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ABSTRACT

Dramatic progress in the development of next-
generation sequencing technologies has enabled
accurate genome-wide characterization of the
binding sites of DNA-associated proteins. This tech-
nique, baptized as ChIP-Seq, uses a combination
of chromatin immunoprecipitation and massively
parallel DNA sequencing. Other published tools
that predict binding sites from ChIP-Seq data
use only positional information of mapped
reads. In contrast, our algorithm MICSA (Motif
Identification for ChIP-Seq Analysis) combines this
source of positional information with information on
motif occurrences to better predict binding sites of
transcription factors (TFs). We proved the greater
accuracy of MICSA with respect to several other
tools by running them on datasets for the TFs
NRSF, GABP, STAT1 and CTCF. We also applied
MICSA on a dataset for the oncogenic TF
EWS-FLI1. We discovered >2000 binding sites and
two functionally different binding motifs. We
observed that EWS-FLI1 can activate gene tran-
scription when (i) its binding site is located
in close proximity to the gene transcription start
site (up to ~150 kb), and (ii) it contains a microsat-
ellite sequence. Furthermore, we observed that
sites without microsatellites can also induce regu-
lation of gene expression—positively as often
as negatively—and at much larger distances (up
to ~1 Mb).

INTRODUCTION

The appearance of next-generation sequencing techno-
logies has propelled forward the development of new tech-
niques among which ChIP-Seq has become an important
method for genome-wide discovery of binding sites for
DNA-associated proteins and in particular for TFBSs.
ChIP-Seq consists of the immunoprecipitation of
protein—DNA complexes followed by massively parallel
sequencing of short ends of immunoprecipitated DNA
(1-3). This technique succeeded the ChIP-on-chip tech-
nique (4) and has nearly replaced the latter because of
the increased accuracy in identification of TFBSs (2).

At the completion of a ChIP-Seq experiment, millions
of short (~35-50 bp) directional DNA tags are obtained,
which can be positioned or aligned to the reference
genome for the sample organism (Supplementary Figure
S1). Each short tag represents an extremity of a longer
DNA fragment (~200-400 bp depending on the experi-
ment) isolated from the immunoprecipitation. Thus, in
the analysis of the short representative tags, it is important
to take this experimental fact into consideration to
identify the full length of the original fragment that gave
rise to the tag. By extending each tag, it is then possible to
identify areas of overlap, which represent the location of
the protein binding event. The density profile of DNA
fragment coverage can then be calculated and ‘peaks’ cor-
responding to putative binding sites can be extracted. This
idea was elegantly implemented in the FindPeaks software
(5). However, the accuracy of peak calling can be consid-
erably improved by incorporating information about
genomic sequences of peaks in addition to coverage
depth information.
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In this article we present an algorithm implemented in
the MICSA software (Motif Identification for ChIP-Seq
Analysis) that is based on the idea that functional binding
sites of transcription factors (TFs) should contain a con-
sensus motif (or a set of motifs). Consensus motifs are the
composite sequences of DNA for which a DNA-binding
protein, such as a TF or restriction enzyme, has a high
affinity. Such motifs can be identified from the small
subset of peaks with a high DNA fragment coverage.

The MICSA algorithm is innovative in the context of
ChIP-Seq data analysis for simultaneous: (i) de novo
TFBS motif identification and (ii) functional binding site
prediction using information about motif occurrences in
peaks along with coverage depth information. Here, motif
identification is not a post-processing step as in other
ChIP-Seq analysis pipelines (6) but a key element which
allows keeping even low peaks if they have a strong motif
occurrence.

Since MICSA checks for motif occurrences in all peaks
including those with very low coverage depth, there is no
need in the explicit selection of threshold on DNA tag/
fragment coverage. The only parameter that remains to be
specified is the maximal number of expected false positive
hits among selected peaks or the maximal false discovery
rate (FDR).

