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Abstract

Background: The evolution of next-generation sequencing (NGS) technologies has led to increased focus on
RNA-Seq. Many bioinformatic tools have been developed for RNA-Seq analysis, each with unique performance
characteristics and configuration parameters. Users face an increasingly complex task in understanding which
bioinformatic tools are best for their specific needs and how they should be configured. In order to provide some
answers to these questions, we investigate the performance of leading bioinformatic tools designed for RNA-Seq
analysis and propose a methodology for systematic evaluation and comparison of performance to help users make
well informed choices.

Results: To evaluate RNA-Seq pipelines, we developed a suite of two benchmarking tools. SimCT generates
simulated datasets that get as close as possible to specific real biological conditions accompanied by the list of
genomic incidents and mutations that have been inserted. BenchCT then compares the output of any bioinformatics
pipeline that has been run against a SimCT dataset with the simulated genomic and transcriptional variations it
contains to give an accurate performance evaluation in addressing specific biological question. We used these tools
to simulate a real-world genomic medicine question s involving the comparison of healthy and cancerous cells.
Results revealed that performance in addressing a particular biological context varied significantly depending on the
choice of tools and settings used. We also found that by combining the output of certain pipelines, substantial
performance improvements could be achieved.

Conclusion: Our research emphasizes the importance of selecting and configuring bioinformatic tools for the
specific biological question being investigated to obtain optimal results. Pipeline designers, developers and users
should include benchmarking in the context of their biological question as part of their design and quality control
process. Our SimBA suite of benchmarking tools provides a reliable basis for comparing the performance of RNA-Seq
bioinformatics pipelines in addressing a specific biological question. We would like to see the creation of a reference
corpus of data-sets that would allow accurate comparison between benchmarks performed by different groups and
the publication of more benchmarks based on this public corpus. SimBA software and data-set are available at http://
cractools.gforge.inria.fr/softwares/simba/.
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Background
RNA-seq technology: power and versatility
The unprecedented evolution of next-generation sequenc-
ing (NGS) technologies in transcriptomics (RNA-Seq)
has shaped computational biology and facilitated new
advances in genomicmedicine [1]. RNA-Seq examines the
dynamic nature of the cell’s transcriptome, the portion of
genome that is actively transcribed into RNA molecules
which allows researchers to determine when and where
genes are turned on or off in a variety of cell types and
circumstances.
RNA-Seq offers benefits in the detection of novel tran-

scripts as it does not require context-specific probes ren-
dering it more flexible than microarrays that cannot be
modified to reflect evolving requirements. However, for
RNA-Seq to evolve beyond the realm of analytic research
to clinical use, performance benchmarking of the RNA-
Seq-specific bioinformatic tools are needed to ensure
accuracy and reproducibility [2].

RNA-seq analysis process: dependence on the biological
question
Given the increasing variety of biological questions being
investigated using RNA-Seq analysis [3], the community
has developed a broad range of bioinformatic tools to
address specific needs. This growing selection of tools
should, in theory, make it possible for users to design
highly optimized pipelines that deliver best results for any
specific biological question. The traditional process of the
RNA-Seq analysis [4] consists of a multi-step pipeline -
starting with mapping, followed by the quantification of
known transcript or gene and finally statistical analysis
of the expression including differential expression analy-
sis and clustering. RNA-Seq can also be used to identify
new genes and transcript variants including splice junc-
tions, SNVs, indels or gene fusions predictions that are of
particular relevance in the study of cancer [5].
An important consideration in analyzing RNA-Seq is

that, due to the complexity of interpretation, pipelines
must be optimized to the biological question being inves-
tigated to yield meaningful results. Some analyses require
more sensitivity while others put emphasis on precision.
Other factors such as the sequencing protocol and com-
pute resources available also have to be considered. How-
ever, despite all the work done in optimizing specific tools,
few people have sufficient understanding of their char-
acteristics to make informed choices on the best ones to
include in a given pipeline, or how they should be con-
figured. To make matters worse, the number of distinct
permutations of pipeline components and configurations
creates a real combinatorial challenge.
One strategy that helps the researcher address this prob-

lem is the systematic evaluation of software alternatives
based on a set of simulated reads. For instance, in a recent

benchmarking study [6], the authors assessed RNA-Seq
alignment tools on three human and malaria datasets at
the read, junction and base levels. However, their bench-
mark suffered from limitations that could impact their
conclusions. We question the relevance of the metrics
used in their comparisons: the way multiple alignments
are discarded (those do not use the standard NH tag
in the SAM file), the fact that highly-expressed junc-
tions have more weight in the junction-level analysis than
under-expressed ones, and the fact the the authors rely
solely on the CIGAR string to assess the alignment (while
some ambiguous alignments might have distinct CIGAR
strings). The authors use the dataset with the highest
mutation rate of 3% to tune the parameters., so RNA-Seq
benchmarking efforts to-date have tended to provide a
review of the pipeline tools available at a given time, with
a focus on individual components such as aligners [7–10],
variant callers [11–13] or quantification methods [7, 14].
Other comparison strategies are based on modeling

