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SUMMARY

High-grade serous ovarian cancer (HGSOC) re-
mains an unmet medical challenge. Here, we
unravel an unanticipated metabolic heterogene-
ity in HGSOC. By combining proteomic, metabo-
lomic, and bioergenetic analyses, we identify
two molecular subgroups, low- and high-OXPHOS.
While low-OXPHOS exhibit a glycolytic meta-
bolism, high-OXPHOS HGSOCs rely on oxidative
phosphorylation, supported by glutamine and
fatty acid oxidation, and show chronic oxidative
stress. We identify an important role for the
PML-PGC-1a axis in the metabolic features of
high-OXPHOS HGSOC. In high-OXPHOS tumors,
chronic oxidative stress promotes aggregation of
PML-nuclear bodies, resulting in activation of
the transcriptional co-activator PGC-1a. Active
PGC-1a increases synthesis of electron trans-
port chain complexes, thereby promoting mito-
chondrial respiration. Importantly, high-OXPHOS
HGSOCs exhibit increased response to conven-
tional chemotherapies, in which increased oxida-
tive stress, PML, and potentially ferroptosis play
key functions. Collectively, our data establish a
stress-mediated PML-PGC-1a-dependent mecha-
nism that promotes OXPHOS metabolism and che-
mosensitivity in ovarian cancer.

INTRODUCTION

High-grade serous ovarian cancer (HGSOC) remains one of the

deadliest gynecologic malignancies and is thus an important

clinical challenge. Due to very few early-stage symptoms,

ovarian cancers are often diagnosed late, with a subsequent

poor prognosis for most patients. To date, treatment strategies

mainly rely on the clinicopathologic assessment of tumors and

consist of surgery, followed by taxane- and platinum-based

chemotherapy. Until now, ovarian carcinomas were mostly clas-

sified regarding histologic subtype, grade, and stage. However,

recent data based on genomic signatures, i.e., mutations in the

BRCA1 or BRCA2 genes or methylation of the BRCA1 or

RAD51C promoters, lead to homologous recombination defi-

ciency (HRD) and highlight the existence of HGSOC molecular

subgroups (Goundiam et al., 2015; Wang et al., 2017). Patients

with BRCA1 or BRCA2mutations display an improved response

to cisplatin (Cancer Genome Atlas Research Network, 2011; Ri-

gakos and Razis, 2012; Muggia and Safra, 2014; De Picciotto

et al., 2016). In addition, transcriptomic profiling allowed the

identification of additional HGSOC molecular subtypes (Tothill

et al., 2008; Cancer GenomeAtlas Research Network, 2011;Ma-

teescu et al., 2011; Bentink et al., 2012; Konecny et al., 2014).

One of the first mechanisms identified depends on the miR-

200 microRNA and distinguishes two HGSOC subtypes: one

related to oxidative stress and the other to fibrosis (Mateescu

et al., 2011; Batista et al., 2016).

Metabolic reprogramming has been defined as a key hall-

mark of human tumors (Gentric et al., 2017; Vander Heiden

and DeBerardinis, 2017). But carbon sources in tumors are
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more heterogeneous than initially thought. Recent studies have

revealed the existence of tumor subgroups with a preference

for either aerobic glycolysis (typical Warburg effect) or oxidative

phosphorylation (OXPHOS) (Caro et al., 2012; Vazquez et al.,

2013; Camarda et al., 2016; Hensley et al., 2016; Farge et al.,

2017). High-OXPHOS tumors are characterized by upregulation

of genes encoding respiratory chain components, together with

increased mitochondrial respiration and enhanced antioxidant

defense. These metabolic signatures provide important insights

into the existing heterogeneity in human tumors. However, this

information is lacking with regard to ovarian cancers, and

nothing is known about the pathophysiological consequences

of metabolic heterogeneity in this disease. Here, our work

uncovers heterogeneity in the metabolism of HGSOC and

highlights a mechanism linking chronic oxidative stress to the

promyelocytic leukemia protein-peroxisome proliferator-acti-

vated receptor gamma coactivator-1a (PML-PGC-1a) axis

that has a significant impact on chemosensitivity in ovarian

cancer.

RESULTS

High-Grade Serous Ovarian Cancers Exhibit Metabolic
Heterogeneity
To test if HGSOCs show variations in energymetabolism, we first

performed a comprehensive label-free proteomic study (Figures

1A–1E) by liquid chromatography-mass spectrometry on 127

HGSOC samples from the Institut Curie cohort (Table S1) and

focused our analysis on a list of 360 metabolic enzymes and

transporters (Possemato et al., 2011). Hierarchical clustering re-

vealed the existence of at least two HGSOC subgroups with

distinct metabolic profiles (Figure 1A). The most differentially

expressed metabolic proteins between the two subgroups

revealed differences in mitochondrial respiration, electron

transport chain (ETC), tricarboxylic acid (TCA) cycle, and ATP

biosynthesis process (Table 1). ETC proteins were the most

differentially expressed between these two subgroups (Table

S2) and could recapitulate these metabolic differences, as

shown by restricting our analysis to ETC proteins (Figures 1B

andS1A).We also applied a consensus clusteringmethod (Monti

et al., 2003) and found that the optimal cluster number of HGSOC

subgroups was two (Figure 1C). Importantly, these results were

validated in an independent cohort, The Cancer Genome Atlas

(TCGA) (Cancer Genome Atlas Research Network, 2011) (Fig-

ures 1D and S1B). Here again, classification into two subgroups

(hereafter referred to as low- and high-OXPHOS) was the most

robust. The consensus clustering-based classification (Figures

1C and 1D) reflected well the mean of ETC protein levels deter-

mined by proteomic data (Figure 1E) or by western blots (Figures

1F–1H), thereby demonstrating that this unsupervised classifica-

tion was appropriate. In addition, the mean level of 27 ETC

proteins detected by proteomics was correlated with the

5 ETC proteins analyzed by western blot, particularly in high-

OXPHOS HGSOC (Figure S1C), suggesting the level of 5 ETC

proteins was sufficient to determine the OXPHOS status.

Furthermore, OXPHOS signature (ETC genes listed in Table

S3) could also be detected at the transcriptional level in both

Curie and TCGA cohorts (Figure S1D).

We next performed metabolomic analyses on frozen HGSOC

samples from the Curie Cohort. Unsupervised analyses on me-

tabolomic data enabled us to confirm the two OXPHOS sub-

groups of HGSOC (Figure 1I). Differential analysis highlighted

the abundance of specific metabolites in each subgroup (Fig-

ure 1J). In agreement with increased ETC expression, high-

OXPHOS HGSOCs had a significant accumulation of cofactors

of oxido-reduction reactions, such as flavine adenine dinucleo-

tide (FAD), coenzymeA (CoA), TCA intermediate (malate), glycer-

olipid intermediates (ethanolamine and choline family), and

metabolites of the pentose phosphate pathway (PPP) (Figure 1J,

top). In contrast, low-OXPHOS HGSOCs were characterized by

accumulation of glutathione metabolism intermediates (gamma-

glutamyl cycle components), as well as choline intermediates

(Figure 1J, bottom). Finally, by combining proteomics and me-

tabolomics data, we built a schematic representation of the

metabolic pathways that differ between high- and low-OXPHOS

HGSOC samples, including OXPHOS, TCA cycle, and fatty acid

oxidation (FAO) (Figure S1E). This map illustrated a central role of

mitochondrial metabolic pathway reprogramming in HGSOC.

Figure 1. HGSOCs Exhibit Metabolic Heterogeneity

(A and B) Hierarchical clustering on 362 metabolic enzymes and transporters (A) and 27 ETC (B) from HGSOC proteomic data (N = 127). Clustering used Ward’s

method with Euclidean distance. Each column is a sample; each row a protein. Colors show deviation from the mean (red, above; blue, below).

(C and D) Heatmaps showing consensus value matrix from distinct numbers of clusters (k) tested, using the k-means algorithm. Each row and column represent a

sample. Consensus clustering used 1,000 iterations and resampling of 80%. Consensus values are between 0 (white) and 1 (dark blue): 1 means two samples

clustered together 100% of times; 0 means they never clustered. Bar plot below the dendrogram shows the consensus clusters. N = 127, Curie (C); N = 169,

TCGA (D).

(E) Mean of 27 ETC protein levels from proteomic data (Curie, N = 127; TCGA, N = 169). Classification in low- or high-OXPHOS is based on the consensus

clustering in (C) and (D). ETC protein levels from Curie have been centered and reduced. Normalization of TCGA data is described in Zhang et al. (2016). Medians

are shown. p values from Mann-Whitney test.

(F) Representative western blot (WB) showing five ETC proteins (ATP5A, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit; UQCR2,

ubiquinol-cytochrome c reductase core protein II; SDHB, succinate dehydrogenase complex iron sulfur subunit B; COXII, mitochondrially encoded cytochrome c

oxidase II; NDUFB8, NADH:ubiquinone oxidoreductase subunit B8) in HGSOCs (N = 58). I, II, III, IV, and V indicate ETC complexes. Actin is internal control.

(G) Mean of five ETC protein levels quantified from WB as in (F) and normalized to actin. Medians are shown (N = 58; 24 low- and 34 high-OXPHOS HGSOCs).

p value from Mann-Whitney test.

(H) Same as in (G) for each ETC protein per complex.

(I) sPLS-DA of metabolomic data from Curie (N = 45 HGSOCs; n = 374 metabolites). The two clusters were defined with a 95% confidence interval.

(J) Heatmap of differential metabolites (t test) between low- and high-OXPHOS HGSOCs (N = 45; n = 41 metabolites). Each column is the mean abundance of

eachmetabolite ranging from white (0) to red (5). Data have been centered and reduced. FAD, flavin adenine dinucleotide; GPC, glycerophosphorylcholine; GPE,

glycerophosphoethanolamine; UMP, uridine-20,30-cyclic monophosphate.

See also Figure S1 and Tables S1, S2, S4, and S5.
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Table 1. Pathways Enriched in the Two Metabolic HGSOC Subgroups

