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Abstract

MicroRNAs (miRNAs) have emerged as fundamental regulators that silence gene expression at the post-transcriptional and
translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes.
The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods
based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical
measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This
approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped
pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their
simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed
method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by
expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it
has been applied to analyze expression data from Ewing’s sarcoma patients. The antagonism relationship is evaluated as
a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA
binding site motifs in their 39UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important
biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing’s sarcoma
disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.
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Introduction

MicroRNAs (miRNAs) are single-stranded RNA molecules of

*22 nucleotides recently emerged as post-transcriptional regula-

tors of gene expression. By computational predictions, experimen-

tal approaches or combined strategies, nearly one third of human

protein-coding genes are estimated to be regulated by miRNAs

[1,2]. Given the wide scope of their targeting, miRNAs might be

considered as another layer of the regulatory circuitry existing in

the cell. Nevertheless, compared with the regulation of transcrip-

tion, the study of the regulatory mechanisms by miRNAs is only at

its beginning.

Multicellular eukaryotes use miRNAs to regulate many bi-

ological processes. In animals, examples of documented miRNA

functions include regulation of signaling pathways, apoptosis,

metabolism, cardiogenesis and brain development [3,4]. In

addition, recent studies have shown that miRNAs may provide

new insights in cancer research. Misregulation of miRNA

expression has been linked to many types of cancer [5,6].

Furthermore, miRNA expression profiles have been shown to

successfully classify poorly differentiated tumors, with a higher

potential of cancer diagnosis compared to mRNA profiles [7].

The molecular mechanisms of miRNA action remain intensely

debated. There are evidences for multiple modes of miRNA-

mediated regulation, including translational inhibition, increased

mRNA de-adenylation and degradation, and/or mRNA seques-

tration [8]. Systematic analysis of mRNA and miRNA expression

demonstrates that simultaneous profiling of miRNA and mRNA

expression can be used on a large scale to identify functional

miRNA-target relationships [9]. Many miRNAs cause degradation

of their targets and a large number of genes are regulated in this

way. Recent works addressed this problem with a high-throughput

proteomic approach to quantify level of thousands of proteins in

the presence or absence of a certain miRNA [10–12]. Results

show that upon introduction (or knockdown) of a miRNA, the

synthesis of hundreds of proteins is affected, but effects are mild,

with few proteins decreasing by more than 50%. This implies that

miRNAs fine-tune gene expression, rather than inducing dramatic

changes. Furthermore, the analysis of mRNA levels allow to

distinguish between two main modes of miRNA action: mRNA

degradation and translational inhibition.
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Since the discovery of miRNAs, the identification of genuine

targets is a key issue to decipher their role in different biological

processes. To date, the experimentally validated miRNA interac-

tions are little more than 3500 in all species [13,14]. In silico target

prediction represents a fundamental step in inferring new miRNA-

target interactions. Sequence based prediction algorithms are

mainly based on empirically determined features of how known

miRNAs bind in vivo [15–18]. The restricted biological knowledge

makes the design and validation of novel investigative methods

very difficult. Different algorithms provide different predictions,

and the degree of overlap between retrieved lists of predicted

targets is often poor or null [19–21]. Predictions by purely

sequence based methods suffer from lack of information regarding

the cellular context of gene regulation. A major source of

information to infer the actual regulatory activity of miRNAs

derives from high-throughput experimental data such as tran-

scriptome profiles. The basic idea is that regulatory activity by

miRNAs could be reflected by the expression changes of their

target transcripts. Several works reported genome-wide measure of

correlation between miRNA and mRNA expression to identify

target genes [9,22–24]. To improve the detection of reliable

targets, miRNA and mRNA expression data can be integrated to

sequence based predictions by a Bayesian inference method [25],

by systematic correlation analysis [26–28] or by adopting multiple

statistical measures of profile relatedness [29].

We propose here a novel measure of dependence between

miRNA and mRNA expression to infer miRNA-target interac-

tions. We assume that miRNAs and target transcripts can create

a non-linear expression pattern due to the effect of cancer specific

genomic alterations, additional regulatory factors and external

noise. Two different relationships can be distinguished between

a given miRNA and their targets, as depicted in Fig.1. In the first

case, miRNA regulation is the main visible effect on target

expression and the observed pattern is linear (Fig.1a). In the

second situation, the effect of miRNA is modulated by other

additional factors and the resulting pattern is non linear (Fig.1b).

Pair-wise measures of miRNA and target mRNA expression

display different possible conditions, due to sample variation and

experimental fluctuations. The measure can reflect: (1) elevated

miRNA expression level associated to low target mRNA level; (2)

low miRNA expression associated to high target mRNA level; (3)

low expression of both miRNA and target expression. Indeed, the

global miRNA-target expression profile creates a recognizable

pattern, with a statistical under-represented event corresponding

to the presence of both miRNA and target mRNA elevated

expression. This event is statistically less expected compared to the

previously described ones in the case of miRNA silencing effect on

the target mRNA. We call this kind of triangular-shaped pattern

an event of antagonism between miRNA and target mRNA.