rules and computing metrics from real data sets of reads
[15, 16] as it is assumed that simulating NGS reflecting the
biological complexity and technical biases associated with
sequencing is impossible. Recently, an original approach,
TEASER, was introduced [17] to compare genomic align-
ers in a dynamic and flexible manner using a platform
with a simple SaaS application to generate reports auto-
matically. However, TEASER is not applicable to RNA-seq
analysis. It can be complicated to transpose a specific
benchmarking result to another biological context and to
use results to optimize configuration a selected pipeline.
As a result, many researchers rely on well known, highly
publicized pipelines using standard configurations that
may be ill-adapted to examining their particular biolog-
ical question. As an example, it is not uncommon to
see researchers using, for instance, TopHat2 with default
parameters1. We believe that SimBA will make it easier
to conceive benchmarks adapted to a specific biological
question.

RNA-seq challenge: The need for standard data-sets and
benchmarking methodology
Combining a set of tools to create a complete analy-
sis pipeline requires expertise and familiarity with the
characteristics of each candidate software component of
the workflow. This has implications for researchers and
clinicians alike, as using the right pipeline, correctly con-
figured, limits false positives and ensures that relevant
genomic events are surfaced. This emphasizes the need
for a benchmarking methodology that provides concrete
information on the pipeline and configuration settings
that yield best results for a given biological question.
Traditional simulation approaches like BEERS [10] or

Flux Simulator (Flux) [18] aim to model RNA-Seq exper-
iments in silico by sequencing reads from a reference
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genome according to annotated transcripts and by model-
ing different experimental behaviors. BEERS is an easy-to-
use simulator of simplified reads, whose main weakness
is that it does not take into account the preparation
of the library that precedes the sequencing itself (frag-
mentation, RT-PCR, etc.). Flux provides a more realis-
tic view as it models the wet-lab process and the type
of sequencer and simulates sequence errors using tech-
niques based on heuristic models. Flux also benefits
from excellent documentation and a high configurabil-
ity of each step of the simulation. However, though it
does an excellent job in simulating the expression pro-
file, library preparation and sequencing, it does not take
into account the underlying biological significance of the
reference transcriptome (genome modifications, cancer-
ous cells, etc.). Other approaches to simulating cancerous
data directly in sequenced reads using BAMSurgeon [19],
rather than modifying a reference genome and its
annotations.
Many of these approaches do not allow tools to be

benchmarked in the context of a specific biological ques-
tion [10]. This drives users to develop new methods
based on their own private data-sets. Some initiatives have
emerged such as Dream Challenge that provide sets of
data for benchmarking but without the curation that pro-
vides test data relevant to each requirements that would
enable consistent and reproducible comparisons.

Implementation
We have developed SimBA (Simulation & Benchmarking
Analysis), a software suite designed to evaluate the per-
formance of an entire RNA-Seq pipeline in the context
of a specific biological question. SimBA provides an inte-
grated environment (see Fig. 1) that lets the users generate
benchmark reports that evaluate the workflow of their
choice. It is comprised of two components:

SimCT A configurable generator of simulated RNA-Seq
data that can emulate specific biological mechanism
(ie. SNVs, indels, fusions) and provide robust data
sets covering cases such as fusion genes (or fusions).

BenchCT A qualitative evaluation tool which assess any
pipeline results against a simulated dataset to obtain
a clear understanding of its performance character-
istics in answering a particular biological question.

In this paper, we illustrate how this vision applies in
genomic medicine by building a set of RNA-Seq data sim-
ulations of a somatic condition and propose an automated
workflow using Snakemake [20] to compare tools in three
qualitative RNA-Seq use cases: SNVs, indels and fusion
genes. The Snakefile used to generate all results presented
in the article is available at https://github.com/jaudoux/
simba-publication-pipeline.

SimCT: RNA-Seq operation
SimCT is a complete and modular workflow to simu-
late RNA-Seq data from a reference genome and known
transcript annotations.
SimCT works in three steps (see Fig. 2):

1. The first step introduces a set of variants in the
reference genome. SimCT then generates a haploid
mutated genome in FASTA format and a set of GTF
annotations whose coordinates are converted for this
modified reference.

2. We then process the modified reference files using
FluxSimulator, that offers good performance in
generating a random expression profile and
simulating reads by reproducing a complete “in
silico” RNA-Seq protocol.

3. In the final step, the reads and corresponding
alignments produced by FluxSimulator are sent to
post-processing where alignment coordinates are
converted to the coordinates of the original reference
genome. The errors are then extracted from read
sequence (encoded in lowercase by FluxSimulator)
and a new FASTQ file is produced with alignments
and errors encoded in the read name, similar to the
approach in RNF [21].

