01457417; BHQ880,
NCT00741377) are ongoing.

The arrival of circulating metastatic tumour cells in the
lungs depends on chemokines and adhesion, then extrava-
sation into target tissues depends on proteinases (MMP2,
MMP9). CXCR4 is the main chemokine involved in OS [98].
CXCR4 inhibitors are used in humans to treat HIV infection
and to mobilise hematopoietic stem cells (AMD3100, plerix-
afor). A paediatric phase I trial of plerixafor as chemosensi-
tiser is ongoing in children with relapsed acute leukemia and
myelodysplastic syndrome (NCT01319864). Adhesion and
survival in the novel microenvironment depend on Erzin/β4-
integrin/PI3K pathway and Fas/FasL-mediated resistance to
apoptosis [109].

Dormancy is the prolonged survival in a quiescent state
of isolated cells or micrometastases that might be responsible
for late metastatic recurrences or resistance to cytotoxics.
Dormancy depends on αvβ1 integrin activation of NF-κB,
antiapoptotic molecule Bcl-XL, and the ERK/p38-MAPK
ratio [110]. β4 and β3 integrins are expressed in OS and
implicated in resistance to TNFα-dependent apoptosis [111,
112]. Their inactivation is sufficient to revert the metastatic
phenotype, but not inactivation of β1 integrin. Cilengitide is
the unique integrin inhibitor (high affinity selective antago-
nist of αvβ3/αvβ5) currently under development in children.
It induces the detachment of endothelial and tumour cells,
disorganises the cytoskeleton and the tight junctions, induces
apoptosis, and inhibits angiogenesis [98]. A paediatric phase
I trial in brain tumours showed similar pharmacokinetics
akin to that observed in adults and no dose limiting
toxicity [113]. A paediatric phase I trial in combination
with irradiation is ongoing for children/adolescents with
diffuse brainstem high grade gliomas (CILENT-0902, trial
NCT01165333).

3.5. Modulation of the Antitumour Immune Response. The
immune system may play a major role in EW and OS
cancer control. Interestingly, more rapid recovery of absolute
lymphocyte count after the very first cycle of chemotherapy is
associated with significantly improved survival for both EW
and OS [114, 115].

In EW, the proinflammatory microenvironment (inter-
feron, IFN) is more often seen in metastasis than in pri-
mary tumours and participates in neoangiogenesis (VEGFR
secretion) and the metastatic potential (MMP9 secretion)
[116, 117]. The IFN/ifosfamide combination decreases these
factors and inhibits tumour growth [116, 117] but at
doses that cannot be reached in humans. The intratumour
increase in proinflammatory type I cytokines/chemokines
correlates with intratumour infiltration by cytotoxic T CD8+
lymphocytes which correlates with tumour progression
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[118]. In vivo, elevated C-reactive protein, a white blood
cell count, and profuse vascularisation are associated with
tumour macrophage infiltration which correlates with
decreased survival [119]. In EW patients, fever is a prognostic
factor whatever the metastatic status is [120]. Celecoxib, a
COX2 inhibitor, exerts an antiproliferative effect in vitro and
increases the cisplatin proapoptotic effect [121]. In vivo, it
prevents pulmonary metastases without any effect on the
primary tumour and its vascularisation [122].

The ganglioside, GD2, is expressed on the surface of
EW/OS cells [123, 124]. This neuroectodermic marker
is targeted by an anti-GD2 monoclonal antibody, which,
combined with IL2 and GM-CSF, has significantly increased
the survival of metastatic neuroblastoma [125]. One OS
patient treated in a phase I trial of ch14.18 had PD [126].
T cells were specifically modified to express the GD2-specific
chimeric receptor 14. G2a-28zeta efficiently interacted with
EW cells, resulting in antigen-specific secretion of cytokines.
Moreover, chimeric receptor gene-modified T cells from
healthy donors and from a patient exerted potent, GD2-
specific cytolytic responses to allogeneic and autologous EW,
including tumour cells grown as multicellular, anchorage-
independent spheres. GD2-specific T cells further had activ-
ity against EW xenografts [127]. Sargramostim (rhGM-CSF)
induces myeloid dendritic cell differentiation facilitating
the immune response mediated by T helper lymphocytes.
However, the few objective responses were transient [128].
Inhaled sargramostim showed no detectable immunostim-
ulatory effect in pulmonary metastases or improved out-
come postrelapse (phase II NCT00066365) [129]. Recently,
the identification of the first EFT-specific immunogenic
T-cell epitope might lead to a better understanding of
EFT immunology and may improve dendritic cell-based
immunotherapy [130].