The antagonsim pattern detection described herein is based on

large-scale analysis of paired miRNA and mRNA expression

profiles. The procedure requires a set of coupled miRNA and

mRNA expression measures from the same samples. The

expression profile of each miRNA-mRNA pair across samples is

scored for the presence of antagonism pattern. A representative

example of antagonism pattern observed in Ewing’s sarcoma data

between hsa-miR-20b and its target gene MYLIP is illustrated in

Fig.2. The example, based on an experimentally validated

interaction [30], also illustrates how the antagonism is not

properly detectable by correlation analysis with 5% significance

level. The antagonism pattern highlights an alternative relation-

ship between miRNA and target mRNA expression with respect to

linear regression. We consider this statistical signal as a good

indicator of real miRNA-target biological interaction.

The measure of antagonism is a particularly suitable method to

elucidate the role of miRNA regulation in tumoral diseases. In this

context, physiological processes of gene regulation are widely

altered. Tumor samples can present a high level of genomic

heterogeneity, with cancer specific changes in miRNA expression

and dysfunction of miRNA located in regions of chromosomal

instability [31,32]. To reveal how frequently the antagonism

pattern is observed in cancer related validated examples, we

applied our procedure to publicly available microRNA and gene

expression datasets corresponding to different tumor diseases and

we compared our results with a catalogue of experimentally

validated targets.

Later, we applied our method to elucidate the regulatory role of

miRNAs in Ewing’s sarcoma. This malignant pediatric tumor is

characterized by specific fusions between EWS and ETS family

genes [33,34]. In 85% of cases, EWS gene is fused to FLI1 [35].

This in-frame translocation creates the EWS-FLI1 chimeric

protein described as an aberrant transcription factor that

dysregulates specific target genes involved in tumor development

[36]. Since the expression of the EWS-FLI1 gene alone can change

cell phenotype from normal to tumorigenic in fully reversible and

controlled manner, this is an excellent system for understanding

the complex picture of deregulations happening in cancer cells.

The availability of high-throughput data for Ewing patients,

including transcriptome and miRNAs expression data, allows us to

infer new regulatory interactions involved in the EWS-FLI1

network and to clarify the impact of miRNA activity.

Results

Results Obtained on Simulated Datasets
A series of experiments was performed on simulated datasets to

test the antagonism pattern detection procedure. We generated

simulated expression-like datasets exhibiting a triangular-shaped

pattern. The aim is to simulate a set of expression profiles (xi,yi),
i~1,:::,N, where each profile (xi,yi) is a bidimensional vector with

N components corresponding to the gene and miRNA expression

values in the N samples. The triangular-shaped structure is

specified by choosing simulated values between 0 and 1, satisfying

the condition xizyi{1v0. We performed 1000 estimations of

antagonism pattern for each simulated dataset, varying the sample

number N from 20 to 100 and increasing the percentage of noisy

points (simulated values not satisfying the condition above) from

0% to 50% of the dataset (details about the simulation procedure

in Methods section).

The effect of two main variables was examined to determine

how they influence the assigned antagonism pattern p-value

(defined in Methods), namely the number of available samples N
for miRNA and mRNA expression measure and the precentage of

noisy data. In Fig.3 the p-value variation was plotted as function of

sample number for different noise levels. The described procedure

is able to recognize the antagonism pattern with decreasing p-

value according to the greater number of available measures and

to the decreasing noise level. The number of samples is critical to

detect the pattern. With less than 40 samples, the antagonism

relationship can not be determined with significant p-value. With

a sample number higher than 40, the antagonism pattern can be

detected with p-value v 0.05, tolerating up to 10% of noisy data.

Test on Experimentally Validated miRNA Targets
Appropriate evaluation of our proposed measure requires a set

of real positive controls (known and experimentally validated

targets). However, a limited number of bona fide miRNA targets

have been experimentally validated so far and they have been

Antagonism Pattern in Ewing’s Sarcoma

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41770



verified in various organisms and physiological conditions. We

collected a catalogue of experimentally validated miRNA-target

interactions from two main manually curated resources, namely

miRecords and miRTarBase [13,37]. Merging miRNA-target

pairs from these two databases we extracted a list of 1400

interactions verified in human, 265 of them associated to cancer

phenotype. We applied the antagonism pattern detection to

multiple available datasets of miRNA and gene expression profiles

from matched tumor samples and stem cell samples [38–41]

(Table S1 for details on the public datasets used in this study) in

order to investigate whether this pattern is observed in a certain

number of experimentally validated cancer related examples. We

also checked for linear anti-correlation pattern by systematic

correlation analysis applied to the same datasets.