Using the procedure developed by Kharchenko et al.
(7), we compared the peak identification performance of
MICSA and 10 other published tools (5-14). The dataset
selected for the comparison was generated by Johnson
et al. (2) for the neuron-restrictive silencer factor
(NRSF). MICSA showed a considerable increase in the
performance over 10 other approaches. To increase the
statistical basis we performed the same comparison pro-
cedure for selected algorithms on other ChIP-Seq datasets,
including those for GA-binding protein (GABP) (10),
signal transducer and activator of transcription 1
(STAT1) (9) and CCCTC-binding factor (CTCF)
[ENCODE project, the Broad Institute and the Bradley
E. Bernstein lab at the Massachusetts General Hospital/
Harvard Medical School (15)]. The results of the compari-
son indicated that use of MICSA for ChIP-Seq data
analysis allows us to significantly reduce the number of
false positive predictions for TFBSs.

The MICSA package was also used on our ChIP-Seq
data (16). Immunoprecipitation was performed with a
specific antibody directed against the oncogenic TF
EWS-FLII (17) to obtain biological insight into the func-
tioning of this TF, which is known to be the major
oncogene in Ewing sarcoma. Using our technique, based
on motif identification, we confirmed the existence of two
consensus motifs, one representing a (GGAA),, microsat-
ellite, and the second containing the RCAGGAARY
consensus sequence (16) (R = A/G, Y = T/C). Further
analysis of the EWS-FLII data, together with expression
arrays, suggested that EWS-FLII bound to (GGAA),
microsatellites can activate transcription of neighboring
genes; while EWS-FLI1 bound to RCAGGAARY sites
may, depending on genes, activate or repress transcrip-
tion. Our analysis confirmed five known direct target
genes of EWS-FLI1 and has also predicted many new
genes that are putatively regulated directly by EWS-FLII.
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The algorithm we developed is pioneering in its use of
motif information when predicting sites of specific bind-
ing for TFs from ChIP-Seq data. It allows identification of
several motifs which, as shown at the EWS-FLI1 example,
can possibly carry different biological function.

MATERIALS AND METHODS
Candidate peak identification

Candidate peaks are identified by FindPeaks (5) which is
included in the MICSA package. The java class
DeleteRegions is then used to eliminate peaks in satellite
regions which are often a source of noise in ChIP-Seq
data. We propose to use blacklist regions masked as
centromeric repeats by RepeatMasker (http://www.repeat-
masker.org) in UCSC genome browser (18). Files are
provided in the MICSA package.

Files with candidate peaks are then processed by the
java class FilterPeaks in order to filter out false peaks
occurring both in ChIP and control datasets because of
biases due to PCR errors. MICSA needs to be supplied
with a reference genome from which it would extract
DNA sequences of peaks.

Classes

The whole set of candidate peaks is decomposed into
classes. Class C; contains regions from which i overlapping
DNA fragments were immunoprecipitated during ChIP
experiment. For peaks from class C; the probability p; to
be a false binding site can be evaluated using control data:
p: = min{l,(#peaks in control class C*)/(#peaks in ChIP
class C;)}. Peaks highly enriched in mapped DNA tags are
likely to be true positives, while peaks with low DNA tag
coverage can probably be false since lots of peaks with the
same values of coverage could be identified in the control
data. Thus, p; will be smaller for higher values of i.

Here our hypothesis is that the normalized number of
peaks in the control dataset is an estimate of the number
of false binding sites in our ChIP dataset. For the same
purpose, other methods use, for example, Monte—Carlo
simulations (5) or Poisson approximation (8). We believe
that using the control data is more appropriate in this case
since it takes into account the sequencing bias and guar-
antees not to underestimate the number of false binding
sites.

Motif identification

We use a subset of the highest peaks from classes with zero
p; value to identify over-represented motifs. Moreover, we
do not consider whole peak sequences but only sequences
at the location of the maximal enrichment in each peak.
The MEME motif finding tool (19) is then run automat-
ically on this set of sequences in order to identify the most
over-represented motif. Sequences from this set which do
not contain the identified motif are subject to the second
MEME run. Finally, one uses the top significance motifs,
each in the form of a position-specific scoring matrix
(PSSM) with the minimal threshold value, which occur
in the areas of maximal enrichment of the high peaks.
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It is only one motif in the case when the protein does not
undergo allosteric modifications which could change its
binding motif, e.g. distance between its half-sites; one
obtains more than one motif in the case when such
change is possible. A large part of genome is scanned to
yield the real frequencies of extracted motifs.