Mutation process
Single nucleotide variants (SNVs) or insertion and dele-
tions (indels) are introduced in the reference genome
either randomly or guided by a reference VCF file
(only biallelic sites are supported for the moment).
Both mutation sources can be used together with -
-vcf-ratio option, that defines the ratio of muta-
tions taken from the VCF file provided, to those
generated randomly. Overlap between mutations is
forbidden.

Random mutations Random mutations are generated
given a defined rate per chromosome with equal prob-
ability for each of the four bases. The lengths of indels
is chosen randomly between 1 and the max indel length
(default is 15).

Gene fusions
Gene fusions (fusions) are generated by randomly pick-
ing two exons from the annotations, and combining their
two parent genes into a fusion gene. This is accomplished
by merging the upstream part of the parent gene of one
exon with the downstream part of the parent gene of the
other exon. Both fused exons are then merged to force
the fusion junction between the two ends. The new fusion
gene is saved in a separate FASTA file, and annotations of
the fusions transcripts are added to the GTF file.

https://github.com/jaudoux/simba-publication-pipeline
https://github.com/jaudoux/simba-publication-pipeline
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Fig. 1 Overview of the SimBA benchmarking procedure. A benchmarking pipeline implemented with SimBA is composed of three components, i/
Simulation of synthetic data using SimCT, ii/ Processing of the synthetic data using a pipeline manager (i.e Snakemake [20], iii/ Qualitative evaluation
of the results using BenchCT
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Fig. 2 SimCT method. SimCT uses a reference FASTA and GTF annotations as input. A first process is intended to introduced biological variations in
this reference to create a mutated reference. This new reference is then transfered to FluxSimulator, in order to generate an RNA-Seq experiment.
Finaly FluxSimulator output are post-processed to transfer the coordinates from the mutated genome to the original reference

Read name format
SimCT includes the alignment position and errors of
the simulated reads in their names, making it easier for
developers to identify bugs or algorithm flaws in their
alignment software. The read format is defined as :

read_id : (chr, (−)pos, cigar(; )?)+ : base64(err_pos?)

The read name is composed of three components: (i) the
read id from 0 to nb_reads − 1, (ii) a list of SAM-like [22]
read alignments (chr, starting position and cigar chain),
(iii) the positions of sequencing errors (if any) encoded
in base64. For paired-end reads, a single read name is
generated for both reads by using a single read_id, con-
catenating the alignments and merging the positions of
sequencing errors.

Dataset characteristics
In addition to the FASTQ file containing reads with their
alignments, SimCT also saves splice and fusion junctions
and mutations supported by the sequenced reads in sep-
arate files. Fusion junctions are defined as either non
colinear junctions (junctions on distinct chromosomes,

or in reverse order), or colinear junctions with a junc-
tion length longer than a pre-defined threshold (300kb by
default). This means, that colinear fusion junctions are
not necessarily produced by the fusions introduced, but
can also result from very large splice junctions of unfused
genes.

BenchCT: RNA-Seq qualitative analysis assessment
To assess the RNA-Seq analysis results based on sim-
ulated data, we have developed BenchCT. It loads the
reference “truth database” of known dataset character-
istics and compares it to the output files (SAM, BED,
VCF, software specific files) of the pipelines being eval-
uated. For each characteristic, BenchCT classifies pre-
dictions as TP (true positives), FP (false positives) or
FN (false negatives). We then compute two metrics for
qualitative analysis: (precision = TP/(TP + FP) and
recall = sensitivity = TP/(TP + FN)). BenchCT
uses genomic interval-trees available as CracTools-core
modules, useful for quickly checking whether a posi-
tion is at a given distance of the known position in the
“truth database”.
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Evaluation procedures
With BenchCT, we propose standardized procedures for
the binary classification of alignments, splice junctions,
indels, SNVs and fusions predictions. For each of these
events, we have proposed a means of comparison of
results with the “truth database” (see Fig. 3). In the case
where several alignments can correctly be made, it may
be possible to find multiple event/mutation scenarios that
explain the simulated data-set. In such cases, BenchCT
attempts to score these solutions as correct using a heuris-
tic approach.
Alignment evaluation BenchCT alignment evaluation is
performed as follows: if a proposed alignment overlaps the
real alignment by at least one base (encoded in the read
name), it is considered as true. Parameters can be set to
ignore some alignments (ie. multi-mapped reads) that are
counted as false positives (FP). If multiple alignments are
found for the same read, only the first one encountered is
evaluated and the others ignored.

Splice junction evaluation BenchCT defines splice junc-
tions as genomic intervals (or GI).