To compare results of the two methods, a ranking based

evaluation was applied. We plotted the cumulative frequence of

true predicted targets (hits) as a function of the prediction rank for

the two methods (Fig.4). Results from different datasets have been

combined by taking the best rank for each predicted miRNA-

target pair. In the resulting plot, antagonism pattern outperforms

linear correlation at 10% FDR detecting roughly 4-times more hits

compared to linear correlation. Interestingly, a significant benefit

is observable for the combination of the two methods (merged

results), made by taking the best rank between the two methods for

each predicted miRNA-target pair. This shows that the two

patterns are likely to identify quite distinct sets of targets. Detailed

results obtained for experimentally validated targets are reported

in Table S2.

Antagonism Pattern Detection in Ewing’s Sarcoma
This study includes miRNA and mRNA expression data from

40 samples of Ewing’s sarcoma patients. We collected expression

levels of 267 miRNAs and 15651 mRNAs in 40 tumor samples

using Illumina human-6 V2 BeadChip and Affymetrix GeneChip

HG-U133A/HG-U133Plus2 oligonucleotide microarrays respec-

tively. Normalization and pre-filtering procedures have been

applied as described in Methods.

We performed pair-wise antagonism pattern detection to

evaluate potential regulatory interaction between each miRNA

and each transcript. To determine whether the observed

antagonism pattern is significant, the p-value was obtained by

using permutation method described in Methods section. In

simulated experiments with 40 samples, p-values range between

10{3 and 0.25 depending on the noise level. In the analysis of

Ewing’s sarcoma data, we evaluated the False Discovery Rate

(FDR) by using Benjamini-Hochberg method [42], setting a FDR

threshold of 2% (see Fig.S1). Once the antagonism pattern p-value

between the miRNA i and the transcript j was lower then the fixed

threshold (p-valuev0:01), the regulatory relationship between i

and j has been inferred.

Significant antagonism pattern has been detected for 7994

miRNA-mRNA pairs, creating a network linking 264 miRNA

with 3747 different genes. Almost every miRNA in the initial

dataset presents at least one link in the network. Hence, the

combinatorial interactions among miRNAs and their targets are

probably necessary to specify more precisely the co-regulating

nodes and the set of affected targets of each miRNA. We

characterized the reconstructed network by the connectivity

distribution of miRNAs and genes, defining a list of miRNA hubs

and a list of target hubs (details in Methods). According to the

outlined distributions, the list of miRNA hubs and target hubs

have been compiled and reported in Tables S3A and S3B

respectively.

The observation of significant antagonism pattern in expression

data can rise from secondary effects rather than from direct

regulatory relationships. As most expression-based inference

methods, the antagonism pattern detection cannot distinguish

between miRNAs that actually regulate a gene (that is, that have

a direct causal effect) and miRNAs that show significant

antagonism pattern with a gene due to indirect effects. To address

this issue and verify that the antagonism pattern captures

information about miRNA-gene reliable interactions, two valida-

tion analysis have been carried out. In the first one, we verified

that miRNA targets identified by antagonism pattern are enriched

for binding sites with extensive 59 miRNA seed pairing in their

39UTR. A second independent strategy relates to evaluate

significantly enriched GO categories for the target sets associated

to each miRNA.

Figure 1. Two different relationships can be distinguished between the expression of a given miRNA and a target. In the first case,
miRNA regulation is the main visible effect on target expression and the observed pattern is linear (1a). In the second situation, the effect of miRNA is
modulated by other additional factors and the resulting pattern is non linear (1b).
doi:10.1371/journal.pone.0041770.g001
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Seed Enrichment
The principle of 59 seed pairing in miRNA-target binding is well

supported by experimental data. Large scale transcriptomics and

proteomics studies have recovered gene sets that are enriched in

seed matches [10–12,43]. We verified that miRNA targets

identified by antagonism pattern are enriched for binding sites

with extensive 59miRNA seed pairing in their 39UTR. All possible

8-mer, 7-mer and 6-mer seeds complementary to the first eight

nucleotides of the mature miRNA sequence were tested. The seed

enrichment is illustrated by the histogram of absolute seed number

observed in antagonism pattern predicted targets compared to the

randomized miRNA-target pairs (Fig.5). The horizontal axis shows

total enrichment for different seed length definition. Randomiza-

tion of the predicted miRNA-target pairs, performed by shuffling

the assignment of miRNAs to their antagonism-based targets,

allows the 39UTR nucleotide composition and length to be

preserved (details about the randomization procedure in Methods

section). Significant enrichment is obtained for every seed

definition (p-values reported in Table S4). This implies that the

antagonism pattern captures information about miRNA-genes

potentially linked by post-transcriptional regulatory interactions.