GO Biological Process Term Count Percent (%) Proteins FDR

GO:0006091�generation of precursor

metabolites and energy

24 48.98 NDUFA5, NDUFB10, NDUFA8, SUCLG2,

ALDH5A1, ATP5B, SUCLG1, CYCS, CYC1,

ATP5F1, DLAT, OGDH, IDH3A, SDHA, DLD,

IDH2, ATP5C1, ATP5L, ATP5O, ATP5A1,

ATP5H, ETFB, MDH2, ETFA

3.88E�23

GO:0055114�oxidation reduction 24 48.98 NDUFA5, HSD17B10, NDUFB10, NDUFA8,

ALDH5A1, CYCS, CYC1, GRHPR, DECR1,

PRDX3, OGDH, COX5A, HADHA, IDH3A,

SDHA, GPX1, DLD, IDH2, SPR, TSTA3,

HADH, ETFB, MDH2, ETFA

4.62E�16

GO:0045333�cellular respiration 12 24.49 SDHA, NDUFA5, NDUFB10, NDUFA8,

SUCLG2, ALDH5A1, SUCLG1, CYCS, DLD,

IDH2, IDH3A, MDH2

1.71E�11

GO:0006084�acetyl-CoA metabolic

process

8 16.33 SDHA, SUCLG2, SUCLG1, DLD, IDH2,

DLAT, IDH3A, MDH2

9.78E�09

GO:0015992�proton transport 8 16.33 ATP5J2, ATP5B, ATP5F1, ATP5C1, ATP5L,

ATP5O, ATP5A1, ATP5H

1.51E�06

GO:0051186�cofactor metabolic process 10 20.41 SDHA, GPX1, SUCLG2, ALDH5A1,

SUCLG1, DLD, IDH2, DLAT, IDH3A, MDH2

1.81E�05

GO:0009109�coenzyme catabolic process 6 12.24 SDHA, SUCLG2, SUCLG1, IDH2,

IDH3A, MDH2

2.89E�05

KEGG Pathways Count Percent (%) Proteins FDR

hsa05012:Parkinson’s disease 16 32.65 SDHA, NDUFA5, NDUFB10, NDUFA8,

SLC25A5, ATP5B, CYCS, CYC1, ATP5C1,

ATP5F1, ATP5O, ATP5A1, COX5A, ATP5H,

VDAC3, VDAC1

5.26E�11

hsa05016:Huntington’s disease 17 34.69 NDUFA5, NDUFB10, NDUFA8, SLC25A5,

ATP5B, CYCS, CYC1, ATP5F1, COX5A,

VDAC3, VDAC1, SDHA, GPX1, ATP5C1,

ATP5O, ATP5A1, ATP5H

5.16E�10

hsa00190:Oxidative phosphorylation 15 30.61 NDUFA5, ATP5J2, NDUFB10, NDUFA8,

ATP5B, CYC1, ATP5F1, COX5A, PPA1,

SDHA, ATP5C1, ATP5L, ATP5O,

ATP5A1, ATP5H

1.42E�09

hsa00020:Citrate cycle (TCA cycle) 9 18.37 SDHA, SUCLG2, SUCLG1, DLD, IDH2,

DLAT, OGDH, IDH3A, MDH2

1.03E�07

hsa05010:Alzheimer’s disease 14 28.57 HSD17B10, NDUFA5, NDUFB10, NDUFA8,

ATP5B, CYC1, CYCS, ATP5F1, COX5A,

SDHA, ATP5C1, ATP5O, ATP5A1, ATP5H

4.83E�07

hsa00280:Valine, leucine and isoleucine

degradation

6 12.24 HSD17B10, DLD, HADH, ACAT1,

HADHA, HADHB

0.03054

REACTOME Pathways Count Percent (%) Proteins FDR

REACT_1505:Integration of energy

metabolism

26 53.06 CPT2, ATP5B, CYC1, COX5A, OGDH,

ATP5L, ATP5O, ATP5H, ETFB, ETFA,

NDUFA5, ATP5J2, NDUFB10, NDUFA8,

SLC25A5, SUCLG2, SUCLG1, CYCS,

ATP5F1, DLAT, IDH3A, SDHA, DLD,

ATP5C1, ATP5A1, MDH2

7.20E�19

REACT_15380:Diabetes pathways 25 51.02 ATP5B, CYC1, COX5A, OGDH, ATP5L,

ATP5O, ATP5H, ETFB, ETFA, NDUFA5,

ATP5J2, NDUFB10, NDUFA8, SUCLG2,

SLC25A5, SUCLG1, CYCS, ATP5F1, DLAT,

IDH3A, SDHA, DLD, ATP5C1,

ATP5A1, MDH2

1.18E�14

(Continued on next page)
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High-OXPHOS Ovarian Cancer Cells Rely on the TCA
Cycle, while Low-OXPHOS Mainly Use Glycolysis
Similar to HGSOC samples, two OXPHOS subgroups of ovarian

cancer cell lines (OCCLs) were identified using ETCprotein levels

(Figures 2A and 2B). The subgroup of cells with high-ETC protein

levels (called high-OXPHOS by analogy with HGSOC) was char-

acterized by an elevated mitochondrial content (Figures 2C, 2D,

S2A, and S2B), mitochondrial network staining (Figure 2E), and

mitochondrial transmembrane potential (Figures S2C–S2E). As

expected, the mitochondrial area per cell surface unit was

strongly correlated with Mitotracker staining in these cells

(Rho = 0.94, p = 0.016 by Spearman’s test). High-OXPHOS

OCCLs also had a higher oxygen consumption rate (OCR),

both at basal and maximal-uncoupled states (Figures 2F and

2G), and exhibited higher mitochondrial ATP content relative to

low-OXPHOS cells (Figures 2F and 2H). Basal and maximal

OCR were significantly correlated with ETC protein levels (Fig-

ure 2I), suggesting a functional association between ETC protein

levels and mitochondrial respiration capacity.

We next investigated the carbon sources that fueled the TCA

cycle in eachOCCL subgroup (Figures 2J–2N).We first observed

that both high- and low-OXPHOS OCCLs were able to use

glucose to increase extracellular acidification rate (ECAR) (Fig-

ures 2J and S2F), but not for OCR (Figures 2K and S2G), indi-

cating that the two subgroups used glucose for glycolysis. In

contrast to low-OXPHOS cells, high-OXPHOS OCCLs used

glutamine to fuel mitochondrial respiration (Figures 2K and

S2G). We also investigated metabolic fluxes by performing iso-

topic profiling and comparing [13C]-glutamine and [13C]-glucose

use in high- and low-OXPHOS cells. We first observed that high-

OXPHOS cells consumed 2.6 times more [13C]-glutamine and

incorporated 1.4 times more [13C]-glucose than low-OXPHOS

OCCLs (Figure 2L). Moreover, in [13C]-glutamine conditions,

there was a decrease in alpha-ketoglutarate (aKG) and citrate

M5 isotopologues, and an increase in the M1-M4 isotopologues

in high-OXPHOS OCCLs compared to low-OXPHOS cells (Fig-

ure 2M), M5 isotopologues coming from cytosolic [13C]-gluta-

mine transformation, andM3-aKG andM4-citrate isotopologues

resulting from glutaminolysis through TCA cycle. Glutamine ana-

plerosis in high-OXPHOSwas further confirmed by the detection

of other labeled TCA compounds, such as succinate and malate

(Figure 2M). In [13C]-glucose conditions, carbon isotopologue

distribution of TCA cycle intermediates confirmed that TCA cycle

activity was higher in high-OXPHOS compared to low-OXPHOS

cells (Figure 2M). Thus, metabolic fluxes demonstrated that TCA

cycle was more active and glutamine more efficiently incorpo-

rated in high-OXPHOS than in low-OXPHOS OCCLs. Consistent

with these data, glutaminolysis inhibitor reduced OCR in high-

OXPHOS OCCLs (Figure S2H). In high-OXPHOS cells, 48% of

the citrate came from glutamine and 35% from glucose, sug-

gesting that the 17% left came from another source, such as

FAO or pyruvate. This, together with the accumulation of FAO

enzymes in high-OXPHOS HGSOCs (Figure S1E; Table S2),

prompted us to test the impact of FAO. We couldn’t test the

impact of exogenous fatty acids, such as palmitate, because it

was highly toxic in OCCLs; thus, we analyzed the impact of

FAO inhibition. High-OXPHOS OCCLs were more sensitive to

FAO inhibition than low-OXPHOS cells (Figure 2N), suggesting

that high-OXPHOS cells also use fatty acids to support

mitochondrial respiration. Finally, we tested if these cells could

exhibit some metabolic vulnerabilities. Consistent with high-

OXPHOS cells relying on active TCA cycle, we found that inhibi-

tion of mitochondrial complex I by metformin significantly

reduced high-OXPHOS cell viability (Figure S2I) but had no

impact on low-OXPHOS cells (Figure S2I).

High-OXPHOS Ovarian Tumors Exhibit Features of
Chronic Oxidative Stress
We next sought to characterize features of OXPHOS heteroge-

neity in HGSOCs. We first observed that OXPHOS tumors

were associated neither with any patient metabolic disorder,

nor with tumor properties, such as Ki-67 staining, mitotic index,

stage, or debulking efficiency (Figures S3A–S3D). Similarly, there

was no significant difference in proliferation, migration, or

anchorage-independent growth between low- and high-

OXPHOS OCCLs (Figures S3E–S3G). Still, high-OXPHOS cells

tend to form fewer colonies than low-OXPHOS cells, consistent

with the fact that FAO increases cell survival in conditions of loss

of attachment (Schafer et al., 2009) and is required for OCR in

high-OXPHOS cells.

As OXPHOS signature was observed in OCCLs, we consid-

ered that it was mainly driven by cancer cells and not by stroma.

We thus tested the association between OXPHOS and genomic

alterations, i.e., DNA copy number alterations (CNAs). While ETC

mRNA levels were higher in high- versus low-OXPHOS HGSOCs

(Figure S1D), no gene amplification was found in ETC genes or in

ETC-regulated transcription factors (Figures S3H and S3I).

Moreover, there was no association between OXPHOS stratifi-

cation and globalmutation counts or CNAper tumor (Figure S3J).

We also tested the link between OXPHOS and HR status by

Table 1. Continued

REACTOME Pathways Count Percent (%) Proteins FDR

REACT_1046:Pyruvate metabolism and

TCA cycle

8 16.33 SDHA, SUCLG2, SUCLG1, DLD, DLAT,

OGDH, IDH3A, MDH2

5.95E�06

REACT_1698:Metablism of nucleotides 10 20.41

ATP5J2, SLC25A5, ATP5B, ATP5F1,

ATP5C1, AK2, ATP5L, ATP5O,

ATP5A1, ATP5H

6.05E�05

Pathway enrichments were defined from Gene Ontology (GO), Reactome, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, using

DAVID web software (https://david.ncifcrf.gov/). The 50 most differential proteins (from Mann-Whitney test), between the 2 metabolic subgroups of

HGSOCs identified in Figure 1A, were used for the enrichment analysis. FDR was computed using the Benjamini-Hochberg procedure to account

for multiple testing. REViGO software was used to summarize information by removing redundant GO terms.
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using the LST (large-scale state transitions) signature, a robust

indicator of HRD (Popova et al., 2012; Goundiam et al., 2015),

as confirmed by two other published signatures (Abkevich

et al., 2012; Birkbak et al., 2012) (Figure S3K). OXPHOS signa-

ture was significantly associated with HRD in Curie cohort,

with a similar tendency, but not significant, in TCGA (Figures

3A and 3B).

As HRD is known to be associated with chronic oxidative

stress (Martinez-Outschoorn et al., 2012; Gorrini et al., 2013),

we next evaluated features of oxidative stress in HGSOCs (Fig-

ures 3C–3J). We first observed that the NFE2L2 (NRF2)-depen-

dent antioxidant response (list in Table S3) was upregulated in

high-OXPHOS tumors in both Curie and TCGA cohorts (Fig-

ure 3C) in the absence of any deleterious mutations of KEAP1

(Kelch-like ECH-associated protein 1). Levels of antioxidant en-

zymes were also significantly increased in high- compared to

low-OXPHOS HGSOCs (Figure 3D), suggesting they suffer

from oxidative stress. High-OXPHOS HGSOCs indeed exhibited

more oxidized proteins (Figures 3E and S3L) and lipid oxidation

products, such as lysophospholipids with acyl chains at sn-2 po-

sition (Figure 3E), together with fewer glutathione intermediates

(Figure 3G) than low-OXPHOS tumors. Although it was not

possible to measure reactive oxygen species (ROS) levels in tu-

mors due to their short half-life, we confirmed that both ROS and

lipid peroxidation levels were higher in high- than in low-

OXPHOS OCCLs (Figures 3H and 3I). Finally, we determined

that high-OXPHOS cells exhibited a higher lysosomal Fe2+ con-

tent (Figure 3J) than low-OXPHOS cells, thereby confirming that

high-OXPHOS cells suffer from chronic oxidative stress. To

determine if oxidative stress could be the cause rather than the

consequence of high-OXPHOS status, we investigated the

impact of antioxidant treatment (N-acetyl cysteine, NAC) on

ETC expression and OCR capacity of high-OXPHOS cells. We

found that NAC treatment reduced ETC gene expression (Fig-

ure 3K) and OCR (Figure 3L), and thus reversed at least in part

the high-OXPHOS status. In conclusion, high-OXPHOS cells

are characterized by a chronic oxidative stress and this stress

is required for high-OXPHOS properties.

PML-Nuclear Bodies Accumulate in High-OXPHOS
HGSOCs and Play a Key Role in OXPHOS Signature
through PGC-1a Regulation
We next aimed to determine the molecular players involved in

OXPHOS regulation downstream of oxidative stress in HGSOCs.

There is long-lasting evidence showing that ROS exert active

signaling activities (Gentric et al., 2017). Among them, PML fac-

tor is a well-known target of oxidative stress; its aggregation is

regulated by ROS (Sahin et al., 2014; Tessier et al., 2017). We

compared PML protein levels and nuclear bodies (NBs) in low-

and high-OXPHOS HGSOCs by immunohistochemistry (IHC)

(Figures 4A, 4B, and S4A). High-OXPHOS HGSOCs showed a

stronger PML histologic score (Hscore) (Figures 4A and 4B, left

panel) and a higher content in PML-NBs per cell (Figures 4A,

4B, right panel, and S4B) than low-OXPHOS tumors. As PML

Hscore, PML-NBs, and PML mRNA levels were correlated in

HGSOCs of the Curie cohort (Figures S4C and S4D), we tested

PML regulation in the TCGA cohort. We found that PML protein

(Figure 4C) and mRNA (Figure S4E) levels were also significantly

higher in high-OXPHOSHGSOCs than in low-OXPHOS tumors in

TCGA, thereby showing the link between PML andOXPHOS sta-

tus in two independent HGSOC cohorts.

High-OXPHOS OCCLs also had a higher content in PML-NBs

than low-OXPHOS cells (Figures 4D and 4E), consistent with

their higher ROS content (Figure 3I). Notably, PML silencing (Fig-

ures S4F–S4H) decreased both basal and maximal OCR in high-

OXPHOS cells, with almost no impact on low-OXPHOS cells

Figure 2. High-OXPHOS Ovarian Cancer Cells Rely on the TCA Cycle

(A) Representative WB of five ETC proteins in OCCLs. Actin is internal control. OXPHOS status was defined from quantification in (B).