GI = (chr, start, end, strand)

True splice junctions are loaded in a GI-tree. This data
structure, built with a set of interval-trees for each chro-
mosome strand, can later be queried against a splice
junction predicted by an analysis pipeline to find overlap-
ping true splice junctions. An evaluated splice prediction
p, defined as a GI, is then searched in the GI-tree and any
resulting overlapping GIs are then included in the set C
of candidates. For each candidate c ∈ C we compute the
distance

d(p, c) = |pstart − cstart| + |pend − cend|

If the distance d is less or equal than the threshold
defined (default value is 10), the splice is considered true.
If multiple predictions correspond to the same can-

didate, only the first is counted as a TP and the
others ignored. If multiple candidates match a predic-
tion, we select the one having the minimum distance
(argminc d(p, c)). The same treatment applies to indels,
SNVs and fusions.

Indels and SNVs evaluation The mutations are eval-
uated with the same GI procedure were start and end

Fig. 3 BenchCT evaluation procedures. Each event is evaluated with benchCT with a specific procedure that allow approximate matching. For
alignement, only overlap between the prediction and the truth is evaluated. For Splice junctions and Fusions we expect an overlap between the
prediction and a candidate in the truth database with a limited agreement distance according to the threshold. For mutation (SNV and Indel), similar
procedure is used, as well as the verification of the mutation. For SNVs we evaluate the mutated sequence and for insertions and deletions, the
length of the mutation
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positions are equal, and the strand is left undefined. The
GI p used to search the GI-tree is defined as

p = (pchr , ppos − threshold, ppos + threshold)

For indels we evaluate the distance between the pre-
dicted indel length and the observed one according to
the threshold. For SNVs we also verify the validity of the
predicted mutated nucleotide. The default threshold for
mutations is 5.

Fusions evaluation Fusions are evaluated in the same
way as the other GI-based evaluations; fusion intervals
are defined as (chr1, pos1, strand1, chr2, pos2, strand1) and
transformed into regular GI with chr = chr1 ·chr2, start =
pos1, end = length(chr1)+pos2, strand = strand1·strand2.
The default distance threshold for fusions is set to 20.

Simulated dataset
Simulated dataset used in the results were generated using
the primary assembly of the versionGRCh38 of the human
genome. Annotations were downloaded from Ensembl
FTP (version 86) in GTF format. SNVs were introduced
at a rate of 0.0014 and 0.0016 (‘-s‘ option) for normal
and somatic condition respectively. Insertions and dele-
tions were introduced at a rate of 0.0001 (‘-d‘ and ‘-i‘
options) in both conditions with max indel length set to
default (15). SimCT was used with - -vcf-file and -
-vcf-ratio 0.95 options to randomly take 95% of the
mutations from the VCF file of common SNP provided by
dbSNP (version 20160527). Finally 100 fusions (number
chosen arbitrarily) were introduced for the somatic con-
dition. This does not mean that all of the fusions genes
are expressed and found in the RNA-Seq data as this
depends on the expression profile randomly generated by
FluxSimulator.
Expression profiles were generated using the follow-

ing parameters for FluxSimulator: k = −0.7, x0 =
15, 000, 25, 000 for normal and somatic conditions respec-
tively, x1 = x20, NB_MOLECULES= 106. NB_MOLECULES
is the number of expressed transcript molecules. Param-
eters k and x0 are part of a mixed power and exponen-
tial law of the expression profile, where k is the expo-
nent of the rank of gene expression. This means that
the smaller k the smaller the decay of the expression
resulting in highly expressed transcripts having closer
expression levels. x and x1 govern the parameter of
the exponential decay by multiplying the rank of gene
expressionk . Thismostly affects the tail of the gene expres-
sion spacing the differences further out between lowly
expressed genes. Parameter ranges were estimated for
mammalian cells by nonlinear fitting to expression lev-
els observed in experimental results by the developers of
FluxSimulator [18] and were chosen accordingly in the

suggested ranges. For amore detailed explanation we refer
to the paper and webpage of FluxSimulator.
Two data-sets were generated for each of the condi-

tions (normal and somatic), varying the length of the reads
(101bp and 150bp) for a given sequencing depth of 160
million paired-end reads. The fragment length was set
to 250bp with a standard deviation of 50bp and initial
biological material was set 10 million molecules. Finally
we provided FluxSimulator a custom error model cali-
brated on Illumina Hiseq 2500 data retrieved from SRA
(SRR1611183), mapped with GEM mapper [23] and cali-
brated with FluxSimulator ‘-t errormodel’ option.

Tools and parameters
Mutation discovery pipelines
Twelve mutation discovery pipelines were defined:

1. Three based on STAR mapping; (1) STAR with
Freebayes, (2) STAR with GATK (HaplotypeCaller),
and (3) STAR with SAMtools (mpileup and bcftools).

2. Three with Hisat2 mapping; (4) Hisat2 with
Freebayes, (5) Hisat2 with GATK (HaplotypeCaller),
and (6) Hisat2 with SAMtools (mpileup and bcftools).

3. Three with Hisat2_2pass mapping; (7) Hisat2_2pass
with Freebayes, (8) Hisat2_2pass GATK
(HaplotypeCaller), and (9) Hisat2_2pass SAMtools
(mpileup and bcftools).