Figure 2. A representative example of the antagonism pattern relationship observed in real data between expression of hsa-miR-
20b and its target gene MYLIP (Pearson r=20.303, PV=0.06, Antagonim PV=0.048).
doi:10.1371/journal.pone.0041770.g002

Antagonism Pattern in Ewing’s Sarcoma
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Validation with Gene Ontology
To assess the biological relevance of the identified interactions,

we tested for enrichment of miRNA targets involved in a specific

process or pathway. The assumption that some miRNAs function

as master regulators by downregulating a dense network of genes

in the same pathway is supported by several experimental works

[44–46]. This assumption was first used to investigate changes in

mRNA after overexpression of muscle-specific miR-1 and brain-

specific miR-124 [43]. Remarkably, transfection of miR-1 into

HeLa cells shifted their gene expression profile toward that of

muscle cells, whereas transfection of miR-124 shifted the profile

toward that of brain cells. Gene ontology and interactome analysis

can be used to analyze lists of candidate target genes and some

bioinformatics tools have been developed for this purpose [27,47].

following the reasoning in [9,48], if the antagonism pattern can

successfully identify functional miRNA targets, then the set of

predicted targets for each miRNA should have more consistent

Gene Ontology (GO) annotations. To verify this, we downloaded

annotations from the GO Database [49]. For each miRNA, we

created a target set based on antagonism pattern. We scored the

GO enrichment within the target sets using hypergeometric test

for all GO categories and reported statistically significant results in

Table S5. To exclude the hypothesis that our over-represented

GO terms can derive from spurious results, we repeated the

analysis using random target sets obtained by shuffling miRNA-

target relationships. To randomize the original newtork, we

randomly permuted target node labels, keeping the miRNA node

connectivity unchanged. P-value histogram reported in Fig.S2

shows that no GO term is enriched in random target sets

according to the p-value threshold set in the real case.

In a subsequent step, we reconstructed the target sets associated

to each miRNA taking into account both antagonism expression

pattern and miRNA seed occurrence. Combining these two

independent criteria, based respectively on expression profile

analysis and DNA sequence information, we expect to increase the

reliability of predicted direct targets and to reduce false positive

predictions. We scored GO enrichment within the newly defined

target sets and report statistically significant results in Table S5.

The fact that a large part of GO terms were confirmed by this

combined analysis is an important argument in favor of their

potential biological relevance. The predicted new regulatory

interactions represent reliable miRNA targets for experimental

Figure 3. Antagonism pattern p-value variation as function of sample number for different level of noise (results obtained on
simulated datasets).
doi:10.1371/journal.pone.0041770.g003
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validation. A comprehensive table with results of antagonism

detection and seed enrichment for all genes and miRNAs included

in the analysis is provided in Table S6.

Comparison of Antagonism Pattern Detection to
Correlation Analysis
Multiple studies report systematic correlation between expres-

sion level of miRNAs and their target genes. Correlation of

expression profiles is helpfully used to assist identification of

miRNA-mRNA regulatory relationships [9,22–24]. Antagonism

pattern is expected to point out a different relationship between

miRNA and target mRNA expression compared to linear

regression. To evaluate the peculiarity of antagonism detection

method, the reconstructed network obtained for Ewing’s sarcoma

expression data has been compared to the correlation-based

network inferred from the same dataset.

Pair-wise correlation coefficients have been computed for the

same dataset of 267 miRNAs and *15000 transcripts previously

analyzed by antagonism pattern procedure. The procedure for

calculating the correlation is described in Methods.

Since antagonism pattern is expected to particularly highlight

miRNA degradation effect on the target mRNA, we compared the

reconstructed network based on antagonism pattern to correla-

tion-based network, only considering the negatively correlated

component. In order to obtain two networks of comparable size,

we increased correlation p-value threshold up to FDR~0:1. The
result included 7040 negatively correlated miRNA-mRNA pairs,

with 246 miRNA linked to 3335 different genes. The common

links with the antagonism-based network are 1245 (18%).

Following the same procedure used for antagonism network, we

identified miRNA hubs and target hubs in the correlation network.

A set of 22 miRNA hubs (61%) are in common between the two

networks (P~10{4, Fisher’s exact test) and it has been reported in

Table S7. On the contrary, common target hubs for the two

networks are less then 18% (P~0:2, Fisher’s exact test). The two

networks are likely to share the same miRNA hub regulators, while

identifying largely distinct set of targets.

GO enrichment analysis has been repeated for correlation-

based target sets, to evaluate the hypothesis that the two compared

methods reveal complementary target sets consistently associated

to common biological processes. The results of GO analysis for

correlation-based targets are reported in Table S5.