(B) Mean of five ETC protein levels quantified from WB as in (A) and normalized to actin. Data are means ± SEM (n = 3 independent experiments). p value from

Student’s t test.

(C) Representative electron microscopy (e.m.) pictures from OCCLs. Scale bars, 0.5 mm and 0.25 mm (low and high magnification).

(D) Scatterplot showing mitochondrial area per unit of cell surface (in mm2) assessed using e.m. of OCCLs listed in (A). Data are means ± SEM (nR 8 e.m. pictures

per cell line). p value from Student’s t test.

(E) SpecificMFI of Mitotracker Deep Red dye in low- (IGROV1, SKOV3, OVCAR8) and high- (OC314, CAOV3, OVCAR4) OXPHOSOCCLs. Data are means ± SEM

(n = 3 independent experiments per cell line). p values from Student’s t test.

(F) Representative OCR pattern as a function of time (in min), normalized to total protein levels. Oligomycin (Oligo), carbonyl cyanide-4-(trifluoromethoxy)phe-

nylhydrazone (FCCP), rotenone (Rot), and antimycin A (Anti A) were added to measure basal OCR, ATP content, maximal OCR, and non-mitochondrial OCR.

N = 14 OCCLs listed in (A). Data are means of four replicates per cell line.

(G and H) Basal or maximal OCR (G) andmitochondrial ATP content (H) normalized to total protein levels. N = 14OCCLs listed in (A). Data aremeans ± SEM (nR 3

independent experiments). p values from Student’s t test.

(I) Correlations between basal (left) or maximal (right) OCR and mean of ETC protein levels. p values are from Spearman test.

(J and K) Basal EACR (J) and OCR (K) in presence of 10 mM glucose (Glc) or 2 mM glutamine (Gln), in control conditions (no Glc no Gln or in presence of both

10 mMGlc and 2 mMGln) in low- (IGROV1, SKOV3, OVCAR8, OV7) and high- (OC314, CAOV3, OVCAR4) OXPHOS OCCLs. Each dot is the mean value for each

cell line (n R 3 independent experiments). Bar plots show means ± SEM for each OXPHOS subgroup. p values from Student’s t test.

(L) Consumption of [13C]-glutamine (left) or [13C]-glucose (right) in low- (IGROV1) and high- (OC314) OXPHOS cells after 24 hr of incubation in the corresponding

medium. Data are means ± SEM (n = 3 replicates per cell line).

(M) Schematic representation of [13C]-glutamine- (purple dots) or [13C]-glucose-derived carbons (green dots). Bar plots show distribution of isotopologues (M0 to

M6 according to labeled carbons) for each metabolite in low- (IGROV1, L) and high- (OC314, H) OXPHOS cells after 24 hr of incubation with -Glc- (10 mM
13C-glucose + 2 mM glutamine) or -Gln- (2 mM 13C-glutamine + 10 mM glucose). Data are shown as means (n = 3 replicates per cell line).

(N) Percentage (%) of OCR inhibition 30 min after etomoxir treatment (40 mM) in presence of 10 mM glucose and 2 mM glutamine in low- (IGROV1, SKOV3,

OVCAR8, OV7) and high- (OC314, CAOV3, OVCAR4) OXPHOS OCCLs. Data are means ± SEM (n R 3 independent experiments). p values are from Student’s

t test.

AcCoA, acetyl coenzyme A; aKG, alpha ketoglutarate; CID, carbon isotopologue distribution; Cit, citrate; Glc, glucose; G6P, glucose 6-phosphate; Glu,

glutamate; Gln, glutamine; Mal, malate; Pyr, pyruvate; Suc, succinate; 3PG, 3-phosphoglycerate. See also Figure S2.
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(Figures 4F and 4G). In addition, PML silencing in high-OXPHOS

OCCLs also reduced expression of ETC genes (Figure 4H). We

validated the long-term impact of PML silencing (Figure S4I) on

OCR capacity and ETC expression in high-OXPHOS cells using

stable cell lines (Figures 4I, left panel, 4J, and S4J), but with no

impact on cell proliferation and migration (Figures S4K and

S4L). Moreover, incorporation of glutamine to fuel TCA cycle

was reduced in PML-silenced high-OXPHOS cells, while

glucose-dependent OCR remained low and did not vary (Fig-

ure 4I, middle and right panels). In addition, PML silencing in

high-OXPHOS cells significantly reduced the impact of FAO in-

hibitor on OCR (Figure 4J), suggesting that PML was essential

for glutamine anaplerosis and FAO in high-OXPHOS cells.

Finally, NAC antioxidant treatment, which reduced expression

of ETC encoding genes (Figure 3K), also reduced PML-NBs in

high-OXPHOS cells (Figure 4K), thereby confirming the impor-

tant role of ROS in these cells. Thus, PML and ROS are not

only associated with, but also necessary for, high-OXPHOS sta-

tus in HGSOCs.

ETC genes are upregulated at the transcriptional level by

PGC-1a, which is itself activated by lysine deacetylation

(Rodgers et al., 2005; Tan et al., 2016). As PML was recently

identified as an upstream activator of PGC-1a in breast cancers

(Carracedo et al., 2012), we tested the impact of PML silencing

on PGC-1a in high-OXPHOS OCCLs. PML silencing had

no impact on PGC-1a mRNA and protein levels (Figures S4M

and S4N), but it increased PGC-1a acetylation on lysine

residues, thereby reducing its transcriptional activity (Figures

4L and 4M). As observed for PML, PGC-1a silencing reduced

respiration capacities (Figure 4N) and ETC expression (Fig-

ure 4O). Interestingly, promoters of the top 50 most upregulated

genes in high-OXPHOS tumors were enriched in PPARg-binding

motifs (Enrichr software, http://amp.pharm.mssm.edu/Enrichr/),

consistent with the fact that PGC-1a is a co-activator of PPARg.

In contrast, other expected binding sites, such as ERRa, were

not enriched. We thus tested whether treatment of low-OXPHOS

OCCLs by rosiglitazone, known to increase mitochondrial

component biogenesis through activation of PGC-1a and

PPARg (Ohno et al., 2012), could promote high-OXPHOS status.

Rosiglitazone indeed increased basal OCR (Figure 4P) and

enhanced ETC expression (Figure 4Q) in low-OXPHOS cells,

suggesting that mitochondrial biogenesis in low-OXPHOS could

be sufficient for establishing high-OXPHOS status. Taken as

a whole, these data suggest that PML plays a critical role in

OXPHOS metabolism in HGSOCs by modulating PGC-1a tran-

scriptional activity and subsequently ETC gene expression and

mitochondrial respiration.

High-OXPHOS Metabolism Is Associated with Better
Prognosis in HGSOC Patients
The association of high-OXPHOS metabolism with tumor

response to treatment is still debated (Obre and Rossignol,

2015; Gentric et al., 2017). In order to study the impact of

OXPHOS stratification in response to standard chemotherapy

(i.e., platinum salts and taxane) in HGSOCs, we took advantage

of the ovarian patient-derived xenograft (PDX) mouse models

that recapitulate histopathological and molecular properties of

the patient’ tumors from which they are derived, as shown previ-

ously (Gruosso et al., 2015), including HRD status and response

to chemotherapy (Table S1). We first determined the OXPHOS

status of ovarian PDX by analyzing ETC protein levels (Figure 5A)

and confirmed that high-OXPHOS PDX exhibited a higher mito-

chondrial area than low-OXPHOS models (Figure 5B). PDX

models were screened for their engraftment capacity, and tumor

growth of three high- and four low-OXPHOS PDX was analyzed.

Although PDX exhibited distinct tumor growth kinetics, we could

not detect any difference related to OXPHOS status (Figure 5C).

In contrast, chemotherapy responses were different depending

on OXPHOS status (Figures 5D–5F and S5A). Tumor growth

was more efficiently inhibited upon chemotherapy in high-

versus low-OXPHOS PDX models in both fast- and slow-

growing tumors (Figures 5D and 5E). Moreover, in two different

treatment conditions (carboplatin or carboplatin plus paclitaxel),

tumor growth inhibition per mouse was significantly better in

high-OXPHOS PDX models (Figures 5F and S5A). Importantly,

treatment response was not dependent on the HR status.

Indeed, HRD and HRP PDX models were equally distributed in

the two OXPHOS subgroups (Figures 5F and S5A). Moreover,

Figure 3. High-OXPHOS HGSOCs Exhibit Features of Oxidative Stress

(A) Left: PCA on ETC protein levels (N = 127 HGSOCs; low-OXPHOS, blue, N = 53; high-OXPHOS, red, N = 74). Right: same PCA representation showing HRD

(high-LST, green, N = 37) and HRP (low-LST, blue, N = 18) HGSOCs. Unavailable data (NA) are in gray. Bottom: contingency table showing the repartition of low-

and high-OXPHOS HGSOCs in HRP and HRD subgroups. p values from Fisher’s exact test.

(B) Same as in (A) on TCGA data (N = 169 HGSOCs; low-OXPHOS = 90; high-OXPHOS = 79; HRP = 68; HRD = 97).

(C) Gene set enrichment analysis (GSEA) of NFE2L2-target genes in high-OXPHOS HGSOCs (top, Curie; bottom, TCGA). p value from false discovery rate (FDR).

(D) Levels of antioxidant enzymes in HGSOCs (top, Curie; bottom, TCGA). Proteomic data are normalized as in Figure 1E. Medians are shown. p values from

Mann-Whitney test.

(E) Carbonylation scores (carbonylated/total protein levels) in HGSOCs. N = 40. Medians are shown. p values from Mann-Whitney test.

(F) sn-2 lysophospholipid abundance (metabolomics data) in HGSOCs. N = 45. p values from Mann-Whitney test.

(G) Same as in (F) for gamma-glutamyl intermediates from metabolomic data. N = 45. p values from Student’s t test.

(H) Specific MFI using CellROX probe in low- (IGROV1, SKOV3, OVCAR8) and high- (OC314, CAOV3, OVCAR4) OXPHOS OCCLs. Data are means ± SEM (nR 3

independent experiments). p values from Student’s t test.

(I) Left: same as in (H) using Bodipy C11 probe. Right: representative views of Bodipy C11 immunofluorescence (IF).

(J) Same as in (H) using RhoNox-M (RhoM) probe normalized to the lysosomal content, assessed by lystrocker probe.

(K) ETCmRNA levels (ATP5A, UQCRC2, SDHB, COXII, and NDUFB8) in high-OXPHOSOCCLs (CAOV3, OC314, and OVCAR4) treated (red dotted bar) or not (red

empty bar) with NAC (5 mM) during 48 hr. Data (fold change normalized to untreated) are means ± SEM (n = 3 independent experiments). p values from one-

sample t test.

(L) Basal OCR in high-OXPHOS cells (CAOV3, OC314, OVCAR4) upon NAC treatment (5 mM, 48 hr), normalized to the mean of untreated condition for each cell

line. Data are means ± SEM (n = 3 independent experiments). p values from Student’s t test.

See also Figure S3 and Tables S1 and S3.

164 Cell Metabolism 29, 156–173, January 8, 2019

http://amp.pharm.mssm.edu/Enrichr/


(legend on next page)

Cell Metabolism 29, 156–173, January 8, 2019 165



when restricted to HRP, high-OXPHOS PDX still showed stron-

ger tumor growth inhibition than low-OXPHOS models (Figures

5G and S5B). Thus, OXPHOS status is associated with better

response to chemotherapy in PDX, even in HRP models.

Consistent with these observations on PDX, high-ETC protein

level (defining high-OXPHOS status) was associated with

improved patient survival (Figure 5H). As progression-free sur-

vival reflects both response to chemotherapy and debulking ef-

ficiency for most patients, we performed analyses at short term

after the first line of chemotherapy (relapse at 12 months) and

found that patients with high-ETC protein levels were associated

with absence of relapse at 12 months (Figure 5H). Similar results

were obtained at mRNA levels (Figure S5C) and when HGSOC

patients were stratified according to both HR and OXPHOS sta-

tus (Figure S5D). Although we did not detect any impact of

OXPHOS status on HRD patients, HRP patients (defined either

by LST signature, NtAi [Birkbak et al., 2012] or HRD score [Abke-

vich et al., 2012]) with high-ETC protein levels survived longer

and were associated with a lack of relapse at 12 months (Figures

5I–5K) compared to those with low-ETC protein levels. Finally,

stratification of HGSOCs into two subgroups according to PML

HScore was indicative of patient survival. High-PML HScores

were indeed associated with better patient prognosis (Figure 5L)

and enriched in high-OXPHOS tumors (Figure 5M), consistent

with the role of PML in OXPHOS status. Unfortunately, PGC-1a

was not detected in transcriptomic or proteomic data in human

samples, thereby precluding the same type of analyses with

PGC-1a. Thus, these data confirmed the link between PML

and OXPHOS status and its impact on patient survival.