4. One using CRAC mapping software (10) that
integrates its own calling algorithm.

5. Two “meta-calling” pipelines that are the union of the
results of two pipelines using bcftools merge
command; (11) A combination of STAR-GATK and
CRAC variants, and (12) A combination of
STAR-GATK and Hisat2_2pass-GATK.

Mapping software settings and versions are described in
the Table 1, they are identical for all datasets. Hisat2_2pass
consists in running Hisat2 a second time on the same
dataset using splice junctions discovered at the first pass.
The variant calling pre-processing procedure has been

adapted from GATK best practices [24]. For all mapping
procedures we applied the following procedure:

1. Mark duplicates with PicardTools.
2. Apply SplitNTrim (GATK command) procedure

which splits reads into exon segments (removing Ns
but maintaining grouping information) and hard-clip
any sequences overhanging into the intronic regions.

3. Apply ReassignOneMappingQuality (GATK
command) read filter to reassign all good alignments
to the default value of 60.

This re-calibration pipeline produced a BAM file used
by the variant calling software whose versions and set-
tings are described in Table 1. For the CRAC pipeline
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Table 1 Software versions and parameters used to generate the
results

Software Version Parameters

HISAT2 2.0.4 –max-intronlen 300000 –novel-splicesite-
outfile {output.novel_splice}

HISAT2_2PASS 2.0.4 –max-intronlen 300000 –novel-splicesite-
infile {input.novel_splice}

–novel-splicesite-outfile {output.novel_splice}
STAR v2.5.2b –twopassMode Basic –alignMatesGapMax

300000

–alignIntronMax 300000

STAR_fusion v2.5.2b –twopassMode Basic –alignMatesGapMax
300000

–alignIntronMax 300000 –chimSegmentMin
–chimJunctionOverhangMin 12
–chimSegmentReadGapMax 3

12 –alignSJstitchMismatchNmax 5 -1 5 5

CRAC 2.5.0 -k 22 –detailed-sam –no-ambiguity –deep-snv

CRAC_fusion 2.5.0 -k 22 –detailed-sam –no-ambiguity –deep-
snv –min-chimera-score 0

GATK 1.3.1 -T HaplotypeCaller -dontUseSoftClippedBases
-stand_call_conf 20.0
-stand_emit_conf 20.0

FREEBAYES 1.0.2 default

SAMTOOLS
mpileup

1.3.1 default

we have used the cractools extract command that
produces a VCF file from a BAM file produced with
CRAC.

Gene fusions discovery pipeline
For gene fusions we ran special versions of CRAC and
STAR called CRAC_fusion and STAR_fusion that are
described in the Table 1. Hisat2 was not included here,
since it does not support fusion discovery. STAR_fusion
and CRAC_fusion parameters were set to classify as a
fusion, colinear junctions having a distance superior to
300kb identical to SimCT fusions definition.
STAR_fusion was run with the --chimSegmentMin

option varying from 10 to 30 (10, 12, 14, 16, 18, 20,
22, 24, 26, 28, 30).This option controls the minimum
mapped length of the two segments that is allowed. The
fusions detected by STAR are listed in the file called
Chimeric.out.junction that contains one line per
chimeric alignment. These alignments were summarized
based on the chimeric breakpoints, and filtered-out to
remove chimeric alignments not defined at the base level
(field 8 >= 0) and further filtered with a minimum
recurrence threshold of 2.
The fusions from CRAC were extracted from the BAM

file using cractools extract and further filtered

with a minimum recurrence threshold of 2. We then cre-
atedmultiple versions of CRAC_fusion by filtering fusions
based on their chim_values from 0 to 1 (0, 0.2, 0.4, 0.6, 0.8,
0.85, 0.9, 0.95, 1). This options controls the algorithmic
quality of chimeric junctions detected by CRAC based on
a machine learning procedure [25].

Evaluation and reporting
BenchCT parameters
BenchCT was run using default threshold parameters
described in “Evaluation procedures” section. For align-
ments we used the option “max_hits” to limit evaluation
to alignments having the SAM’s “NH” field equal to 1.

Reporting
The automatic reporting procedure includes an preci-
sion/recall plot for each evaluated event, displaying these
two metrics (computed by BenchCT) along with the
Fscore that is used to order the pipelines.

Fscore = 2 × recall × precision
recall + precision

BenchCT was parametrized to output true positives
(TP) that were used to build intersection plots with Upset
[26] R package.

Results
Our objective was to create a use-case relevant to genomic
medicine by creating realistic simulated RNA-Seq data-
sets and using them to compare performance of twelve
state-of-the-art pipelines. Our benchmarks determined
the ability of each pipeline to detect biological events
relevant to the needs of genomic medicine.