Optimization

In what follows below, we consider separately peaks on
different chromosomes. For motif M and class C; we will
call peaks which have an occurrence of M with a PSSM
score above T),; within the top peak area defined by
(h-6a1,), where h is a peak height, i.e. maximal number
of overlapping DNA fragments coming from this region.
The question is how to choose T',; and §,,; for each par-
ticular class. It can be done through the calculation of
expected number of false binding sites selected by the
peak calling procedure given the null hypothesis of the
Markov(0) model for nucleotide distribution in peaks.
For each pair (Ty; 84, and the class C; we can
evaluate the expectation E(T)s; 8y ;) of number of
peaks called by chance. This value is equal to a sum of
the motif P-values of each peak in C;. The motif P-value
means a probability to observe a motif by chance in
a sequence of given length. We use the Poisson ap-
proximation for the  P-values: P-value ~1-(1-
Motif Probability)Teersth = MotifLength + 1 Here  the
motif probability, which is the probability of observing a
motif occurrence above a given PSSM threshold on a
given position, is considered to be equal to the genomic
frequency of the motif with the given threshold. Finally,
since p; is the estimate of the probability of any given peak
in class C; to be a false binding site, the product E(T ;.
Sar.i)-p;: estimates the total number of false binding sites
which would be called by this selection procedure. The
number of selected peaks S; in class C; also depends on
(T'ar.i. 8ar.0)- Our optimization procedure maximizes %.S; so
that ZEp, stays below the predefined threshold on the
total number of false positives.

Score calculation

A score is reported for each peak selected during the op-
timization procedure. It is equal to the product of p; of
corresponding class and the smallest motif P-value among
motif P-values of all motif occurrences in the peak region.
The second term is small if the motif is situated near the
location of the maximal enrichment of the peak and its
sequence is close to the consensus.

Additional methods

Information about ChIP-Seq library construction and
sequencing for EWS-FLII data was published in (16).
More detail on the optimization procedure is available
in Supplementary Data.

Software availability

The MICSA algorithm is implemented as a Java package
with a graphical user interface in Java. It is freely available
for nonprofit use at http://bioinfo-out.curie.fr/projects/
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micsa/. All data presented in this study (mock control
and ChIP-Seq data, and peak call coordinates) are avail-
able at the same website.

RESULTS
Theoretical framework

The key idea of MICSA is to use the information about
TFBS motif occurrences to predict true binding sites from
ChIP-Seq data. The MISCA workflow consists of four
main steps (Figure 1): (i) identify all candidate peaks, (ii)
identify TFBS motifs from a small subset of peaks, (iii)
find motif occurrences in candidate peaks, and (iv)
optimize the peak calling output by calculating statistics
that take into account both motif occurrence and depth of
coverage information. The last step roughly corresponds
to filtering out of insignificant peaks without motif
occurrences.

The first step of the MICSA algorithm consists in iden-
tifying all regions that are enriched in mapped DNA tags
(Figure 1). Such areas of enrichment, also called peaks,
represent potential binding sites for the protein of interest
and can often exceed tens of thousands of locations. To
detect these regions we use the previously developed tool
FindPeaks (5). One of the reasons that we use FindPeaks
is that it generates UCSC compatible custom “WIG’ track
files from aligned-read files. We calculate the false discov-
ery rate (FDR) predictor to estimate the proportion of
false peaks to called peaks for each dataset. FDR is
estimated using both the ChIP and mock control data.
Generally, the FDR estimate for high peaks (peaks with
greater depth of DNA tag or fragment coverage) is smaller
than for low ones since the former are less likely to occur
randomly or in control data.