High-OXPHOS Metabolism Enhances Chemosensitivity
by Modulating ROS Levels
Consistent with results on PDX and patients, high-OXPHOS

OCCLs exhibited higher chemosensitivity to taxane and

platinum salts than low-OXPHOS cells (Figure 6A). Here again,

this effect was not linked to HR status, as both high- and low-

OXPHOS OCCLs included high-LST profile (STAR Methods).

Notably, PML and PGC-1a silencing significantly reduced the

chemosensitivity of high-OXPHOS OCCLs (Figures 6B and 6C).

Moreover, PML silencing in mouse models also significantly

reduced chemosensitivity in vivo (Figures 6D and 6E), suggesting

that PML is essential not only to promote high-OXPHOS status

(Figure 4), but also to modulate chemosensitivity. We next

sought to define how high-OXPHOS status promotes chemo-

sensitivity. We hypothesized that the chronic oxidative stress

detected in high-OXPHOS tumors and OCCLs at basal state

(Figure 3) could be involved in their increased chemosensitivity.

We first confirmed that treatment of OCCLswith taxane and plat-

inum salts significantly increased ROS content (Figure 6F), in

particular in high-OXPHOS cells (fold change = 1.6 in high-

OXPHOS; 1.1 in low-OXPHOS). In addition, although it was not

possible to measure ROS content in tumors, we analyzed by

electron microscopy the mitochondria integrity in PDX before

and after chemotherapy. While sections showed normal ultra-

structure and inner and outer membrane integrity before treat-

ment, chemotherapy had a dramatic effect on mitochondrial

integrity in high-OXPHOS PDX, as they exhibited altered ultra-

structure and cristae disorganization (Figure 6G). Moreover,

consistent with the reduced chemosensitivity upon PML

Figure 4. PML Is a Key Actor in High-OXPHOS Ovarian Cancer

(A) Representative views of PML IHC in HGSOCs, with PML-NBs (arrows). Scale bars, 50 mm and 10 mm (low and high magnification).

(B) PML Hscore (left) and number of PML-NBs per cell (right) in HGSOCs. N = 71. Medians are shown. p values from Mann-Whitney test.

(C) PML protein levels in HGSOCs from TCGA cohort (N = 169). Medians are shown. p values from Mann-Whitney test.

(D) Representative views of PML IF in OCCLs, with PML-NB (high magnification). Scale bars, 50 mm and 10 mm (low and high magnification).

(E) Number of PML-NBs per cell in low- (IGROV1, SKOV3, OVCAR8) and high- (CAOV3, OC314, OVCAR4) OXPHOS OCCLs. Data are means ± SEM (n = 3

independent experiments). p values from Student’s t test.

(F) Representative pattern of OCR as a function of time (min) normalized to total protein levels. High-OXPHOS OCCLs (CAOV3, OC314, and OVCAR4) were

transfected with non-targeting small interfering RNA (siRNA) (siCTRL) or with two different siRNA targeting PML (siPML#1 and siPML#2).

(G) Basal (left) andmaximal (right) OCR following PML silencing in low- (IGROV1, SKOV3, OVCAR8) and high- (OC314, CAOV3, OVCAR4) OXPHOSOCCLs. Each

dot is the mean value for each cell line (nR 3 independent experiments). Bar plots show means ± SEM for each OXPHOS subgroup. p values from paired t test.

(H) ETC mRNA levels (ATP5A, UQCRC2, SDHB, COXII, and NDUFB8) in high-OXPHOS OCCLs (CAOV3, OC314, and OVCAR4) transfected with non-targeting

siRNA (siCTRL) or with two siRNA targeting PML (siPML#1 and #2). Data (fold change normalized to non-targeting siRNA) are means ± SEM (nR 3 independent

experiments). p values from one-sample t test.

(I) Basal OCR in high-OXPHOS OCCLs (CAOV3, OC314, and OVCAR4) transfected with shCTRL, shPML#1 or shPML#2 in presence of 10 mM glucose and 2mM

glutamine (left), 10 mM glucose (middle), or 2 mM glutamine (right). Each dot is the mean value for each cell line (n = 3 independent experiments). Bar plots show

means ± SEM of the three cell lines per condition. p values from Student’s t test.

(J) Same as in (I). Bar plot shows percent (%) of OCR inhibition, 30 min after etomoxir treatment (40 mM) in presence of 10 mM glucose and 2 mM glutamine.

(K) Representative views of PML IF in high-OXPHOS OCCLs (CAOV3) following NAC treatment (5 mM, 48 hr). High-magnification views show PML-NBs. Scale

bars, 50 mm and 10 mm (low and high magnification).

(L) Representative WB showing acetylated PGC-1a after PGC-1a immunoprecipitation (top) and total PGC-1a protein (bottom) from high-OXPHOS OCCLs

(CAOV3, OC314, and OVCAR4) transfected with siCTRL, siPML#1, or siPML#2.

(M) Ratio of acetylated PGC-1a to total PGC-1a protein levels upon PML silencing, as shown in (L). Data are means ± SEM of fold changes normalized to siCTRL

(n = 3 independent experiments). p values from one sample t test.

(N) Basal OCR following PGC-1a silencing (siPGC-1a#1 and #2) normalized to siCTRL in high-OXPHOSOCCL (CAOV3, OC314, and OVCAR4). Data are means ±

SEM (n = 3 independent experiments). p values from one-sample t test.

(O) As in (H) after transfection with siCTRL, siPGC-1a#1, or siPGC-1a#2. Data (fold change normalized to non-targeting siRNA) are means ± SEM (n = 3 inde-

pendent experiments). p values are from one-sample t test.

(P) Basal OCR in low-OXPHOS cells (IGROV1, SKOV3, and OVCAR8) upon rosiglitazone treatment (10 mM, 48 hr) normalized to the mean of untreated condition

for each cell line. Data are means ± SEM (n = 2 independent experiments). p values from one-sample t test.

(Q) As in (H) in cells in low-OXPHOS OCCLs (IGROV1, SKOV3, and OVCAR8) treated (stripped bar) or not (empty bar) with rosiglitazone (10 mM, 48 hr). Data (fold

change normalized to untreated) are means ± SEM (n = 2 independent experiments). p values from one-sample t test.

See also Figure S4.
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inactivation (Figure 6B), PML silencing also decreased ROS con-

tent, lipid peroxidation, and lysosomal Fe2+ levels (Figures

6H–6J), suggesting that ROS content in high-OXPHOS cells

might be a key element in their chemosensitivity.

High-OXPHOS OCCLs are characterized by ROS increase,

elevated lipid peroxidation, and disruption of iron homeostasis,

all features affected by PML silencing. Increased lipid peroxida-

tion and disruption of iron homeostasis, associatedwith elevated

ROS content, characterize ferroptosis, an iron-dependent cell

death program (Dixon et al., 2012; Mai et al., 2017). We thus

hypothesized that ferroptosis could be involved in enhanced

chemosensitivity of high-OXPHOS cells and investigated the

impact of ironomycin, a potent derivative of the natural product

salinomycin, known to promote death consistent with ferroptosis

in breast cancer cells (Mai et al., 2017). Ironomycin exhibited a

selective and more potent activity on high-OXPHOS OCCLs

than low-OXPHOS cells (Figure 6K). Ironomycin significantly

increased iron accumulation, ROS, and lipid peroxidation in

high-OXPHOS OCCLs, while it had no significant impact on

low-OXPHOS cells (Figures 6L–6N). Furthermore, PML silencing

reduced the sensitivity of high-OXPHOS cells to ironomycin (Fig-

ure 6O), thereby showing that this sensitivity is linked to PML and

OXPHOS status. These findings thus suggest that enhanced

chemosensitivity of high-OXPHOS cells could rely on ROS accu-

mulation, mitochondrial alterations, and potentially ferroptosis.

DISCUSSION

Here, we highlight an unsuspected metabolic heterogeneity in

HGSOCs based on OXPHOS patterns and link it to PML-PGC-

1a and chemosensitivity. High-OXPHOS tumors are character-

ized by increased expression of ETC components and enhanced

mitochondrial respiration. High-OXPHOS HGSOCs undergo a

chronic oxidative stress that increases PML-NBs, which in turn

stimulate PGC-1a transcriptional activity and expression ofmito-

chondrial respiration genes. Finally, by studying pre-clinical

models and cohorts of patients, we show that high-OXPHOS

HGSOCs are highly sensitive to conventional chemotherapies

and that chronic oxidative stress and PML play key roles in this

chemosensitivity (Figure 6P).

Genomic and transcriptomic analyses have previously identi-

fied several molecular entities in HGSOCs (Tothill et al., 2008;

Cancer Genome Atlas Research Network, 2011; Mateescu

et al., 2011; Bentink et al., 2012; Verhaak et al., 2013; Konecny

et al., 2014; Gruosso et al., 2015; Batista et al., 2016). Our prote-

omics andmetabolomics studies refine these classifications and

highlight metabolic entities within HGSOCs. Previous compara-

tive analyses between cancers and normal tissues demon-

strated a glycolytic switch toward the Warburg effect in ovarian

cancers (Fong et al., 2011). These metabolic changes helped

identify specific biomarkers, including phospholipids and acyl-

carnitine, which accumulate at abnormal levels in the plasma

of ovarian cancer patients (Sutphen et al., 2004; Odunsi et al.,

2005; Ke et al., 2015; Xie et al., 2017). In addition, low serum

phospholipids were correlated with worse prognosis (Bach-

mayr-Heyda et al., 2017), as we observed for low-OXPHOS

patients. Moreover, metabolomic profiling of serum and tumor

tissue from HGSOC patients revealed hydroxybutyric acid me-

tabolites as prognostic biomarkers associated with tumor

burden and patient survival (Hilvo et al., 2016). Our observations

provide an additive demonstration of heterogeneity in the carbon

sources and catabolic pathways used by HGSOCs. Indeed, we

demonstrated that high-OXPHOS ovarian cancer cells use

mainly glutamine and fatty acids, as also recently described in

other tumors (Caro et al., 2012; Vazquez et al., 2013; Camarda

et al., 2016; Hensley et al., 2016; Farge et al., 2017). Moreover,

we identify here an ROS-dependent PML-PGC-1a axis in

defining the high-OXPHOS status in HGSOCs.

The origin of metabolic heterogeneity was shown to be highly

dependent on the cancer type (Obre and Rossignol, 2015; Gen-

tric et al., 2017). Genomic amplification ofmetabolic genes forms

a core part of metabolic reprogramming in various cancers (Pos-

semato et al., 2011; Haider et al., 2016; Iorio et al., 2016). In

contrast, we observed similar amplification patterns between

Figure 5. High-OXPHOS Metabolism Is Associated with Better Patient Prognosis

(A) Left: representative WB showing five ETC proteins in HGSOC PDX. Actin is internal control. Right: mean of five ETC proteins levels normalized to actin. Data

are means ± SEM (N = 10 PDX models). p value from Student’s t test.

(B) Mitochondrial area per unit of cell surface (in mm) in low- (OV21) and high- (OV26) OXPHOS PDX. Data are means ± SEM (n = 20 e.m. pictures). p value from

Student’s t test.

(C) Tumor growth curves (relative tumor volumes [RTV] = Vn/V0 as a function of time [days]) in low- (blue) and high- (red) OXPHOS HGSOC PDX (low-OXPHOS

HRP, OV14, OV21; low-OXPHOS HRD, OV25, OV38; high-OXPHOS HRP, OV16, OV26; high-OXPHOS HRD, OV10). Data are means ± SEM (n R 7 mice

per group).

(D and E) Tumor growth curves of representative fast- (D) and slow- (E) growing PDX. Mice were treated with NaCl 0.9% (untreated), carboplatin, or

carboplatin + paclitaxel, as indicated. Data are means ± SEM (n R 7 mice per group).

(F) Left: waterfall plots showing change to baseline (%) per mouse at the end of carboplatin + paclitaxel treatment in each PDX model. Baseline is the mean of

untreated control mice. Change to baseline is calculated as (RTV from carboplatin + paclitaxel-treated mice/RTV from control mice) � 13 100. Right: change to

baseline comparing low- and high-OXPHOS PDX. Medians are indicated. p value from Mann-Whitney test.