In OS, INFα/β expression correlates with a better out-
come [131], and the presence of infiltrative macrophages
is associated with a decreased incidence of metastasis
and prolonged survival [132]. IFNα induces HLA class I
molecule expression and exerts an antiproliferative effect
[133]. The results of the randomised combination of IFNα
with first-line CT in OS (EURAMOS I) are pending.
IFNγ increases tumour cell surface expression of FAS and
lymphocyte Tγδ cytotoxicity [134]. L-MTP-PE (muramyl
tripeptide phosphatidyl ethanolamine liposomal) stimulates
the antitumour effect of monocytes/macrophages, facilitates
the secretion of proinflammatory cytokines with direct
cytotoxic anti-tumour effects (IL1β, IL6, TNFα) [135], and
induces IL12 which destroys circulating OS cells [109].
The US randomised phase III study of L-MTP-PE com-
bined with 1st-line MAP/MAPIE CT in OS (INT-00133)
appeared to be in favour of the combination, with a
possible positive interaction between L-MTP-PE/ifosfamide
[135]. However, the US Food and Drug Administration
(FDA) did not approve MTP-PE use in OS, while the
European Medicines Agency (EMA) allowed it. OS cells,
including chemoresistant variants (doxorubicin, methotrex-
ate, cisplatin), are highly susceptible to lysis by IL-15-
induced NK cells of both allogeneic and autologous origin
[132].

3.6. Modulation of the Bone Microenvironment. Bone
tumours are characterized by a vicious cycle between tumour
growth and osteolysis, marked by the activity of RANK
and its ligand (RANKL), key mediators of osteoclast
differentiation, function, and survival [136]. RANKL
facilitates osteoclastogenesis, bone resorption, growth factor
secretion which participates in bone destruction, tumour
growth, and intraosseous migration of RANK+ cells [137].
For OS patients, RANKL tumour expression is associated
with a poor response to preoperative CT, high expression
with decreased survival, and high TRACP5b plasma levels
(osteoclastic activity marker) with the occurrence of
metastases [138, 139].

Zoledronic acid, a potent inhibitor of bone resorption by
inducing osteoclast apoptosis, also inhibits RANK expression
and osteoclast progenitor migration during osteoclastogene-
sis and increases osteoprotegerin (OPG) expression [140]. In
preclinical OS models, it exerts direct antiproliferative [141],
proapoptotic/anoikis [142–144], and antiangiogenic effects
[145], decreases bone resorption, and exhibits antitumour
activity [140, 146–148]. Contradictory data on metastases
suggest preventive [143, 148, 149], inexistent [147], or
prometastatic effects [150]. It overcomes OS resistance to
cisplatin [151], irradiation [152], and mTOR inhibitors
[145], in vitro, and to paclitaxel [140] and ifosfamide
[146], in vivo. Zoledronic acid combined with 1st-line
methotrexate or adriamycin/platinum/ifosfamide-based CT
in OS is currently being tested in the French randomised
phase III trial (OS2006, NCT00470223). In in vivo EW
models, zoledronic acid alone is only active against the bone
tumour. An effect on extraosseous tumour components is
obtained when zoledronic acid is combined with ifosfamide
[153]. The use of zoledronic acid in combination with 1st-
line chemotherapy is being addressed for localised EW in
Europe, in randomised phase III trials (the current Ewing
2008 and future Euro-EWING2012). In juvenile models,
zoledronic acid decreases enchondral bone growth in a
reversible manner [154].

In preclinical OS models, inhibition of RANKL signalling
by a decoy receptor OPG or with a soluble form of its
membranous receptor RANK (RANK-Fc) inhibits tumour-
associated osteolysis and reduces tumour incidence, local
growth, invasion, migration, and lung metastases, leading to
increased survival in animals [155–157]. However, RANKL
inhibition has no effect in OS cells in vitro [155–157]. An
additive effect of RANKL inhibition with CT was observed in
OS models [158]. Fewer data are available in EW, but indirect
RANKL inhibition leads to inhibition of osteoclastic activity
[159, 160].

Denosumab is a humanised monoclonal antibody (IgG2)
with high affinity and specificity against RANKL and is
interesting in several cancers with bone metastases [161]. A
phase II safety study of denosumab in subjects≥12 years with
a recurrent/unresectable bone giant cell tumour is ongoing
(NCT00680992) [162].

In addition to the antiangiogenic effects, DDK1 inhibi-
tion (Wnt pathway) by the monoclonal antibody BHQ880
might restore bone formation but without a direct anti-
tumour effect. BHQ880 is currently being investigated in
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adult phase I/II trials for multiple myeloma, alone (NCT01-
302886;NCT01337752) or associated with zoledronic acid
(NCT00741377).

Bone-seeking radiopharmaceuticals provide another
bone-specific means to target OS cells, which make bone.
The standard 99mTc-MDP bone scan is the screening
test of this characteristic needed for targeting. The beta
emitting 153Sm-EDTMP (Samarium) is FDA approved for
osteoblastic bone metastases and is useful for palliation of
pain. A newer alpha-emitting radiopharmaceutical, 223Ra
(Alpharadin), may be not only more safe (less marrow
toxicity) but also more effective because the dense energy
deposited by alpha particles produce double strand breaks
[163–166].