The second step is de novo motif identification. DNA
sequences of peaks are extracted from the reference
genome using position information. In order to limit the

Mapped DNA tags Identify candidate peaks

in ehlP and control data

Remove peaks ] ' \
occurring in satellite
and/or centromeric

regions

1
Remove peaks |
identified both in ChIP. .
and control data !

Get DNA seguences for peaks in ChlP data

Extract overrepresented mot op area of
several hundred high peaks

Check motifpresence i remaining peaks and
calculate motif p -values

Run optimization to report maximal number of
peaks within a given number of false positives

Figure 1. Main steps of the MICSA pipeline.
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amount of time required, we only process three hundred
peaks with high DNA fragment coverage. Moreover, the
motif extraction is done only for central area of these
peaks to avoid getting false motifs that are
over-represented, such as those of cooperating TFs. The
MICSA package utilizes the expectation maximization
MEME algorithm (19) to detect the strongest motifs in
peak sequences.

In the third step, discovered motifs are identified for all
regions of enrichment located by FindPeaks (peaks file).
The combined information on motif location and
position-specific scoring matrix (PSSM) scores is then
used to calculate a motif P-value for each peak
(see ‘Materials and Methods’ section). In general, the
P-value will be small if the motif occurrence closely resem-
bles the consensus (and thus has a high PSSM score) or if
the motif occurs close to the region of maximum enrich-
ment of the peak. In contrast, the motif P-value will be
high if the motif occurs in the periphery of the peak and
the motif observed has a low PSSM score. The final peak
score appearing in the MICSA output is a product of the
motif P-value described above and the estimated FDR.
Supposing that, for a given threshold on the peak
height, the number of false binding sites in the ChIP
sample is equal to the normalized number of peaks in
the control sample, and nucleotides along such peak se-
quences are distributed according to the Markov(0)
model, then MICSA’s peak score estimates the probability
of the given peak to be a false binding site and have a
motif occurrence just by chance.

In the fourth step we select binding sites out of candi-
date peak dataset based on motif occurrence and depth of
coverage information. The raw peak candidate prediction
set contains a large number of false positive predictions.
To filter them out, other methods commonly determine a
threshold on DNA tag/fragment coverage (6,10,13).
However, our experience and that of other researchers
(C. Wadelius, personal communication) shows that even
regions with relatively low DNA tag coverage often
contain functional binding sites. Here we propose an
approach based on the presence of motif information in
peak sequences. We use this information to retain add-
itional peaks containing strong motifs, especially those
with low DNA tag coverage. For each subset of peaks
with a given depth of DNA fragment coverage, we
choose a criterion for peak retention based on motif
strength and position within the peak. We then evaluate
a number of false positive peaks that we expect to satisfy
the criterion (see ‘Materials and Methods’ section). We
use an optimization procedure that applies different
criteria in an attempt to maximize the total number of
selected peaks for all subsets without having the estimated
total number of false positive peaks passing the selection
exceed the user defined threshold. MICSA outputs the list
of peaks which are selected by the optimization procedure
and ranked according to their scores and associated
motifs. As a result of the optimization, high peaks are
usually kept by MICSA even if there is no strong motif
hit. In other words, though the motif based filtering is
applied by MICSA to all peaks, it is only effective on
lower ones (Supplementary Figure S2).
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Performance of MICSA

In order to assess relative performances of MICSA and
other existing tools, we used the algorithm comparison
method developed by Kharchenko et al. (7). The tested
programs were MACS (8), PeakSeq (9), QuEST (10),
wdt (7), Useq (11), F-Seq (12), CisGenome (6),
ERANGE/ChIPSeqMini  (13), SISSRs (14) and
FindPeaks (5). Each application was used with its
default parameters, according to the instructions given
in the manual (see Supplementary Table S1 for
command lines). In cases where only a small number of
peaks were extracted, parameters were modified in order
to increase the number of identified peaks. ChIP-Seq data
for the NRSF (2,20) were selected for testing because they
had already been widely used by other groups to validate
ChIP-Seq analysis software (2,6-8,11,14). Additionally,
we run MICSA on datasets for GABP (10), STATI1 (9)
and CTCF [ENCODE project, the Broad Institute and the
Bradley E. Bernstein lab at the Massachusetts General
Hospital/Harvard Medical School (15)].