(G) As in (F), right, restricted to HRP PDX, i.e., low- (OV21 and OV14) and high- (OV26 and OV16) OXPHOS HRP PDX. Medians are indicated. p value fromMann-

Whitney test.

(H) Left: Kaplan-Meier curves showing 10-year overall survival of HRD and HRP patients with low- (blue) or high- (red) ETC protein levels. p value from log-rank

test. Right: mean ETC protein levels in HGSOCs according to relapse status at 12 months after the end of the first line of chemotherapy. Data are means ± SEM.

p value from Student’s t test.

(I–K) Same as in (H) for HRP patients identified by LST signature (I), Ntai score (J), or HRD score (K).

(L) Same as in (H) according to PML HScore. p value from log-rank test.

(M) Association between low- and high-PML HGSOCs (PML Hscore) and OXPHOS status. p value from Fisher’s exact test.

For Kaplan-Meier analyses, stratification of patients was performed using successive iterations to find the optimal sample size thresholds. See also Figure S5 and

Table S1.
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low- and high-OXPHOS HGSOCs, consistent with a recent

report showing that CNAs in HGSOCs do not affect metabolic

functions (Zhang et al., 2016). Here, we show that high-OXPHOS

HGSOCs exhibit several hallmarks of chronic oxidative stress

and that PML is involved in promoting the OXPHOS status and

its related chemosensitivity. PML is a well-known tumor sup-

pressor in leukemia (Gurrieri et al., 2004; de Thé et al., 2017).

However, when detected in tumors, PML acts as a potent pro-

apoptotic factor through activation of TP53 or Rb/E2F pathway

(Vernier et al., 2011; Ablain et al., 2014; Niwa-Kawakita et al.,

2017). Numerous studies have shown that cells andmice lacking

PML are resistant to pro-apoptotic and pro-senescent stimuli (de

Thé et al., 2017). These observations are consistent with the

enhanced chemoresistance we observed in vitro and in vivo

upon PML silencing in high-OXPHOS ovarian cancers. PML

expression is associated with inactivation of TP53, the most

highly mutated gene in HGSOCs (Cancer Genome Atlas

Research Network, 2011). While a metabolic function of PML

was proposed in breast cancer cells (Carracedo et al., 2012;

Martı́n-Martı́n et al., 2016), it was never explored in ovarian can-

cers. PML regulates metabolism by modulating PGC-1a activa-

tion, a key regulator of mitochondrial functions in physiology and

in cancer metabolism (Tan et al., 2016). Importantly, we demon-

strate here that PML and PGC-1a are both necessary for

high-OXPHOS features. Reciprocally, PGC-1a-PPAR-mediated

mitochondrial biogenesis in low-OXPHOS cells is sufficient to in-

crease high-OXPHOS characteristics, thereby suggesting that

the PML-PGC-1a axis may act as one of the switches between

high- and low-OXPHOS states, by regulating transcription of

mitochondrial genes. Mechanistically, localization of PGC-1a

into subnuclear structures allows its interaction with transcrip-

tional cofactors and coregulators. It is thus plausible that PML-

NBs could constitute an interface whereby PGC-1a interacts

with transcriptional components and where its acetylation is

dynamically controlled toward activation.

The association between OXPHOS status and chemosensitiv-

ity represents a promising therapeutic window, potentially for

ROS-producing agents (Gentric et al., 2017; Saed et al., 2017)

and ferroptosis activators. Inhibition of mitochondrial respiration

sensitizes various cancer cells to conventional therapies

(Roesch et al., 2013; Viale et al., 2014; Farge et al., 2017). It

was shown that chemotherapy can promote selection and

expansion of high-OXPHOS cancer stem cells (Liu et al., 2013;

Vazquez et al., 2013; Vellinga et al., 2015; Farge et al., 2017).

These chemoresistant dormant cancer cells exhibit low levels

of ROS associated with slow-cycling activity and enhanced anti-

oxidant detoxification capacity (Caro et al., 2012; Roesch et al.,

2013; Vazquez et al., 2013; Sancho et al., 2015), in sharp contrast

to high-OXPHOS ovarian cancer cells. Indeed, we show that

high-OXPHOS ovarian cancer cells and tumor samples exhibit

Figure 6. High-OXPHOS Metabolism Enhances Chemosensitivity by Modulating ROS Levels
For a Figure360 author presentation of Figure 6, see https://dx.doi:10.1016/j.cmet.2018.09.002#mmc5.

(A) Representative dose-response curve showing variation in cell viability of low- (IGROV1, SKOV3, OVCAR8) and high- (CAOV3, OC314, OVCAR4) OXPHOS

OCCLs after 48 hr of treatment. Cells were exposed to carboplatin + paclitaxel at concentrations of 0.01 to 1,000 mM. Data relative to vehicle-treated controls are

means ± SEM (n = 3 independent experiments). Note that IC50
high-OXPHOS = 3.5 mM, IC50

low-OXPHOS = 13 mM. p value from Student’s t test.

(B and C) Relative cell viability of high-OXPHOS OCCLs (CAOV3, OC314, and OVCAR4) transfected with non-targeting siRNA (siCTL), siRNA targeting PML

(siPML#1 and #2) (B), or siRNA targeting PGC-1a (siPGC-1a#1 and #2) (C). Cells were exposed to carboplatin [5.10�5M] and paclitaxel [10�6M] during 96 hr. Data

relative to vehicle-treated controls are means ± SEM (n = 3 independent experiments). p values from paired t test.

(D) Waterfall plot showing change to baseline per mouse at the end of carboplatin + paclitaxel treatment in mice engrafted with high-OXPHOS (OC314) stable cell

lines expressing either non-targeting (shCTRL) or PML-targeting shRNA (shPML). Baseline is the mean of untreated control group of mice. Change to baseline is

calculated as (RTV from carboplatin + paclitaxel treated mice/RTV from control mice) � 1 3 100.

(E) Change to baseline comparing shCTRL and shPML mouse models. Medians are indicated. p value from Mann-Whitney test.

(F) Specific MFI of CellROX probe in low- (IGROV1, SKOV3, OVCAR8, blue) and high- (CAOV3, OC314, OVCAR4, red) OXPHOS OCCLs following

carboplatin + paclitaxel treatment ([5.10�5 M] carboplatin+[10�6 M] paclitaxel, 24 hr). Data are means ± SEM (n = 3 independent experiments). p values from

paired t test.

(G) Percent (%) of healthy (white) or altered (black) mitochondria morphology following carboplatin + paclitaxel treatment in low- (OV21) and high- (OV26) PDX

models. (n R 9 e.m. pictures).

(H) Specific MFI using CellROX probe in high-OXPHOS cells (CAOV3, OC314, and OVCAR4) transfected with shCRTL, shPML#1, or shPML#2. Each dot is the

mean value for each cell line (n = 3 independent experiments). Bar plots show means ± SEM of the three cell lines per condition (shCTRL, shPML#1, and

shPML#2). p values from paired t test.

(I) Same as in (H) using Bodipy C11 probe.

(J) Same as in (H) using RhoM probe normalized to the lysosomal content, assessed by lystrocker probe.

(K) Left: representative dose-response curve showing variation in cell viability of low- (IGROV1, SKOV3, OVCAR8) and high- (CAOV3, OC314, OVCAR4) OXPHOS

OCCLs after 72 hr of ironomycin from 0.0001 to 1,000 mM. Data relative to vehicle-treated controls are means ± SEM (n = 3 independent experiments). Right: bar

plot showing the corresponding ironomycin IC50 values (n = 3 independent experiments). p values from Student’s t test.

(L–N) As in (H)–(J) in low- (IGROV1, SKOV3, OVCAR8) and high- (CAOV3, OC314, OVCAR4) OXPHOS cells upon ironomycin treatment (6 mM, 24 hr). Data are

means ± SEM (n = 3 independent experiments). p values from paired t test.

(O) Ironomycin IC50 values in high-OXPHOS cells, CAOV3 (left), OC314 (middle), and OVCAR4 (right) transfected either with non-targeting shRNA (shCTRL) or

with shRNA targeting PML (shPML#1 and #2). Data are shown as mean ± SEM (n = 3 independent experiments). p values from paired t test.

(P) Around half of HGSOCs are characterized by elevated levels of carbonylated proteins and lysophospholipids, with decreased abundance of glutathione

intermediates, all hallmarks of redox imbalance. Oxidative stress promotes PML and PML-NB accumulation, leading to PGC-1a activation through its deace-

tylation. PGC-1a activation in turn increases transcription of ETC components, further enhancing mitochondrial respiration. High-OXPHOS HGSOCs rely on

OXPHOS, as well as glutamine- and fatty acid-fueled TCA cycle. Mitochondrial respiration might participate in ROS production, thereby leading to a potential

positive feedback loop in high-OXPHOSHGSOCs. High-OXPHOSHGSOCs exhibit an enhanced sensitivity to conventional therapies, an effect mediated at least

in part through the ROS-PML axis described here.

ROS, reactive oxygen species; NB, nuclear bodies; Ac, acetylated lysine; ETC, electron transport chain; TF, transcription factor; CI, complex I; CII, complex II;

CIII, complex III; CIV, complex IV; CV, complex V; TCA, tricarboxylic acid; NADH, H+, nicotinamide adenine dinucleotide reduced form; FADH2, flavin adenine

dinucleotide reduced form; OXPHOS, oxidative phosphorylation.
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features of chronic oxidative stress. These hallmarks of oxidative

stress (ROS content, lipid peroxides, and lysosomal Fe2+) are all

affected by PML silencing and may explain, at least in part, the

enhanced chemosensitivity of high-OXPHOS cells to taxane

and platinum salts, potentially through ferroptosis (Mai et al.,

2017). In that sense, we found that inhibition of mitochondrial

complex I by metformin increases mitochondrial ROS content

and cell death of high-OXPHOS cells, while it has no impact on

low-OXPHOS cells. In addition to drugs promoting ROS in-

crease, targeting metabolic properties of high-OXPHOS cells,

by combining glutaminolysis or fatty acid inhibitors with chemo-

therapeutic drugs, may be a promising strategy to increase cell

death and overcome drug resistance, as proposed in Obre and

Rossignol (2015) and Gentric et al. (2017). Overall, our findings

provide functional and molecular evidence of OXPHOS meta-

bolic heterogeneity in HGSOCs and link them to an ROS-PML-

PGC-1a axis and, critically, to chemotherapy response.

Limitations of Study
We sought to evaluate the capacity of ovarian cancer cells to use

fatty acids, as a source of carbon, by using exogenous fatty

acids, such as palmitate. However, exogenous palmitate was

highly toxic in these cells, thereby precluding measuring fatty

acid incorporation or isotype profiling, as we did by using exog-

enous glucose and glutamine.
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Gentien, D., Hupé, P., Becette, V., Houdayer, C., Roman-Roman, S., et al.

(2015). Histo-genomic stratification reveals the frequent amplification/overex-

pression of CCNE1 andBRD4 genes in non-BRCAness high grade ovarian car-

cinoma. Int. J. Cancer 137, 1890–1900.

Gruosso, T., Garnier, C., Abelanet, S., Kieffer, Y., Lemesre, V., Bellanger, D.,

Bieche, I., Marangoni, E., Sastre-Garau, X., Mieulet, V., and Mechta-

Grigoriou, F. (2015). MAP3K8/TPL-2/COT is a potential predictive marker for

MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat.

Commun. 6, 8583.

Gurrieri, C., Capodieci, P., Bernardi, R., Scaglioni, P.P., Nafa, K., Rush, L.J.,

Verbel, D.A., Cordon-Cardo, C., and Pandolfi, P.P. (2004). Loss of the tumor

suppressor PML in human cancers of multiple histologic origins. J. Natl.

Cancer Inst. 96, 269–279.

Haider, S., McIntyre, A., van Stiphout, R.G., Winchester, L.M., Wigfield, S.,

Harris, A.L., and Buffa, F.M. (2016). Genomic alterations underlie a pan-cancer

metabolic shift associated with tumour hypoxia. Genome Biol. 17, 140.

Hensley, C.T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L.,

Ko, B., Skelton, R., Loudat, L., et al. (2016). Metabolic heterogeneity in human

lung tumors. Cell 164, 681–694.

Hilvo, M., de Santiago, I., Gopalacharyulu, P., Schmitt, W.D., Budczies, J.,

Kuhberg, M., Dietel, M., Aittokallio, T., Markowetz, F., Denkert, C., et al.

(2016). Accumulated metabolites of hydroxybutyric acid serve as diagnostic

and prognostic biomarkers of ovarian high-grade serous carcinomas.

Cancer Res. 76, 796–804.