3.7. Other Exploitable Therapeutic Pathways

3.7.1. Hedgehog Pathway Inhibitors (SHH/PATCH/Smo/GLI).
The Hedgehog signalling pathway plays an key role in
growing organisms (embryogenesis, morphogenesis) and is
activated in OS/EW (GLI is an EWS-FLI1 target) [167,
168]. Its inhibition by cyclopamine in OS [169] and arsenic
trioxide, a GLI inhibitor, in EW [168], stunts tumour growth.
Arsenic trioxide reverts multi-CT resistance in OS cell lines
[170]. A paediatric phase I study is ongoing testing LDE225,
a smoothened inhibitor (NCT01125800). Its effects on bone
growth might be of concern. Another inhibitor of this
pathway is Itraconazole at an antifungal dose [171].

3.7.2. Histone Deacetylase (HDAC) Inhibitors. HDAC and
histone acetyltransferase (HAT) are enzymes which catalyse
histone deacetylation and acetylation, respectively, and mod-
ify chromatin access to transcription factors and gene tran-
scription. Two paediatric phase I trials have been completed
with two HDAC inhibitors (vorinostat and valproic acid)
[172, 173].

In OS models, HDAC inhibitors decrease DNA repair
capacity [174], sensitising cells to irradiation [175] and
doxorubicin [176, 177], facilitate Fas-dependent cell death by
increasing Fas expression on tumour cells which die through
apoptosis in the presence of FasL (lung) [178], and decrease
FLIP expression, a negative regulator of caspase 8 [179].
SNDX-275 nasal administration exerts a preventive action
against pulmonary metastases in murine OS models [178].
Valproic acid increases membrane HLA class I molecule
expression, sensitizing OS cells to NK cytotoxicity [180].
HDAC inhibitors are suspected of negative effects in OS,
through the induced expression of Notch genes and invasion,
which might facilitate the OS metastatic potential [99].

In EW cells, EWS-FLI1 represses HAT and activates
HDAC [181]. HDAC inhibition restores HAT activity,
inhibits cell growth, and induces apoptosis [182]. FK228
decreases EWS-FLI1 expression and EW proliferation [181]
and induces TRAIL-dependent apoptosis [183].

Acquired resistance to the cyclic tetrapeptide family
HDAC inhibitor (FK228) is mediated by P glycoprotein
(PgP), a drug efflux pump and the MAPK pathway, and

might be reverted with verapamil (EW) [184] and MEK
inhibitors (OS) [185].

3.7.3. Heat Shock Protein 90 (HSP90) Inhibitors. HSP90 is
a chaperone protein implicated in numerous cancers. It is
overexpressed in 21/54 EW patient samples [186]. Anti-
HSP90 antibodies in sera are associated with a poor response
to CT in OS [84].

HSP90 inhibitors induce proteasome-mediated degrada-
tion of many oncogenic proteins involved in all hallmark
characteristics of cancer. 17-AAG induces in vitro apoptosis
[29] and in vivo tumour growth retardation in OS as a
single agent and in combination with cisplatin [187] and
restores the efficacy of the IGF1R inhibitor and imatinib in
EW models [186]. No objective response was observed in
two paediatric phase I trials (SD 1/3 EW, 0/7 OS). However,
acquired resistance to 17-AAG is rapid [188], and new
generations of HSP90 inhibitors might be more promising
(adult phase I/II trials ongoing).

4. Conclusion

The multiplicity of targets in primary malignant bone
tumours in children/adolescents, the increasing number of
new molecular therapies becoming available, and the rarity
of these tumours will not allow testing all of the strategies
which are discussed in this paper. Consequently, prioritisa-
tion in drug development as well as new methodologies for
the development of therapeutic trials will be required.

In EW, the development of therapies targeting the EWS-
FLI founder genetic abnormalities is crucial, but currently
at an extremely early stage. The experience with anti-IGF1R
antibodies suggests that the inhibition of EWS-FLI targets
might be useful to control the disease in some patients but
not in a prolonged manner if used as monotherapy. Combi-
nation with CT should be tested, and a better understanding
of the predictive factors of response is compulsory. In
addition, due to the multiplicity of EWS-FLI targets and the
pathways redundancies, simultaneous inhibition of growth
factor receptor and downstream pathways might be useful
to overcome some resistance, as well as, targeting different
characteristics of the tumour and the environment such as
bone microenvironment (Zometa phase III), angiogenesis
(bevacizumab phase II), and antitumoural immunity (anti-
GD2 humoral or cellular immunity).

In OS, no founder mutation is known and more efforts
are necessary to understand the biological processes impli-
cated in OS oncogenesis. Strategies targeting antitumoural
immunity (MTP-PE, phase III first-line trial), angiogenesis
(sorafenib, phase II trial), and bone microenvironment
(zoledronic acid, preclinical data) appear promising, includ-
ing in association with cytotoxic CT. Combining these strate-
gies together and with first-line CT as well as developing
therapies directed against the metastatic process (e.g., MET
inhibitors) might further improve OS outcome. In conclu-
sion, future therapeutic strategies against bone tumours will
reside in the way we combine therapies targeting different
characteristics of the malignant cells and their environment.
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