For NRSF we used two positive TFBS sets to assess the
sensitivity of each of the different methods. The first one is
a list of 3000 high-scoring motif instances designed using
canonical sequence binding motifs for NRSF by
Kharchenko ef al. (7). The second is composed of 83
binding sites verified by qPCR (2). To compare the
methods’ sensitivities, we selected increasing numbers
of top peaks returned by each method and analyzed
the fraction of peaks containing the motif of interest
(Figure 2 and Supplementary Figure S3). MICSA clearly
outperforms other methods on both tested datasets, with
almost any threshold on a number of called peaks. We
compared algorithm performances considering the best
3000 peaks called by each program. For the first positive
set of 3000 high-scoring motif instances we found that
1422 of them were identified by MICSA (Figure 2A).
According to this test we could rank the other tools as
uSeq (1254), wdt (1229), PeakSeq (1227), F-Seq (1217),
FindPeaks 3.3 (1216), CisGenome (1203), MACS (1195),
SISSRs (1194), QuEST 2.0 (1132), ERANGE 3.1 (1118)
(Figure 2A, Supplementary Figure S3a and Supplemen-
tary Table S2). However, it is unlikely that all 3000 best
NRSF matrix matches are true functional binding sites.
Thus, we reduced the positive set to the best 500 motif
instances with the highest score. Using this smaller
positive set, within 3000 best peaks, MICSA was able
to successfully identify 447 out of all 500 instances
(Figure 2B). Other tools can be ranked accordingly:
uSeq (437), MACS (435), F-Seq (432), CisGenome (431),
PeakSeq (431), wdt (430), FindPeaks 3.3 (428), SISSRs
(424), ERANGE 3.1 (412) and QuEST 2.0 (402)
(Figure 2B, Supplementary Figure S3b and Supplemen-
tary Table S3).

When evaluating the tool sensitivity on the set of
83 qPCR verified NRSF-binding sites, comparable
results were obtained: MICSA (55 sites), MACS (52),
CisGenome (52), FindPeaks 3.3 (51), SISSRs (51), F-Seq
(51), uSeq (51), wdt (51), PeakSeq (51), QuEST 2.0 (50),
ERANGE 3.1 (50) (Figure 2C, Supplementary Figure S3c
and Supplementary Table S4). However, this can be
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Figure 2. Performance comparison of MICSA with FindPeaks, PeakSeq, QUEST and uSeq. As a positive set of binding sites of NRSF we used (A)
3000 best matches of the canonical NRSF matrix in the human genome, (B) 500 best matches of the canonical NRSF matrix in the human genome,
(C) 83 g-PCR verified NRSF-binding sites in the human genome. Peaks extracted by each algorithm were ranked according to in-built scores or
P-values. For each number of top peaks the frequency of identified positive sites among them was plotted. ‘ToolName”’ means that the default

parameters of the tool were modified to make it report more peaks.

probably explained by the fact that only regions that were
highly enriched in mapped reads were tested by qPCR.
It is noteworthy that MICSA was able to identify the
maximum number of experimentally tested regions
within the dataset of 3000 reported peaks.

Motifs identified by MICSA during the analysis proced-
ure nicely corresponded to the known NRSF-binding
motifs (Supplementary Figure S4).

In the comparison above MICSA was the only tool in
which DNA motif information was utilized. Since the
CisGenome package also contains a module for identifi-
cation of enriched motifs we added to the comparison the
subset of peaks identified by CisGenome which also
contain strong hits for enriched motifs. Though motifs
identified by CisGenome were close to those identified
by MICSA, the latter called more peaks from the
positive datasets (Supplementary Figure S5).