Iorio, E., Caramujo, M.J., Cecchetti, S., Spadaro, F., Carpinelli, G., Canese, R.,

and Podo, F. (2016). Key players in choline metabolic reprograming in triple-

negative breast cancer. Front. Oncol. 6, 205.

Ke, C., Hou, Y., Zhang, H., Fan, L., Ge, T., Guo, B., Zhang, F., Yang, K., Wang,

J., Lou, G., and Li, K. (2015). Large-scale profiling of metabolic dysregulation in

ovarian cancer. Int. J. Cancer 136, 516–526.

Konecny, G.E., Wang, C., Hamidi, H., Winterhoff, B., Kalli, K.R., Dering, J.,

Ginther, C., Chen, H.W., Dowdy, S., Cliby, W., et al. (2014). Prognostic and

therapeutic relevance ofmolecular subtypes in high-grade serous ovarian can-

cer. J. Natl. Cancer Inst. 106, https://doi.org/10.1093/jnci/dju249.

Liu, Q., Harvey, C.T., Geng, H., Xue, C., Chen, V., Beer, T.M., and Qian, D.Z.

(2013). Malate dehydrogenase 2 confers docetaxel resistance via regulations

of JNK signaling and oxidative metabolism. Prostate 73, 1028–1037.

Mai, T.T., Hamaı̈, A., Hienzsch, A., Cañeque, T., M€uller, S., Wicinski, J.,
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Breitenbach, V. (2017). Promyelocytic leukemia protein, a protein at the cross-

road of oxidative stress andmetabolism. Antioxid. Redox Signal. 26, 432–444.

Tothill, R.W., Tinker, A.V., George, J., Brown, R., Fox, S.B., Lade, S., Johnson,

D.S., Trivett, M.K., Etemadmoghadam, D., Locandro, B., et al.; Australian

Ovarian Cancer Study Group (2008). Novel molecular subtypes of serous

and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer

Res. 14, 5198–5208.

Vander Heiden, M.G., and DeBerardinis, R.J. (2017). Understanding the inter-

sections between metabolism and cancer biology. Cell 168, 657–669.

Vazquez, F., Lim, J.H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C.B.,

Granter, S.R., Widlund, H.R., Spiegelman, B.M., and Puigserver, P. (2013).

PGC1a expression defines a subset of human melanoma tumors with

increased mitochondrial capacity and resistance to oxidative stress. Cancer

Cell 23, 287–301.

Vellinga, T.T., Borovski, T., de Boer, V.C., Fatrai, S., van Schelven, S., Trumpi,

K., Verheem, A., Snoeren, N., Emmink, B.L., Koster, J., et al. (2015). SIRT1/

PGC1a-dependent increase in oxidative phosphorylation supports chemo-

therapy resistance of colon cancer. Clin. Cancer Res. 21, 2870–2879.

Verhaak, R.G., Tamayo, P., Yang, J.Y., Hubbard, D., Zhang, H., Creighton,

C.J., Fereday, S., Lawrence, M., Carter, S.L., Mermel, C.H., et al.; Cancer

Genome Atlas Research Network (2013). Prognostically relevant gene signa-

tures of high-grade serous ovarian carcinoma. J. Clin. Invest. 123, 517–525.

Vernier, M., Bourdeau, V., Gaumont-Leclerc, M.F., Moiseeva, O., Bégin, V.,

Saad, F., Mes-Masson, A.M., and Ferbeyre, G. (2011). Regulation of E2Fs

and senescence by PML nuclear bodies. Genes Dev. 25, 41–50.

Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sánchez, N., Marchesini, M.,

Carugo, A., Green, T., Seth, S., Giuliani, V., et al. (2014). Oncogene ablation-

resistant pancreatic cancer cells depend on mitochondrial function. Nature

514, 628–632.

Wang, Y.K., Bashashati, A., Anglesio, M.S., Cochrane, D.R., Grewal, D.S., Ha,

G., McPherson, A., Horlings, H.M., Senz, J., Prentice, L.M., et al. (2017).

Genomic consequences of aberrant DNA repair mechanisms stratify ovarian

cancer histotypes. Nat. Genet. 49, 856–865.

Xie, H., Hou, Y., Cheng, J., Openkova, M.S., Xia, B., Wang, W., Li, A., Yang, K.,

Li, J., Xu, H., et al. (2017). Metabolic profiling and novel plasma biomarkers for

predicting survival in epithelial ovarian cancer. Oncotarget 8, 32134–32146.

Zhang, H., Liu, T., Zhang, Z., Payne, S.H., Zhang, B., McDermott, J.E., Zhou,

J.Y., Petyuk, V.A., Chen, L., Ray, D., et al.; CPTAC Investigators (2016).

Integrated proteogenomic characterization of human high-grade serous

ovarian cancer. Cell 166, 755–765.

Cell Metabolism 29, 156–173, January 8, 2019 173

http://refhub.elsevier.com/S1550-4131(18)30567-9/sref39
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref39
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref40
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref40
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref40
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref40
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref41
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref41
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref42
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref42
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref42
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref43
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref43
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref43
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref43
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref43
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref44
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref44
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref44
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref45
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref45
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref45
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref45
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref46
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref46
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref46
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref46
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref47
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref47
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref47
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref47
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref48
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref48
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref48
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref48
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref49
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref49
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref49
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref50
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref50
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref50
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref51
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref51
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref51
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref51
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref51
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref52
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref52
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref53
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref53
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref53
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref53
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref53
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref54
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref54
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref54
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref54
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref55
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref55
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref55
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref55
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref56
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref56
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref56
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref57
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref57
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref57
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref57
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref58
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref58
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref58
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref58
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref59
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref59
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref59
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref60
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref60
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref60
http://refhub.elsevier.com/S1550-4131(18)30567-9/sref60


STAR+METHODS
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Laboratories

Cat#115-035-045

rabbit IgG antibody ABCAM Cat#171870

goat polyclonal secondary antibody to rabbit IgG Alexa

Fluor 488

ABCAM Cat#ab150077

Bacterial and Virus Strains

PLKO.1-puro derived vectors Sigma Aldrich Cat#SHC001

PLKO.1-puro derived vectors Sigma Aldrich Cat#TRCN0000003866

PLKO.1-puro derived vectors Sigma Aldrich Cat#TRCN0000003868

Biological Samples

Ovarian frozen tumors Institut Curie Hospital group N/A

FFPE Ovarian sections Institut Curie Hospital group N/A

Patient-derived xenografts (PDX) Institut Curie N/A

Chemicals, Peptides, and Recombinant Proteins

Target retrieval solution citrate pH 6 Dako Cat#S2369

DharmaFECT Dharmacon Cat#T-2001-02

Lipofectamine 2000 Invitrogen Cat#11668

Complete EDTA-free protease inhibitor cocktail Roche Cat#1836170

EDTA-free protease inhibitor cocktail tablet Roche Cat#1836170

NH4HCO3 Sigma Aldrich Cat#T6567

Western Lightning Plus PerkinElmer Cat#NEL103E001EA

SyproRuby protein gel stain Life Technologie Cat#S12000

DMEM Thermo Fisher Scientific Cat#11995

Sodium pyruvate Thermo Fisher Scientific Cat# 11360070

L-glutamine Thermo Fisher Scientific Cat# 25030081

D-(+) Glucose solution Sigma Aldrich Cat#G8644
13C-D-glucose Cambridge Isotope

Laboratories

Cat#CLM-1396

13C-L-glutamine Cambridge Isotope

Laboratories

Cat# CLM-1822

Laemmli Sample buffer (2X) Biorad Cat#161-0737

4–12% polyacrylamide gel Invitrogen Cat#NP0323BOX - WG1403A

0.45 mm nitrocellulose transfer membrane Sigma Aldrich Cat#Z741975

Glutaraldehyde Sigma Aldrich Cat#G5882

Paraformaldehyde Sigma Aldrich Cat#P6148

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Osmium tetroxide Electron Microscopy Science Cat#19100

Potassium ferrocyanure Electron Microscopy Science Cat#25154

MitoTracker Deep Red FM Invitrogen Cat#M22426

MitoTracker Red CMXRos Invitrogen Cat#M7512

tetramethylrhodamine, methyl ester Thermo Fisher Cat#T668

Seahorse XF Base Medium base pH 7.4 Agilent Technologies Cat#103334-100

Seahorse calibration solution Agilent Technologies Cat#100840-000

Etomoxir Sigma Aldrich Cat#E1905

CB-839 Selleckchem Cat#S7655

N-acetyl-L-Cystein Sigma Aldrich Cat#A7250

Rosiglitazone Sigma Aldrich Cat##R2408

Methanol Sigma Aldrich Cat#1060181000

Acetonitrile Sigma Aldrich Cat#1000291000

Formic Acid Sigma Aldrich Cat#5330020050

Puromycin GIBCO Cat#A11138-03

Agarose Sigma Aldrich Cat#A2576

Iodonitrotetrazolium chloride Sigma Aldrich Cat#I10406

DAPI Invitrogen Cat#D1306

Carboplatin ACCORD N/A

Paclitaxel KABI N/A

CellRox Reagent Life Technologies Cat#C10422

Lysosensor probe Life Technologies Cat#L7535

Bodipy C11 Reagent Life Technologies Cat# D3861

Metformin Sigma Aldrich Cat#317240

Resazurin reagent Sigma Aldrich Cat#R7017

Power SYBR Green PCR Master Mix Applied Biosystems Cat#4367659

RhoNOXM Niwa-Kawakita et al., 2017 N/A

Ironomycin Mai et al., 2017 N/A

Critical Commercial Assays

BCA Protein Assay kit Roche Cat#1836170

Short Tandem Repeat (STR) DNA profiling Promega Cat# B9510

Seahorse XF Cell Mito Stress Test Kit Agilent Technologies Cat#103015-100

XF Glycolysis Stress Test Kit Agilent Technologies Cat#103020-100

Dynabeads Antibody Coupling Kit Life Technologies Cat#14311D

miRNEasy kit QIAGEN Cat#217004

iScript Reverse Transcription Kit Bio-Rad Cat#1708840

Deposited Data

Original and analyzed data This paper https://doi.org/10.17632/

fstsb2xfsf.1

Trancriptomic data from Curie Cohort Mateescu et al., 2011 GEO: GSE26193

Experimental Models: Cell Lines

SKOV3 ATCC Cat# HTB-77

OV90 ATCC Cat# CRL-11732

CAOV3 ATCC Cat# HTB-75

OV7 Public Health England Cat# 96020764

COV504 Public Health England Cat# 07071902

OV56 Public Health England Cat# 96020759

IGROV1 D. Lallemand and J.S. Brugge Lab N/A

OVCAR8 R. Spizzo Lab N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OC314 R. Spizzo Lab N/A

KURAMOCHI R. Spizzo Lab N/A

OVSAHO R. Spizzo Lab N/A

OVCAR4 R. Spizzo Lab N/A

FUOV1 R. Spizzo Lab N/A

COV318 R. Spizzo Lab N/A

Experimental Models: Organisms/Strains

Female Swiss nude (6 week old) Charles River Cat# Crl:NU(Ico)-Foxn1nu

Oligonucleotides

non-targeting siRNA Dharmacon Cat#D-001810-02

PML-targeting siRNA Dharmacon Cat#J-019734-06

PML-targeting siRNA Dharmacon Cat#J-019734-07

PGC-1a –targeting siRNA Dharmacon Cat# J-005111-05

PGC-1a –targeting siRNA Dharmacon Cat#J-005111-07

PML-F: 50– GTGAAGGCCCAGGTTCAG –30 Eurofins N/A

PML-R: 30– CCTCAGACTCCATCTTGATGAC –50 Eurofins N/A

NDUFB8-F: 50– CTCCTTGTTGGGCTTATCACA –30 Eurofins N/A

NDUFB8-R: 30– GCCCACTCTAGAGGAGCTGA –50 Eurofins N/A

SDHB-F: 50– AAGCATCCAATACCATGGGG –30 Eurofins N/A

SDHB-R: 30–TCTATCGATGGGACCCAGAC –50 Eurofins N/A

UQCRC2-F: 50–GTTTGTTCATTAAAGCAGGCAGTAG –30 Eurofins N/A

UQCRC2-R: 30– TGCTTCAATTCCACGGGTTATC –50 Eurofins N/A

MTCO2-F: 50– TCATTTTCCTTATCTGCTTCC –30 Eurofins N/A

MTCO2-FR: 30– ACGGTTTCTATTTCCTGAGC –50 Eurofins N/A

COX4I1-F: 50– ATGTCAAGCACCTGTCTGC –30 Eurofins N/A

COX4I1-R: 30– CCCTGTTCATCTCAGCAAA –50 Eurofins N/A

ATP5A1-F: 50– ACTGGGCGTGTCTTAAGTATTG –3 Eurofins N/A

ATP5A1-R: 30– ACCAAGGGCATCAACTACAC –50 Eurofins N/A

PPARGC1A-F: 50– CAGAGAACAGAAACAGCAGCA –30 Eurofins N/A

PPARGC1A-R: 30– TGGGGTCAGAGGAAGAGATAAA –50 Eurofins N/A

CYCLOPHILIN-B-F: 50– AGGCCGGGTGATCTTTGGTCT –30 Eurofins N/A

CYCLOPHILIN-B-R: 30– CCCTGGTGAAGTCTCCGCCCT –50 Eurofins N/A

Software and Algorithms

SEQUEST - Proteome Discoverer 1.4 Thermo Fisher Scientific N/A

Metaboanalyst software (http://www.metaboanalyst.ca) N/A

cBioportal https://portal.gdc.cancer.gov N/A

iTEM software Soft Imaging System N/A

ImageJ https://imagej.nih.gov/ij/,

1997-B014

N/A

GraphPad Prism software https://www.graphpad.com N/A

R versions 3.3.2 and 3.4.0 https://cran.r-project.org N/A

REVIGO http://revigo.irb.hr N/A

FlowJo version 10.0.7 https://www.flowjo.com/

solutions/flowjo

N/A

DAVID https://david.ncifcrf.gov N/A

Consensus clustering Monti et al., 2003 N/A

Other

24-well cell culture insert Costar Cat#3422
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Fatima Mechta-