We completed the comparison between antagonism-pattern and

correlation-based miRNA-mRNA association, analyzing the seed

enrichment for miRNA targets identified by correlation. The

Figure 4. The cumulative frequence of predicted true interactions (hits) plotted as a function of the prediction rank obtained by
antagonism pattern and by linear anti-correlation. Merged results show the benefit obtained by the combination of the two methods,
obtained by taking the best rank between the two methods for each predicted miRNA-target pair.
doi:10.1371/journal.pone.0041770.g004

Antagonism Pattern in Ewing’s Sarcoma
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histogram in Fig.5 shows the number of seeds for targets predicted

by the two different methods and for a randomly created target set.

A comparable seed enrichment is obtained for targets predicted by

the two methods. Each group significantly differs from the random

group, while there is no significant difference in the enrichment

obtained by the two compared methods. Interestingly, seed

enrichment for positively correlated targets is equally significant

and comparable with negatively correlated targets and antago-

nism-based targets.

Discussion

In this study we propose a novel statistical measure to integrate

large-scale expression data of miRNAs and protein-coding

mRNAs, in order to infer miRNA-target interactions. The basic

assumption is that miRNA-target expression profile can create

a recognizable non-linear pattern corresponding to the statistically

under-represented event of simultaneous miRNA and target

mRNA elevated expression. This triangular-shaped pattern, that

we defined as antagonism pattern, points out an alternative and

complementary relationship between miRNA and target mRNA

expression with respect to linear regression. The measure of

antagonism can be considered a particularly suitable method to

elucidate the role of miRNA regulation in the context of tumor

diseases, where samples can present a high level of genomic

heterogeneity and cancer specific changes in miRNA expression.

Here we demonstrated the effectiveness of this statistical measure

as a good indicator of real miRNA-target biological interaction. A

dedicated computational procedure for antagonism pattern de-

tection has been developed and tested using realistic synthetic

datasets. The performance of the provided procedure has been

assessed, taking into account the variable sample size as well as

noise level in expression measures. Once the conditions to

successfully evaluate the antagonism pattern have been de-

termined, we tested the performance of the proposed measure

on a catalogue of experimentally validated miRNA-target

interactions and we compared it to the linear anti-correlation

measure. The percentage of real interactions detected by the

antagonism pattern is slightly higher than linear anti-correlation,

supporting the effectiveness of this novel measure. Furthermore,

we observed that the two patterns are likely to identify quite

distinct sets of targets. MiRNA-target networks can be viewed as

composed of interactions reflecting two alternative patterns in

their expression profiles, depending on the influence of additional

factors. An interesting work direction can be to give a mathemat-

ical description of these two observed patterns showing that the

linear relationship between miRNA-target expression can change

towards a triangle-shaped function depending on the strength of

additional influence factors. Another direction to explore is how to

combine the antagonism pattern detection with the linear

correlation. An option would be to extend the antagonism pattern

detection procedure including the measure of the opposite

‘‘agonist’’ pattern with a new parameter. The distance between

the two parameters (antagonist versus ‘‘agonist’’ pattern) could

provide a measure of the linear dependence.

We used the antagonism pattern detection to analyze miRNA

and mRNA expression profiles from Ewing’s sarcoma patient

samples. Through the antagonism pattern detection, the global

miRNA-gene regulatory network has been inferred. Connectivity

properties of this reconstructed network allow us to specify the co-

regulating nodes and the set of affected targets of each miRNA. To

verify that the antagonism pattern captures information about

miRNA-gene reliable interactions, two validation analysis have

been carried out. In the first one, we verified that miRNA targets

identified by antagonism pattern are enriched for binding sites

with extensive 59 miRNA seed pairing in their 39UTR. Results

show highly significant seed enrichment compared to the

randomly permuted miRNA-target dataset. This implies that the

antagonism-based predicted pairs are consistently enriched for

Figure 5. Absolute seed number observed in antagonism pattern predicted targets, in positively and negatively correlated targets
and in randomized data sets.
doi:10.1371/journal.pone.0041770.g005
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potential post-transcriptional regulatory motifs. A second in-

dependent validation has been performed by analyzing signifi-

cantly enriched GO categories for the target sets associated to each

miRNA. Results allow us to determine important biological

functions potentially mediated by miRNA regulation in Ewing’s

sarcoma.

We observed over-representation of GO terms describing

several fundamental processes involving miRNA regulation. The

highest enrichment was obtained for the target sets associated to

hsa-miR-1 and hsa-miR-206. GO enriched terms for these target

sets are related to sarcomere, myofibril and contractil fiber part.