We run MICSA on datasets for GABP (10), STATI (9)
and CTCF [ENCODE project, the Broad Institute and the
Bradley E. Bernstein lab at the Massachusetts General
Hospital/Harvard Medical School (15)] and compared
the reported sets of peaks with those reported by other
peak calling tools: FindPeaks, uSeq, QuEST and
PeakSeq. To compare algorithms between each other we
applied the same procedure (7) as previously for NRSF.
We used canonical sequence motifs for binding by GABP
(Genomatix, http://www.genomatix.de), STAT1 (21) and
CTCEF (22) to create positive sets of 3000 peaks. For any
considered TF, within a given number of peaks selected by
each algorithm there were more peaks from the positive
set in the output of MICSA than in the output of any
other program (Supplementary Figure S6). For all three
TFs, binding motifs identified by the MICSA pipeline
were highly similar to the canonical motifs of the same
TF (Figure 3).

The results of the test above might appear to be
anticipated in advance. Indeed, MICSA is the only algo-
rithm to use motif information in prediction and the
motifs identified by MICSA perfectly matched to the

2
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Figure 3. Binding motifs identified by MICSA in ChIP-Seq data for
GABP, STAT1 and CTCF resemble canonical motifs. (A) GABP motif
logos [Weblogos (32)], canonical motif from (Genomatix, http://
www.genomatix.de), (B) STAT1 motif logos (21), (C) motif logos for
CTCF (22).
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known binding motifs for the considered TFs. So we per-
formed an additional test to assess MICSA’s performance.
We took the latest ChIP-Seq data for NRSF [ENCODE
project, Myers Lab at the HudsonAlpha Institute for
Biotechnology (15)]. There the sequencing depth was
increased to obtain about 13 million of uniquely mapped
reads instead of 2 million in the Johnson dataset (2). Since
the depth of sequencing had increased, we expected peaks
selected by MICSA from the old dataset to appear in the
new dataset and to have a read coverage greater than
peaks selected by FindPeaks from the old dataset but
rejected by MICSA. Indeed, there are 4572 peaks among
7780 selected by MICSA which depth increased more than
or exactly twice, while there are 11748 peaks among
22116 peaks selected by FindPeaks. This constitutes the
overall ratio of 59% against 53% (Supplementary Table
S5). The difference is higher for low peaks and disappears
with the increase of peak heights (Supplementary
Figure S7). This test though not being based on the infor-
mation about « priori known motifs, demonstrated the
advantage of using MICSA for filtering low peaks.

Biological application of MICSA

To demonstrate the use of the MICSA package to obtain
biological insight, we then applied the package to
ChIP-Seq data for the oncogenic TF EWS-FLII.
EWS-FLII is a chimeric protein produced by a fusion of
the EWS and FLI1 genes. This abnormal TF is a key
oncogene in Ewing sarcoma (17,23). To investigate
EWS-FLI1 DNA binding, we reanalyzed ChIP-Seq data
previously collected by our team (16). The DNA frag-
ments retained on complexes immunoprecipitated by an
FLI1-specific antibody were processed by the Illumina/
Solexa cluster station and 1G analyzer for the A673
Ewing cancer cell line and aligned with the Maq (24)
software with a maximum two mismatches to the
unmasked human reference genome (NCBIv36, hgl8)
(18,25). A control was obtained using the same
anti-FLI1 antibody in a rhabdoid tumor cell line (MON)
that does not express EWS-FLI1 or ETS family TFs.

A key characteristic of these data is that the total
amount of sequenced DNA is insufficient for
straight-forward identification of the majority of binding
sites. Indeed, our previous analysis of these data showed a
very limited number of regions of EWS-FLII1 specific
binding (246). Upon re-analysis with the MICSA tools,
we were able to discover 2264 sites with an expectation
FDR of 5%. MICSA was also able to identify two known
consensus motifs occurring in the most highly enriched
regions of called peaks (16). The first one represents a
(GGAA)-¢ microsatellite and it is found in 496 peak se-
quences; the second motif, found in 1768 peak sequences,
corresponds to the consensus RCAGGAARY (R = A/G,
Y = T/C) (Figure 4A).