A corpus for medicine genomxic
We generated four sets of RNA-Seq data relevant to
genomic medicine, with documented characteristics that
correspond to specific biological questions, in order to
provide a consistent and reproducible basis for the evalu-
ation of pipelines.
The four data-sets were designed to address the

sequencing of human samples in two biological contexts;
normal and somatic cells. The normal condition contains
a genomic layer of polymorphisms with rates close to the
observations of 1000 genomes [27]. To improve our sim-
ulation quality, 95% of introduced mutations were taken
from common human polymorphisms [28]. The somatic
condition contains higher mutation rates, a more complex
gene expression profile and gene fusions.
Two data-sets were generated for each of these condi-

tions, varying the length of the reads (101bp and 150bp)
and using a sequencing depth of 2x80 million paired-
end reads. These two lengths were chosen to mimic the
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Illumina Hiseq 2500 sequencing platform which typi-
cally produces these read lengths. The deep sequencing
was used to create a base dataset that can be further
sub-sampled for other applications.
The Table 2 is a summary of the four data-sets that con-

stitute our genomic medicine corpus; a detailed descrip-
tion of SimCT and FluxSimulator parameters is described
in “Simulated dataset” section of the method.

Aligner selection
The first step in the bioinformatic analysis process is
alignment. For this reason, we selected three aligners for
the benchmark; (i) CRAC [29] for its high precision, (ii)
STAR [30] for its sensitivity and, (iii) Hisat2 [31] which
offers a good compromise between precision and recall
(Additional file 1: Figures S2 and S3).
We then evaluated the predictions of twelve variant call-

ing pipelines based on these three aligners and three vari-
ant callers (see “Mutation discovery pipelines” section).
Then, we used SimBA to optimize mapping software
predictions for gene fusions by independently tuning
their parameters (see “Gene fusions discovery pipeline”
section).
In the following, we discuss only part of results, by

selecting representative dataset and evaluation metrics.
Complete results are available as supplementary material.

Benchmarking performance in SNV detection
This benchmarking resulted in the following observations
for SNV detection (see Fig. 4).
Performance in identifying SNVs varies significantly

depending on the pipeline. An example of this is the
STAR-GATK pipeline which is the most accurate (>97%)
while all other pipelines provide precision of between 90
and 95%. The SAMtools [32] caller has a much higher
recall than GATK [33] and Freebayes [34] regardless of the
aligner (∼92% vs ∼ 85%).
We observed significant differences in calling pipeline

performance between “normal” (Fig. 4a) and “somatic”
(Fig. 4b) data-sets. For example, Hisat2_2pass-GATK
results vary from 91 to 94% of precision between normal
and tumoral data-sets (datasets A and B), implying that
there is background noise that is progressively smoothed
by the addition of new real biological events.

Performance differences also occurred when different
variant calling procedures are used with the same aligner.
If we consider the example of STAR-SAMtools vs STAR-
GATK in Fig. 4a, we obtain results of 90%/93% versus
97%/86% in term of precision/recall.
Performance was heavily impacted by the configuration

settings of any given tool. For example, when Hisat2 is run
in two-pass mode, precision is improved (+5% on aver-
age) but processing time (∼ 1h10 with 10 CPUs) double
(Additional file 1: Figure S1).
Our experiments show that the size of the reads has no

discernible impact on the SNV results delivered by the
pipelines which allowed us to focus our attention on the
150bp data-sets (Additional file 1: Figure S4).
We also discovered that the performance of the

pipelines can be significantly improved by combining
certain complementary tools. The meta-calling pipelines
were defined based on the true positive intersections (ex:
Fig. 5b) to maximize the recall for both SNVs and indels.
As an example, in the Fig. 4b, CRAC and STAR-GATK
identify each ∼ 4000 true SNV’s which allows a gain in
recall from 85% for both tools independently to 93% when
they are combined, while maintaining excellent precision.
It must be stressed that all the pipelines are not nec-
essarily complementary. For example, the meta-pipeline
Hisat2-GATK + STAR-GATK perform worse than the
“simple” STAR+GATK pipeline (ex: Fig 4b similar recall
but precision decreases from 98 to 95%).

Benchmarking performance in detecting insertions and
deletions
The insertion and deletion benchmarks displayed the
same tendencies on all four data-sets (Additional file 1:
Figures S5 and S6); In general, CRAC is very accu-
rate (> 99% precision with fewer than 10 false posi-
tives per data-set), STAR-GATK is very sensitive (> 75%
recall) and Hisat2_2pass-GATK provides a good preci-
sion/recall compromise (Fscore ∼ 0.8). We selected the
GRCh38-150bp-160M-somatic data-set for insertion call-
ing in Fig. 5.
In all cases the meta-pipeline CRAC+STAR-GATK pro-

duced best results with ∼ 85% recall, ∼ 97% precision
and an Fscore > 0.9. We observed the same trend with
the other “meta-pipeline” Hisat2_2pass-GATK+STAR-

Table 2 Summary of the data-sets characteristics

Dataset name Read size SNV Insertion Deletion Splice
Colinear Non colinear
fusion fusion