Consistently, hsa-miR-1 and hsa-miR-206, together with hsa-miR-

133 (also included in our GO analysis results) are known to be

muscle specific expressed, to regulate sarcomere organization and

to contribute to rhabdomyosarcoma development [50–52]. Since

the Ewing’s sarcoma samples are surgically extracted from patient

bones, the observed results could suggest contamination of patient

derived samples by tumor neighbouring tissues and non-tumoral

cells. The Lim et al study [43] showed that hsa-miR-1 preferentially

downregulate nonmuscle genes in HeLa cells. The observation of

muscle-related gene enrichment in hsa-miR-1 and hsa-miR-133

targets can be explained by a second mode of target regulation in

which some muscle genes primarily regulated at the transcriptional

level may be tuned by functional miRNA target sites [53]. In

agreement with previous studies showing that hsa-miR-1 and hsa-

miR-133 actively shape gene expression patterns in muscle tissue

regulating sarcomeric actin organization [52], our GO analysis

pointed out a number of actin-related and actin-binding proteins

among hsa-miR-1 and hsa-miR-133 targets.

Besides muscle specific terms, GO annotations strictly related to

basal mechanisms of cancer were identified. Three miRNAs (hsa-

miR-29b, hsa-miR-127 and hsa-miR-369-3p) were linked to targets

involved in cell cycle and mitotic spindle organization. The

involvement of miRNA-29b in different human cancers is reported

in multiple studies [54–56]. The described regulatory circuitry NF-

kappaB-YY1-miR-29, whose disruption contributes to rhabdomyo-

sarcoma, suggests that miR-29 acts as a tumor suppressor. The

miR-127 also exhibits tumor suppressor activity by targeting BCL6

proto-oncogene and it is silenced in various cancer cell lines [57].

According to our knowledge, hsa-miR-369 involvement in cancer is

not yet documented, while it is known to play a peculiar role in

translational efficiency on cell cycle exit under growth arrest

condition [58]. It is interesting to notice that hsa-miR-127 and hsa-

miR-369 are expressed as part of the same miRNA cluster in the

human Dlk1/Gtl2 domain at chromosome 14q32. This domain is

expressed in a large non-coding transcriptional unit which is

altered in different tumor diseases and in aggressive ovarian cancer

[59,60]. Two other miRNAs included in our GO results belong to

the same genomic domain (hsa-miR-379 and hsa-miR-410). Their

targets are associated to extracellular-matrix (ECM) and collagen.

Matrix remodeling and collagen protein accumulation are

important mechanisms during bone tissue formation from

mesenchymal cells. Numerous gene products involved in the

cytoskeleton and the ECM contribute to describe mesenchymal

stem cell features of Ewing tumors [61]. Recent studies describe

miRNA involvement in osteoblast phenotype regulation and they

point out miR-29b role in osteoblasts differentiation [46,62]. A

large group of miRNAs in our results were associated to ECM

related functions, with highest enrichment for the target sets

associated to hsa-miR-148b, hsa-miR-30d, hsa-miR-324-3p, hsa-miR-

379, hsa-miR-410. The role of miR-30 in matrix remodeling is

already confirmed by experimental evidences and one predicted

target gene (CTGF) has been validated as direct target of this

miRNA [63]. Finally a group of miRNAs is involved, according to

our GO analysis, in regulatory mechanisms such as RNA-

processing, RNA-splicing, protein ubiquitination.

In the final part of this work, we compared antagonism-based

results obtained in Ewing’s sarcoma study with results obtained by

linear regression analysis. The antagonism-based network ob-

tained from Ewing’s sarcoma data has been compared to the

correlation-based network inferred from the same dataset. This

comparison points out that the two methods are likely to

reconstruct networks with the same miRNA hub regulators but

largely distinct target genes. A list of common miRNA hubs,

predicted as relevant regulators in Ewing’s sarcoma, has been

provided. Results of GO analysis for correlation-based targets are

consistent with those obtained from antagonism pattern predic-

tions. As for antagonism-based gene sets, significant association to

sarcomere-related terms is obtained for hsa-miR-1, hsa-miR-206

and hsa-miR-133. In common with antagonism-based GO analysis,

we found strong association of hsa-miR-30d target set to ECM

related terms. Interestingly, the experimentally validated target

CTGF, identified by antagonism pattern, is not included in the

correlated gene set. Other three miRNA target sets are strongly

enriched for ECM and collagen terms: hsa-miR-152, hsa-miR-199b

and hsa-miR-145. The latter, together with the co-transcribed hsa-

miR-143, are known to be deregulated in several tumor types and

they both act as tumor suppressor genes in Ewing’s sarcoma as

well as in human gastric cancer [64,65]. The correlation analysis

reveal some miRNAs strongly enriched for cell-cycle related terms:

hsa-miR-17, hsa-miR-484, hsa-miR-93 and hsa-miR-9. The hsa-miR-

17 is part of the well studied mir-17–92 cluster described as human

oncogene. The hsa-miR-9 is known to be involved in human gastric

carcinoma as well as in Huntington’s disease [66,67].