Since the single RCAGGAARY consensus motif resem-
bles the known binding motifs for the ETS TF family (26)
(Figure 4B), we will refer to it as the ETS motif.
Interestingly, the extracted ETS motif, although
resembling the consensus motif of FLI1 (27) (CCGGAA
RY) (Figure 4C), does not completely coincide with the
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Figure 4. Motifs identified by MICSA in EWS-FLI1 ChIP-Seq data
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FLII. (A) Consensus motifs identified by MICSA [Weblogos (32)],
(B) canonical motif for ETS family of TFs including the TF FLI1
(26), (C) canonical motif for the TF FLI1 (27).

latter, even though EWS-FLI1 shares the
DNA-binding domain as FLII.

We compared the locations of discovered peaks with
gene organization and expression data (28) for the
Ewing cancer cell line A673 in both the presence and
absence of EWS-FLI1 using a random set of peaks as a
control (Figure 5). To create the random set we randomly
selected 2264 locations in the annotated part of the human
genome (NCBIv36, hgl8) (18,25). From the expression
data, we extracted a list of putative target genes of
EWS-FLII: 557 genes downregulated by EWS-FLI1 and
577 upregulated genes (fold change >|2| with a Welsh
P-value <0.01). These are genes modulated by
EWS-FLII in A673 and SK-N-MC Ewing cell lines.

Our analysis revealed the tendency of sites bearing
microsatellites to upregulate neighboring genes [sites
found from 150-kb upstream to 50-kb downstream of
gene transcription start sites (TSSs)] (Figure 5A and
Supplementary Figure S8), while sites with the ETS
motif do not seem to have a definite activator function
(Figure 5B). ETS sites show some transcriptional inhibi-
tory influences on gene expression when located in the first
50-kb downstream of the TSSs. However, when ETS-sites
are found further away from genes (within 1 Mb upstream
or downstream but not in the first 50-kb downstream
TSS), both activatory and inhibitory influences are
observed for EWS-FLII transcriptional activity. Among
other hypotheses, this could be explained by competi-
tive binding of EWS-FLI1 and native repressor or
activator TFs.

same
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Distance to peak

Figure 5. Histogram of distances between predicted/random peaks and genes up/downregulated by EWS-FLI1. (A) Predicted sites containing
(GGAA),, microsatellites; (B) ETS sites (site without microsatellites). EWS-FLI1 binding to GGAA microsatellites results in significant expression
activation of neighboring genes. EWS-FLII binding to single ETS sites can produce both negative and positive effects on transcription of neigh-
boring genes. The P-values were directly evaluated by Monte-Carlo simulations of random peaks. Distances from the TSSs of modulated genes to
random peaks (iterative trials) and to predicted sites were calculated. The P-values correspond to the probability to get at least the observed number
of distances falling within a given 50-kb window, under the hypothesis that peaks are randomly distributed and their coordinates are independent of
coordinates of TSSs of EWS-FLII modulated genes. Bars above the dashed line correspond to a P-value <0.05.

Our analysis confirmed binding sites for five known
direct target genes of EWS-FLIl: C-Myc¢, CCNDI,
TGFbRII (29), CAV1 (30) and IGFI (31). However, in
two cases out of five, a binding site was identified inside
the gene and not in the promoter region. MICSA pre-
dicted many new possibly direct targets of EWS-FLII
(Supplementary Table S6). Among them we find
PPPIRIA, LBH, FAS, CAV2 and NBLI. This informa-
tion will aid in the construction of a detailed and accurate
regulation network for this particular type of cancer.

Our motivating idea was that low peaks without motifs
are likely to be false positives while low peaks with motifs
may indicate real binding events. To test it we performed
ChIP-gPCR for 16 interesting genes having a low
peak of EWS-FLI1 within 50-kb upstream of gene TSS
(Supplementary Table S7). To create a control set we took
seven peaks which had been discarded by MICSA as low
peaks without strong motif occurrence. The heights of
selected peaks vary from 3.9 to 8§ for the set of peaks
selected by MICSA and from 4 to 8 for the control set.