Grigoriou (fatima.mechta-grigoriou@curie.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts of HGSOC Patients
Cohorts of ovarian cancer patients from Institut Curie (a total of 127 HGSOC patients; 45 samples used for metabolomics analysis,

127 for proteomic analysis and 71 for IHC) and TCGA (169 patients) have been previously described in Mateescu et al. (2011),

Gruosso et al. (2015), and Batista et al. (2016), and Cancer Genome Atlas Research Network (2011) and Zhang et al. (2016), respec-

tively. Main clinical features of these cohorts are summarized in Table S1 and its corresponding legend. The project developed here is

based on surgical tumor tissues, from the Institut Curie Hospital Group, available after histo-pathological analyses and not needed for

diagnosis. There is no interference with the clinical practice. Analysis of tumor samples was performed according to the relevant na-

tional law providing protection to people taking part in the biomedical research. Their referring oncologist informed all patients

included in our study that their biological samples could be used for research purposes and patients signed an informed consent

of non-opposition. In case of patient refusal, expressed either orally or written, residual tumor samples were excluded from our study.

The Institutional Review Board and Ethics committee of the Institut Curie Hospital Group approved all analyses realized in this study,

as well as the National Commission for Data Processing and Liberties (N� approval: 1674356 delivered on March 30, 2013).

Xenograft Models
All protocols involving mice and animal housing were in accordance with institutional guidelines as proposed by the French Ethics

Committee and have been approved (agreement number: CEEA-IC #115: 2013-06). HGSOC models were established at the Institut

Curie with patient consent according to the relevant national law on the protection for people participating in biomedical research.

Main features of these models are summarized in Table S1.

HRD-HRP status (for detailed on themethod, see Genomic Analysis in HGSOC):OV14, OV21, OV16, OV26 exhibit HRP profiles and

OV25, OV38, OV10 exhibit HRD profiles

Human Ovarian Cancer Cell Lines
We used human epithelial ovarian cancer cell lines (OCCL) SKOV3, OV90, CAOV3 (from American Type Culture Collection, ATCC),

OV7, COV504 and OV56 (from Public Health England), IGROV1 (a kind gift fromD. Lallemand and J.S. Brugge) andOVCAR8, OC314,

KURAMOCHI, OVSAHO, OVCAR4, FUOV1, COV318 (kind gifts from R. Spizzo). Each cell line identity was verified by Short Tandem

Repeat (STR) DNA profiling (Promega, # B9510). Cells were grown in DMEM (GIBCO, Thermo Fisher Scientific #11995) with glucose

(4.5 g / L), 4 mM L-glutamine (Thermo Fisher Scientific # 25030081), 1 mM sodium pyruvate (Thermo Fisher Scientific # 11360070)

supplemented with 10% fetal bovine serum (FBS, BioSera #FB-1003/500), penicillin (100 U / ml) and streptomycin (100 mg / ml;

Thermo Fisher Scientific # 15140122) in a humidified atmosphere of 5% (v/v) CO2 in air at 37
�C. Cells weremaintained for amaximum

of 25 passages and testing confirmed the absence of mycoplasma contamination.

HRD/HRP status (for detailed on the method, see Genomic Analysis in HGSOC): IGROV-1, SKOV3, COV504, KURAMOCHI,

OVSAHO, FUOV1, OC314, OV90 and COV318 cell lines exhibit HRP profiles. OVCAR4 and OVCAR8 exhibit HRD profiles. Data is

unavailable for OV7, OV56 and CAOV3 cell lines.

METHOD DETAILS

Proteomic and Western Blot Analysis from HGSOC
Protein Extracts

Proteins were extracted from 127 frozen HGSOC enriched in epithelial cancer cells (on average, 73% of the tumor was composed of

epithelial cells, with 50% being the minimum) were extracted using boiling lysis buffer (50 mM Tris pH 6.8, 2% SDS, 5% glycerol,

2 mM DTT, 2.5 mM EDTA, 2.5 mM EGTA, 4 mM Na3VO4 and 20 mM NaF) supplemented with 2x Halt Phosphatase inhibitor (Perbio

#78420) and complete EDTA-free protease inhibitor cocktail tablet (Roche #1836170). The protein extract was snap frozen in liquid

nitrogen and stored at �80�C. Protein concentration was evaluated using the BCA Protein Assay kit – Reducing Agent Compatible

according to the manufacturer’s instructions (Thermo Fisher Scientific # 23250).

Label-free Quantitative Proteomics

Proteins were extracted from 127 frozen HGSOC, as described above, and digested with trypsin at 10 ng / ml in 50 mM NH4HCO3

(Sigma Aldrich #T6567). Two independent runs of analysis were performed: the first with 60 HGSOC protein samples and the second

with 67 HGSOC protein samples. Peptide mixture was analyzed on a Ultimate 3000 nanoLC system (Dionex, Amsterdam, the

Netherlands) coupled to an Electrospray Q-Exactive quadrupole Orbitrap benchtop mass spectrometer (Thermo Fisher Scientific).

10 ml of peptide digests were loaded onto a 300-mm-inner diameter x 5-mmC18 PepMapTM trap column (LC Packings) at a flow rate

of 30 ml / min. Peptides were eluted from the trap column onto an analytical 75-mm id x 25-cm C18 Pep-Map column (LC Packings)

with a 4%–40% linear gradient of solvent B in 108 min (min) (solvent A was 0.1% formic acid in 5% Thermo Scientific Acetonitrile
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(CAN) and solvent B was 0.1% formic acid in 80% ACN). The separation flow rate was set at 300 nL / min. The mass spectrometer

operated in positive ion mode at a 1.8-kV needle voltage. Data were acquired using Xcalibur 2.2 software in a data-dependent mode.

Mass spectrometry scans (m/z 350-1600) were recorded at a resolution of R = 70 000 (@ m/z 200) and an automatic gain control

(AGC) target of 33 106 ions collected within 100 ms. Dynamic exclusion was set to 30 s and the top 12 ions were selected from frag-

mentation in higher energy collisional dissociation (HCD)mode.MS/MS scanswith a target value of 13 105 ionswere collectedwith a

maximum fill time of 100ms and a resolution of R = 17500. Additionally, only +2 and +3 charged ions were selected for fragmentation.

Others settings were as follows: no sheath nor auxiliary gas flow, heated capillary temperature, 250�C; normalized HCD collision en-

ergy of 27%, and an isolation width of 2 m/z.

nLC-MS/MS Analysis

Data were searched by SEQUEST through Proteome Discoverer 1.4 (Thermo Fisher Scientific) against a subset of the 2016.01

version of UniProt database restricted to Homo sapiens Reference Proteome Set (70,671 entries). Spectra from peptides higher

than 5000 Dalton (Da) or lower than 350 Da were rejected. The search parameters were as follows: mass accuracy of the monoiso-

topic peptide precursor and peptide fragments were set to 10 ppm and 0.02 Da, respectively. Only b- and y-ions were considered for

mass calculation. Peptide validation was performed using the Percolator algorithm and only ‘‘high confidence’’ peptides were

retained corresponding to 1% false positive rate at peptide level. Raw LC-MS/MS data were imported in Progenesis QI for

Proteomics 2.0 (Nonlinear Dynamics Ltd, Newcastle, U.K). Data processing included the following steps: (i) Features detection,

(ii) Features alignment across all samples, (iii) Volume integration for 2-6 charge-state ions, (iv) Normalization on total protein abun-

dance, (v) Import of sequence information, (vi) Calculation of protein abundance (sum of the volume of corresponding peptides). Only

non-conflicting features and unique peptides were considered for calculation at the protein level. Quantitative data were considered

for peptides with a signal > 10,000 for at least 5%of samples. Aminimumof 2 unique peptides was required to identify a given protein

within the full dataset. Data was standardized per run. All detected peptides in low- and high-OXPHOSHGSOC are listed in Table S4.

Proteomic Data from the TCGA Cohort

Proteomic data from the TCGA cohort was extracted from Table mmc3 in Zhang et al. (2016), with the same procedure for final

protein quantification, as described in the paper. Identification of low- and high-OXPHOS tumors from Curie and TCGA proteomic

data: the consensus clustering method described in Monti et al. (2003) was applied on Curie and TCGA cohorts using a list of 27 ETC

proteins in order to identify the optimal number of tumor subgroups. The following parameters were used: clustering method based

on k-means, 1000 iterations, 80% of sample resampling. In both cases, classification in 2 metabolic subgroups was identified as the

most robust.

Western Blots

20 mg proteins extracted from HGSOC were loaded onto homemade 12% polyacrylamide gels. After electrophoresis, the proteins

were transferred to a 0.45 mM PVDF transfer membrane (Immobilon-P, Millipore, #IPVH 00010) and blotted overnight at 4�C with

the appropriate primary antibodies: a cocktail of 5 ETC proteins: ATP5A: ATP Synthase, H+ Transporting, Mitochondrial F1 Complex,

Alpha Subunit, UQCR2: Ubiquinol-Cytochrome C Reductase Core Protein II, SDHB: Succinate Dehydrogenase Complex Iron Sulfur

Subunit B, COXII: Mitochondrially Encoded Cytochrome C Oxidase II, NDUFB8: NADH:Ubiquinone Oxidoreductase Subunit B8

(1:2000; ABCAM #ab110411) and Actin (1:10,000; Sigma #A5441). Specific binding of antibodies was detected using appropriate

peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories #115-035-003), and was visualized by

enhanced chemiluminescence detection (Western Lightning Plus-ECL, PerkinElmer #NEL103E001EA). Densitometry analyses of im-

munoblots were performed using ImageJ software.

Metabolomic Analysis of HGSOC Samples
Metabolomic analysis of 45 HGSOC from the Curie cohort was performed byMetabolon. (Morrisville, USA). Briefly, samples enriched

in at least 50% of epithelial cancer cells were extracted and prepared for analysis using Metabolon’s standard solvent extraction

method. The extracted samples were split into equal parts for analysis on the gas chromatography mass spectrometry (GC/MS)

and liquid chromatography tandem-mass spectrometry (LC/MS/MS) platforms to allow the detection of 374 biochemicals. Quality

controls (QC) were performed using internal standards and Metabolon QC samples. All detected metabolites in low- and high-

OXPHOS HGSOC are listed in Table S5.

For sparse partial least square discriminant analysis (sPLS-DA), data were filtered by interquartile range, normalized to the median

and Log-transformed. 200 metabolites were used for each component. sPLS-DA was performed by using Metaboanalyst software

(http://www.metaboanalyst.ca).