GRCh38-101bp-160M-normal 2 × 101 28554 1747 1908 94904 73 0

GRCh38-150bp-160M-normal 2 × 150 28625 1754 1915 94855 64 0

GRCh38-101bp-160M-somatic 2 × 101 47139 2564 2716 132511 99 14

GRCh38-150bp-160M-somatic 2 × 150 47577 2648 2771 134235 108 15
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a

b

Fig. 4 Precision and recall of SNV calling. a SNV precision/recall in GRCh38-150bp-normal data-set. b SNV detection in GRCh38-150bp-somatic data-set

a

b

Fig. 5 Precision and recall of indel calling. a Insertion precision/recall in GRCh38-150bp-somatic. b Intersections of true positives insertions found by
calling pipelines in the GRCh38-150bp-somatic data-set
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GATK, as we did in the case of SNVs; sensitivity was
scarcely better than STAR-GATK while precision was
lower.
To illustrate this performance difference between the

pipelines, let us consider the number of actual dele-
tions identified by each; STAR-GATK identified 2091
deletions, Hisat2_2pass-GATK+STAR-GATK performed
slightly better with 2125 more true positives (+ 1pt) while
CRAC+STAR-GATK performed substantially better iden-
tifying 2295 (+ 10pts).
A key point is that by combining outputs of complemen-

tary tools, it is possible to improve recall without precision
loss as can be seen in the case of the CRAC+STAR-
GATK combination. The Freebayes caller seems less well
suited to RNA-Seq using default parameters with less pre-
cision and recall than the two other callers. A final point
to consider is the impact of the biological event being
examined on the performance between the benchmarked
tools. For example, the Hisat2_2pass-SAMtools pipeline,
though well suited to detection of SNVs performs poorly
in detecting indels with precision that falls from 94 to 80%
and recall that falls from 92 to 54% (Fig. 4b vs Fig. 5a).

Benchmarking performance in detecting gene fusions
In this third use-case, we examined fusion detection
and, specifically, the detection of reads with a chimeric
junction.

Many studies on the subject have been published
[35–37] but none have fully addressed the problem of
alignment associated with this type of event. This is signif-
icant as incorrect or ambiguous alignment can, by itself,
generate substantial numbers of false fusions. We selected
two mappers optimized for the detection of fusions;
CRAC with the integration of a model based on machine
learning [25] and STAR that recently added a procedure
to identify reads associated with fusions. We varied two
parameters in these tools, CRAC’s chim_value and STAR’s
chim_segment. Figure 6 confirms that these two param-
eters have tremendous impact on precision related to
fusion detection (especially those that are non-colinear).
Observing the influence of the cutoff parameter on

Fscore, there is a direct correlation (Fig. 6a); the greater
the value of STAR’s chim_segment or CRAC’s chim_value,
the more the precision increases (rising from 0 at 10% of
precision for a chim_segment varying from 10 to 30). This
underlines the importance of testing candidate pipelines
with different cutoff values against a reference data-set to
identify the best settings to address any given biological
question.
It is however difficult to declare STAR or CRAC bet-

ter suited for our simulated data-sets as somatic data-sets
have a very low number of true fusions to realistically
simulate the biological question (see Table 2). Indeed,
between the 101bp and the 150bp data-sets performances

a

b

Fig. 6 Precision and recall of gene fusion detection. Evaluation of gene fusions detection pipelines on the GRCh38-101bp-160-somatic dataset.
Fusions were splited in two category with an individual evaluation. a Colinear fusion where the fusion involves to genomic locations that are located
on the same strand of the same chromosome with a distance superior to 300kb. b non-colinear fusions wich does not satisfy the colinear criteria
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of STAR and CRAC are very different. STAR, with 30
chim_segment, yields a better Fscore (0.65) than CRAC
(0.25) with a 0.85 chim_value (see Fig. 6). It is very unlikely
that these differences are due to the length of sequences,
but rather to the nature of fusions in each data-set (see
Additional file 1: Figures S7 to S8).
We also observe that colinear fusion predictions are

more accurate than in the case of non-colinear fusions for
both aligners, (see Fig. 6 a and b).
Nevertheless, sensitivity for both types of fusions is high

when using both CRAC and STAR with an average value
of between 80% and 90% of fusions detected on all data-
sets examined.
In conclusion, it can be said that the principal challenge

in exploring fusions is to correctly configure the tools for
the specific data-set being examined as this significantly
reduces the number of false-positives produced during the
alignment phase. Indeed, eliminating false chimeric align-
ments at the very first step of a fusion gene detection
pipeline is much safer than using empirical filters based on
annotations later on, as true fusions could be incorrectly
filtered out.