For tested genes from MICSA’s set we got a clear positive
response for CCNDI, GYG2 and PAPPA, and a positive
trend for AKAP7 and SLCO5A41 (Supplementary Figure
S9). Interestingly, none of the 7 peaks from the control
set was found to be positive in our experiment. Though
we performed the experiments on a limited set of peaks,
we believe that the results clearly reinforce our idea that
MICSA is a useful tool to distinguish between possible
binding events in the case of low peaks.

DISCUSSION

To our knowledge, MICSA is the first tool developed
for peak identification in ChIP-Seq data that uses an
approach combining knowledge about DNA fragment
coverage in ChIP and control experiments along with
motif discovery. MICSA is able to automatically identify
overrepresented motifs in a single run, as well as to
use motif occurrence probabilities to enhance the result
set returned. MICSA achieves a higher accuracy in



el26 Nucleic Acids Research, 2010, Vol. 38, No. 11

identifying regions of TF binding in comparison to other
methods. For example, no other tested tool was able to
identify more than 45% of predicted motif occurrences
(Figure 2) within the top 3000 selected peaks. With
default parameters, only Useq (11) (with the best 6073
peaks), MACS (8) (with 6450 peaks), FindPeaks (5)
(with 7097 peaks) and F-Seq (12) (with 8576 peaks)
managed to obtain the same coverage. However, that
required a significantly larger set of selected peaks. This
example shows that using MICSA helps to avoid inclusion
of thousands of low peaks which do not carry TF-binding
motifs and thus are likely to be false binding sites.

Two other major advantages of MICSA, in addition to
its greater accuracy, are the score calculation for each
reported peak and evaluation of the number of false posi-
tives in the total output.

MICSA uses two previously published tools: FindPeaks
(5) for candidate peak calling and MEME (19) for de novo
motif finding. They were chosen as the best performing
from the point of view of speed and result quality.
Additionally, FindPeaks allows elimination of duplicate
tags due to PCR errors and supports many input
formats including: both Maq’s .map and mapview
formats (24), ELAND, ELAND Extended and BED
format.

Because of its high sensitivity, MICSA can be used on
medium quality datasets with low average DNA fragment
coverage. EWS-FLI1 data (16) represents one such
example. In spite of non-perfect initial data quality, we
were able to get rich biological results and some insights
in the function of EWS-FLI1 in Ewing cancer cells.

For the EWS-FLII TF we identified two different types
of motifs carrying different biological functions, i.e. micro-
satellites (GGAA), and single RCAGGAARY motif
(R =A/G, Y =T/C). Interestingly, none of them com-
pletely coincide with the known binding motif of FLII,
which has the same DNA-binding domain as EWS-FLII1.
This may be a result of the presence in EWS-FLII1 of an
additional EWS domain. The observed motif difference
provides evidence that de novo motif finding is an import-
ant issue in ChIP-Seq data analysis. Our results suggest
that EWS-FLI1 binding to a site bearing (GGAA),, micro-
satellites can activate gene expression if the site occurs
within 150-kb upstream and 50-kb downstream region
from gene TSS. Occasionally, even more distant sites
bearing (GGAA), microsatellites appear to moderate the
activator function of EWS-FLI1. EWS-FLII binding to a
site without microsatellites can, depending on the gene,
activate or repress transcription (sites within 1-Mb
upstream 1-Mb downstream of gene TSS). This change
of regulatory function depending on binding motif
provides an insight into the molecular mechanisms of
EWS-FLII function. One of the hypotheses is a conform-
ation change induced by dimerization of EWS-FLII on
microsatellites. Verification of this hypothesis was out of
the scope of the article, however, if true, this would
indicate a potentially new way to target Ewing cancer by
disrupting dimerization.

In conclusion, the MICSA package proposes solutions
for a great number of problems including peak calling
with predefined false positives number, peak score
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calculation and de novo motif identification and should
be a useful tool in ChIP-Seq data analysis of TFBSs.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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