In agreement with analogous large-scale analysis of miRNA-

mRNA correlation, we found that positive correlations account for

the majority of significantly correlated pairs (67% of links). This

effect can be partially explained by miRNA-mRNA genomic co-

localization as well as by intronic miRNAs showing correlated

expression pattern with their host genes [68]. Another intriguing

hypothesis suggests that high positive correlation could be an effect

of spatially reciprocal expression domains of miRNAs and their

targets in various types of tissues composing patient samples.

Recent analysis of large collections of miRNA and gene expression

profiles from different types of tissues support the evidence that

miRNA and their targets are expressed in a largely non-

overlapping manners (spatially or temporally) [69,70]. This

mutually exclusive expression, coordinated by common transcrip-

tional regulators, confer robustness to gene expression program,

ensuring tissue identity. Consistently, architectural features of the

mammalian miRNA regulatory network reveal that the co-

ordinated transcriptional regulation of a miRNA and its targets

is an abundant motif in gene networks [71–73].

The antagonism based network has been compared only with

the Pearson correlation network. There are methods that use non-

parametric correlation or mutual information for assessing non-

linear dependences in expression data. The major problem in

mutual information analysis of biological data is the reliable

estimation of entropy-like quantities from small datasets. Mutual

information is difficult to estimate accurately with limited amount

of noisy samples. The impact of the entropy estimation on the

quality of the inferred transcriptional networks has been recently

studied taking a minimum of 50 required samples [74]. Although

this type of analysis is more and more used with the availability of

large biological datasets, it is not applicable to study non-linear

relationships in datasets of limited size.

In summary, the antagonism pattern detection can be

successfully used to integrate large-scale expression data of miRNA
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and protein-coding mRNAs, in order to infer crucial miRNA

regulators and miRNA-target interactions. The antagonism

pattern can identify alternative relationship between miRNA

and target mRNA expression not properly detectable by

correlation analysis. Indeed, it can be considered a valid statistical

approach to discover new insights in the miRNA regulatory

mechanisms.

Materials and Methods

Ethics Statement
Ethics approval was provided by the locally appointed ethics

committee from the Institut Curie, Paris, France. All participants

involved in the present study provided written informed consent.

miRNA and mRNA Expression Data
Total RNAs issued of 40 Ewing tumors were used for mRNA

and miRNA microarray analyses. The mRNA data were collected

using the Affymetrix GeneChip HG-U133A and Affymetrix

GeneChip HG-U133Plus2. We normalized and combined in-

formation across different platforms using the standard functions

provided by Bioconductor packages. We used the combineAffy-

Batch function in the matchprobes library to merge data from

HG-U133A and HG-U133Plus2 GeneChips and we applied

RMA normalization to the merged dataset. The miRNA

expression profiling panel was performed by Integragen (Integra-

gen SA, Evry, France) using Illumina human-6 V1 BeadChip

(based on miRbase release 9.1) and average normalization method

have been applied according to the manufacturer’s suggested

procedure [75]. The average normalization method computes

a global scaling factor that is applied to all probes and all arrays.

The normalized intensities and detection p-values were exported

and further analyzed using Bioconductor packages. MiRNA and

gene expression data are available from the NCBI Gene

Expression Omnibus (GEO), accession number GSE37372.

Data Filtering
Before running antagonism pattern detection and correlation

analysis, we filtered low abundant miRNAs and transcripts in

order to gain more confidence in the results. We also filtered those

data with little variation across the 40 samples because the absence

of high variation will result in correlations mainly due to noise.

Variation across samples has been evaluated by IQR, using the

median IQR as cutoff. These criteria left 267 miRNAs and 15651

probe sets for the analysis.

Algorithm to Detect the Antagonism Pattern between
miRNA and Target mRNA
The proposed approach requires as input the genome-wide

expression profile of miRNAs and mRNAs from the same set of

samples. As final result of our analysis we obtain miRNA-mRNA

pairs showing statistically significant antagonism pattern, which we

consider as potential miRNA-target interactions.

The antagonism detection procedure can be described as

follows. Once converted miRNA and mRNA expression values to

Z-scores using mean and standard deviation across samples to

make expression measures comparable, we count the number of

points in the region below the diagonal identified by the estimated

intercept parameter b as in equation 1:

Nij(b)~
XN
s~1

nsij (b) with nsij (b)~
1 if b{xsi§xsj

0 elsewhere

(
ð1Þ

where xsi and xsj are Z-scores transformed expression intensities

of miRNA i and mRNA j in the sample s, N is the total number of

samples and b the estimated intercept parameter value.