Discussion
Limitation of benchmarked tools studies
Numerous benchmarking studies of RNA-Seq analysis
tools have since been conducted the appearance of RNA-
Seq. The problem is that each study relies on its own
simulated data-sets as a basis for the comparison of tools
rendering comparisons between tools evaluated in differ-
ent studies difficult. The methodology used to assess how
close the predictions are to the truth also varies from
one study to another. A further source of difficulty is that
the tools themselves are constantly being upgraded mak-
ing it virtually impossible to obtain a reliable, updated
view of the performance of all the available tools on
the market at a given moment in time. This means that
it is impossible to reliably compare performance figures
between studies to draw conclusions on the best pipelines
to use to answer a specific biological question. As an
example, the RGASP project [8] only represents a picture
of benchmarked tools at the time of the study, though
most of the tools benchmarked have been upgraded since.
Such difficulties underline the need for a benchmark
methodology that can reflect results of latest software
versions.
We believe that in order to have an accurate pic-

ture of performance of available tools, the community
must have access to a corpus of realistic simulated
data-sets that emulate various biological conditions.
The impact of results on the variant calling (see
“Benchmarking performance in SNV detection” section)
according to the mutation rate of the input data-set illus-
trates the need to have standardized reference data-sets

that allow an equitable, accurate benchmarking of all tools
according to a biological context.

Need a solution to benchmark tools
Because the examination of some biological questions
require more sensitivity while others require higher pre-
cision or must be capable of running using limited com-
putational resources, users need a solution that offer
possibility to choose the right bioinformatic components
for an analysis depending on the specific biological ques-
tion and computational environment available.
To illustrate this, our study relies on two standard

cases of biological questions; variant calling and gene
fusion detection. The proposed approach changes the
focus of bioinformatic benchmarking from evaluations of
discrete algorithmic components to an evaluation of a
complete pipeline’s ability to provide meaningful answers
to genomic medicine problems. This facilitates the evalu-
ation of new tools by the community fostering more rapid
innovation in this field.
Even if an original approach based on this principle

[17] was announced, enabling users to quickly compare
genomic aligners in a dynamic and flexible manner, the
proposed approach is only dedicated to the benchmark
of genomic aligners. Thus, to the best of our knowledge,
there is no modular, interactive solution to benchmarking
RNA-Seq software.

SimBA amodular benchmarking workflow
We have designed SimBA, as two independent compo-
nents, SimCT and BenchCT, that were conceived in a
modular fashion with the objective of extending their
features and scope of relevance.
SimCT ’s modular design makes it possible to include

other read simulators to handle emerging sequencing
technologies such as “Oxford Nanopore” or “PacBio”
sequencers via a “plug-in” architecture. A similar “plug-in”
approach to profile simulators has also been adopted.
SimCT is not restricted to RNA-Seq as WGS or exome
sequencing simulators could be integrated to produce
multi-omics analysis benchmarks. The modularity of
SimCT, makes it easy to extend it in the near-term to
the sequencing of multi-clonal tumoral transcriptomes,
where a sample contains a heterogenousmixture of cancer
cell clones that have emerged from a common ancestor.
BenchCT is a complete solution, featuring an easy instal-

lation, advanced algorithms, fast execution, multi-core
architecture support. BenchCT is also highly configurable
thanks to its YAML setup file. BenchCT was designed
to provide an easy way to benchmark tools with inter-
pretable metrics, sensitivity and precision. However, we
plan to incorporate the evaluation of expression estimates
into SimBA as the community defines more standardized
comparison metrics [7, 14]. In future, we also intend to
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include other qualitative evaluation cases, such as tran-
script reconstruction.

Conclusion
We propose SimBA, an open benchmarking solution that
can be used to generate simulated data-sets with high
configurability as well as a means to evaluate the perfor-
mances of analysis pipelines as they relate to various qual-
itative questions such as read alignment, variant calling
and gene fusion detection.
In this paper, we have created ameans for comparison of

results related to questions relevant to genomic medicine
by producing reference data-sets that mimic cancerous
cells and the investigation of important events in this type
of pathology such as mutations, indels and fusions. The
results described in our paper emphasize the need for a
benchmarking tool that can: (i) Simulate reference data-
sets emulating a specific biological context, (ii) Calibrate
a pipeline for a data-set specific to a biological question,
(iii) Aggregate and compare results of a variety of bioin-
formatic tools to explore how the combination of various
tools impacts the overall performance.
By contrast to the existing work on the RNA-seq anal-

ysis, we focused on the necessity of proposing a flexible
and integrated benchmarking suite that helps users opti-
mize their workflows for biological questions. SimBA
gives a standard analysis methodology and benchmark
data-sets which guarantee a high level of accuracy and
reproducibility.

Availability and requirements
Project name: SimBA;
Project home page: http://cractools.gforge.inria.fr/
softwares/simba/;
Operating systems: Linux/MAC;
Programming language: Perl;
Other requirements: Perl5, cpanm, Flux Simulator,
cractools-core;
License:MIT

Endnote
1A preliminary search onGoogle Scholar with “Tophat2

‘default parameters”’ returns about 1000 results compared
to 4,500 for TopHat2 alone

Additional file

Additional file 1: Supplemental Materials: SimBA: A methodology and
tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
(PDF 259 kb)
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