We define the antagonism coefficient Aij between miRNA i and
mRNA j as such Nij(b) with intercept parameter value b

maximazing the Kolmogorov-Smirnov statistic:

Aij~Nij(B~ arg max
b[½{?,z?�

(Nij(b){rij(b))) ð2Þ

where rij(b) is the reference antagonism coefficient obtained by

randomly shuffling sample values (null distribution). This null

distribution has been generated by randomly shuffling one

hundred times the components of miRNA i and mRNA j
expression vectors. In the null model defined in this way, the data

has the same distribution of values as the original one but the

association between the miRNA and the mRNA expression is

random. This randomization is applied for every possible value of

the intercept parameter b in an exhaustive search space to find the

best value B. Setting of the parameter b is specific for each (i,j).
The statistical significance of the antagonism coefficient Aij is

assessed by permutation-based p-value (PV ). The antagonism

coefficient of randomly shuffled sample values rij(B) has been

computed for Np =1000 permutation rounds and the empirical

distribution of rij(B) is used to approximate the null distribution.

The antagonism pattern PV has been obtained as the following

ratio:

PV (Aij)~

PNp

n~1

Rijn(B)

Np

with Rijn(B)~
1 if rijn(B)§Aij

0 elsewhere

�
ð3Þ

Once PV (Aij) is below the fixed threshold, the antagonism

relationship between miRNA i and mRNA j is inferred. PV

threshold is set according to the FDR estimated by Benjamini-

Hochberg method [42].

The JAVA code implementing the algorithm is available on

request from the authors.

Simulation of Expression Data
To generate expression-like datasets exhibiting a triangular-

shaped pattern, we created bidimensional vectors (xi,yi),
i~1,:::,N, with N corresponding to the number of samples, xi,
yi uniformly drawn from the triangular region where xi,yi[½0,1�
and xizyi{1v0. One thousand simulated datasets have been

generated for each sample size N from 20 to 100. We tested six

noise levels ranging from not-noisy to very noisy data. Noise has

been introduced as an increasing percentage of points not

satisfying the condition above. These noisy points are uniformly

drawn from the triangular region where xi,yi[½0,1� and

xizyi{1w0. For each noise levels, we simulated 1000 datasets

and detected the antagonism pattern using procedure identical to

the actual data analysis.

Randomization Procedure for Seed Enrichment Analysis
To generate randomized miRNA-target pairs, the assignment of

miRNAs to their antagonism-based targets has been randomly

permuted. This procedure allows us to obtain randomized

miRNA-target pairs with the same 39UTR nucleotide composition

and length as the original pairs. MiRNA-target assignments has

been permuted by a shuffling ubiased algorithm implemented in

PERL, so that every permutation is equally likely. Randomized
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miRNA-target pairs have been generated 1000 times and 8-mer,

7-mer and 6-mer seed counts have been computed at each time.

We tested the significance of the 8-mer, 7-mer, and 6-mer counts

obtained for real data using as null model a normal distribution

with mean and variance obtained in randomized count data.

Correlation Analysis
The expression profiles of 267 miRNAs have been correlated

with changes in mRNA expression for all 15651 transcripts

according to Pearson coefficient. When dealing with a limited

group of 40 patient derived samples, the presence of outliers could

be a crucial problem affecting the correlation analysis. We applied

a leave-one-out strategy to identify frequent non-consistent

measures in transcripts and miRNA expression data. Outliers

are recognized as measures that dramatically change the

correlation estimation. The correlation coefficient between the

miRNA i and the transcript j is evaluated N times, eliminating at

each step one sample. Assuming normally distributed coefficient

values, we consider as outliers that samples that, if eliminated, give

a coefficient observation that deviates by twice the standard

deviation or more from the mean. This procedure allows us to

correct 90% of the correlation coefficients, obtaining more robust

correlation estimations. We evaluated the FDR by using the

Benjamini-Hochberg method [42]. Fixing a FDR level of 0.1, we

obtained a correlation network including 3335 different genes and

264 miRNAs (only negative correlation has been considered in this

network).

Hub Analysis
The reconstructed antagonism-based network has been char-

acterized by the connectivity distribution of genes and miRNAs, in

order to identify miRNA hubs (miRNAs linked to a high number

of genes in the networks) and target hubs (genes linked to a high

number of miRNAs). Using a thresholding and unweighted

procedure to define the connectivity, we sum the number of

statistically significant links assigned to each node i in the network

(according to previously fixed threshold):

Ci~#fj : Aijwthg ð4Þ

where th is the fixed PV threshold. Then we reconstructed the

connectivity distributions of miRNA nodes and target nodes

separately. We compared the real distributions with those obtained

by the antagonism-based network computed by randomly

shuffling sample values (randomized data network). MiRNA hubs

were defined as miRNA nodes with Ci greater than the 75th

percentile of the maximal value in the randomized data network

distribution. Target hubs have been extracted in analogous way.

According to this procedure, miRNA hubs were determined as

miRNAs targeting more than 614 genes (providing a list of 82

miRNA hubs) and target hubs were determined as genes which are

targeted by more than 16 miRNAs (there were 3631 such genes).
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