Genomic Analysis in HGSOC
Homologous Recombination (HR) Status - LST Signature

CytoscanVR HD SNP-array (Affymetrix) data were processed using the GAP methodology to obtain absolute copy number profiles,

as in Popova et al. (2012). DNA index was calculated as the average copy number. Based on the DNA index, tumor ploidy was set as

near-diploid (DNA index < 1.3) or near-tetraploid (DNA index > = 1.3). Genomic HRD was detected based on the number of

LST (Popova et al., 2012). Briefly, LST was defined as a chromosomal breakpoint (change in copy number or major allele counts)

between adjacent regions of at least 10 Megabases. The number of LST was calculated after smoothing and filtering out copy num-

ber variant regions < 3 Megabases in size. Tumors were segregated into near-diploid or near-tetraploid subgroups. Based on two
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ploidy-specific cut-offs (15 and 20 LST per genome in near-diploid and near-tetraploid tumors respectively) tumors were classified as

HRD (high-LST, equal to or above the cut-off) or HRP (low-LST, below the cut-off).

CNA and Mutations

Genomic data from the TCGA were extracted from the NIH Genomic Data Common (GDC) data portal (https://portal.gdc.cancer.

gov). For DNA copy number alteration, data were available for 88 low-OXPHOS and 79 high-OXPHOS HGSOC. Mutation status

was extracted for 46 low-OXPHOS and 43 high-OXPHOS HGSOC. BRCA1 and RAD51C promoter methylation status was defined

in the TCGA cohort, as described in Manié et al. (2016).

Transcriptomic Analysis from HGSOC
Trancriptomic analysis from Curie Cohort was described in Mateescu et al. (2011). Data are freely accessible in the Gene Expression

Omibus under the accession number GEO: GSE26193. For the TCGA cohort, freely available transcriptomic data (Cancer Genome

Atlas Research Network, 2011) have been downloaded from the following portal: https://cancergenome.nih.gov/.

Protein Carbonylation Analysis from HGSOC
Tissue proteins were extracted from 40 HGSOC. Protein oxidation wasmeasured byOxiProteomics (https://www.oxiproteomics.fr/).

Extracted proteins were quantified by the Bradford method and split into equal amounts for analyses. Carbonylated proteins were

labeled with specific functionalized fluorescent probes and samples were resolved by high-resolution electrophoresis separation.

Total proteins were post-stained with SyproRuby protein gel stain (Life Technologies, #S12000). Image acquisition for carbonylated

and total proteins was performed using the Ettan DIGE imager (GE Healthcare). Image processing and analysis was performed using

ImageJ (Rasband, W.S., ImageJ, National Institutes of Health, USA, https://imagej.nih.gov/ij/, 1997-B014). Density histograms and

lane profile plots were obtained from each sample, both for carbonylated and total proteins. Carbonylated protein signal was normal-

ized by total protein signal for each sample in order to obtain the carbonylation score (Score = carbonylated protein / total protein).

Immunohistochemistry in HGSOC and OCCL
IHC and Validation of PML-Directed Antibody

71 samples from the Curie cohort were first selected by pathologists based on tumor grade, histological subtype and clinical features

for considering only HGSOC. For IHC, sections of paraffin-embedded tissues (3 mm) were stained using a streptavidin-peroxidase

protocol and the Lab Vision Autostainer 480 (Thermo Fisher Scientific), as described in Gruosso et al. (2015). Paraffin-embedded

sections were incubated with specific antibodies recognizing PML (1:200; Santa Cruz #SC-5621) or rabbit IgG antibody (1:500;

ABCAM #171870) in Phosphate Buffered Saline solution at pH 7.6 containing 0.05% Tween 20 for 1 hour, following unmasking in

1 x Citrate buffer, pH 6 (Dako #S2369) for 15 min at 95�C. For quantification, the whole section was considered and evaluated by

two independent researchers. Histological scores (Hscore) of PML staining in epithelial cells were given as a function of the percent-

age of positive epithelial cells multiplied by the staining intensity (ranging from 0 to 3): Hscore = Intensity of staining x % of stained

cells. The specificity of the PML antibody was verified using OV56 and OVCAR4 ovarian cancer cell lines in which PML has been or

not silenced (see also PML and PGC-1a Silenced Cell Lines). In brief, 20 3 106 cells were plated into 15 cm Petri dishes. 24h post

plating, cells were washed with room temperature PBS, trypsinized and pelleted in PBS before fixation using alcohol, formalin and

acetic acid (AFA) fixative followed by paraffin-embedding. Sections of AFA-fixed paraffin-embedded cells (3 mm) were stained using

the protocol described above for human HGSOC samples.

PML Nuclear-Body (NB) Quantification

Quantification of PML-NB corresponds to the number of PML foci divided by the number of cells. Quantification was assessed in two

steps by ImageJ software and further confirmed by visual inspection of images. (1) Evaluation of cell number, which was automat-

ically estimated by applying a threshold filter (0.180) followed by a mask conversion, and then particles were analyzed (size > 80;

circularity > 0.4). (2) PML-NB quantification: PML-NB were automatically detected by applying a threshold filter (0.150) followed

by amask conversion. Particles were analyzed (size = 1-25; circularity > 0.6). PML-NBwere evaluated in 71 HGSOC, with an average

of 12 (and a minimum of 8) slides analyzed per tumor.

Protein Extracts and Western Blots from OCCL
For protein level analyses, cell lines were plated into six-well plates (Corning #353046) in DMEMwith 10% FBS to reach 80% conflu-

ence 48 hr after plating, depending on doubling time. Cells were washed with PBS and scraped with 2 x Laemmli Sample buffer

(Biorad #161-0737) with 0.1 mM DTT. Samples were boiled for 5 min at 95�C followed by centrifugation at 13,000 rpm for 10 min

at 4�C to eliminate cell debris. Protein samples were transferred into a fresh tube and the protein concentration was determined using

the BCA Protein Assay kit – Reducing Agent Compatible according to the manufacturer’s instructions (Thermo Fisher Scientific

# 23250).

For western blot analysis, 10 mg proteins were loaded onto precast 4%–12% polyacrylamide gels (Invitrogen #NP0323BOX -

WG1403A). After electrophoresis, proteins were transferred to a 0.45 mm nitrocellulose transfer membrane (Sigma Aldrich #

Z741975) and incubated overnight at 4 �C with the appropriate primary antibodies: a cocktail of 5 ETC proteins (listed above,

Proteomic Data from the TCGA Cohort) (1:2000; ABCAM #ab110411), PML (1:2000; Santa Cruz #SC-5621), PGC-1a (1:500; Santa

Cruz #sc-13067), K-Acetylated (1:2000; Cell Signaling #9441) and Actin (1:10,000; Sigma Aldrich #A5441). Specific binding of anti-

bodies was detected using appropriate peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories
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#115-035-003 and 115-035-045) and visualized by enhanced chemiluminescence detection (Western Lightning Plus-ECL,

PerkinElmer). Densitometric analyses of immunoblots were performed using ImageJ software. Actin was used as an internal control

for protein loading and normalization.

Mitochondrial Content and Structure Analysis
Electron Microscopy on OCCL and PDX Tumor Samples

Cells were seeded onto 24-mm glass coverslips (VWR #631-0161), allowed to grow to 50%–60% confluency and were fixed in 2.5%

glutaraldehyde (Sigma Aldrich # G5882) and 2% paraformaldehyde (Sigma Aldrich # P6148). Tumor samples from PDX were directly

fixed under same conditions. All samples were post-fixed in 1% osmium tetroxide (ElectronMicroscopy Science # 19100) containing

1.5%potassium ferrocyanure (ElectronMicroscopy Science # 25154). Samples were embedded in EPONand ultrathin sectionswere

contrasted with uranyl acetate and lead citrate. Electron micrographs were acquired on a Tecnai Spirit electron microscope (FEI,

Eindhoven, the Netherlands) equipped with a 4k CCD camera (Quemesa, EMSIS GmbH, M€unster, Germany). For image analysis

and quantification, mitochondrial area was evaluated on randomly selected cells using iTEM software (Soft Imaging System, EMSIS

GmbH, Germany). The mean area of each group was determined on 8 independent images, evaluating 2000 mm2 per cell line. Size of

measured structures was expressed in mm2.

Mitochondrial Staining Using MitoTracker Probe

Cells were seeded onto six-well plates and grown up to 70% confluency. Mitochondrial content per cell line was estimated using

MitoTracker Deep Red FM (Molecular Probes/Invitrogen #M22426). For assessment of mitochondrial membrane potential, cells

were stained with MitoTracker Red CMXRos (Molecular Probes/Invitrogen #M7512) and tetramethylrhodamine, methyl ester

(TMRM, Thermo Fisher #T668). Cells were stained with 250 nM MitoTracker Deep Red FM or 250 nM MitoTracker Red CMXRos

or 100 nM TMRM for 30 min at 37�C. Cells were then washed with PBS solution, trypsinized, and resuspended in PBS solution con-

taining 1%FBS for flow cytometric analysis. Flow cytometry data were acquired using an LSR FORTESSA analyzer (BD biosciences).

Seahorse Technology
Cells were seeded (4 replicates) in XFe96 Cell Culture Microplates (Seahorse, Bioscience #101085-004) at 80%–90% confluency in

DMEM supplemented with 10% FCS ± 10 mM Glucose, ± 2 mM Glutamine, ± 1 mM Pyruvate. Cells were incubated for 24 hours at

37�C in 5% CO2 atmosphere. Before the experiment, the culture medium was removed from each well and replaced with 175 mL of

serum-free unbuffered Seahorse XF Base Medium base pH 7.4 (Agilent Technologies #103334-100) pre-warmed at 37�C and sup-

plemented with 10 mM glucose, 2 mM glutamine and 1 mM Pyruvate (for analysis of mitochondrial oxidative metabolism) or with

0 mM glucose (for analysis of glycolysis assessment). Cells were incubated in a CO2 free incubator at 37�C for 1 h. Cartridges equip-

pedwith oxygen- and pH-sensitive probeswere preincubatedwith calibration solution (Agilent Technologies #100840-000) overnight

at 37�C in an incubator without CO2. Prior to the rate measurements, the XF96 Analyzer (Seahorse biosciences, North Billerica, MA)

automatically mixed the assay media in each well for 15 min to allow the oxygen partial pressure to reach equilibrium. Oxygen con-

sumption rate (OCR) and extracellular acidification rate (ECAR) were evaluated in a time course before and after injection of the

following compounds: OCRmeasurement (using Agilent Technologies #103015-100) (i) 1 mMOligomycin; (ii) 0.5 mMFCCP [Carbonyl

cyanide-4-(trifluoromethoxy)phenylhydrazone; (iii) 0.5 mMAntimycin A + Rotenone / ECARmeasurement (using Agilent Technologies

#103020-100): (i) 10 mM Glucose; (ii) 1 mM Oligomycin; (iii) 50 mM 2-deoxyglucose (2-DG). A volume of 25 mL of compound was

added to each injection port, and 3 baseline measurements were taken prior to the addition of any compound. After a 3 min wait,

3 response measurements were taken after each addition. ECAR and OCR values were normalized to the total amount of protein

per well. ECAR and OCR data points refer to the average rates during the measurement cycles and were reported as absolute rates

(mpH / min for ECAR, pMoles / min for OCR). For experiment testing carbon source preference, cells were incubated overnight in

DMEM± 10mMGlucose, ± 2mMGlutamine. Basal ECAR/OCRmeasurement was performed the following day. For fatty acid oxida-

tion or glutaminolysis inhibition experiments, cells were incubated overnight in DMEM ± 10 mM Glucose, ± 2 mM Glutamine. OCR

wasmeasured 30min after Etomoxir treatment (40 mM, Sigma Aldrich #E1905) or 1 hour after CB-839 treatment (10 mM, Selleckchem

#S7655), respectively. For modulating OCR experiment, cells were incubated 48 hours in N-acetyl-L-Cystein (NAC at 5mM, Sigma

Aldrich #A7250) or Rosiglitazone (at 20 mM, Sigma Aldrich #R2408) before OCR measurement.

Isotope Profiling in OCCL
Cultivation, Sampling and Metabolite Extraction

6 3 105 IGROV1 and OC314 cells were seeded onto 30-mm glass coverslips and were incubated the day after in no glucose,

no glutamine and no pyruvate DMEM complemented with 10 mM 13C-D-glucose (Cambridge Isotope Laboratories #CLM-1396) +

2 mM of glutamine or 2 mM 13C-L-glutamine (Cambridge Isotope Laboratories #CLM-1822) + 10 mM of glucose for 24 hours. Intra-

cellular metabolites were extracted at �20�C with 8 mL of acetonitrile/methanol/water+0.1% of formic acid (2:2:1) and cells were

scraped from the cover glasses. The solution was sonicated for 30 s and incubated for 15 min on ice for the metabolite extraction.

Subsequently, the sample was frozen with liquid nitrogen, freeze-dried and finally re-extracted with an aqueous solution before mix-

ing with the appropriate solvent for LC-MS analysis.

LC-MS Analysis

Analysis of intracellular amino acids was performed by liquid chromatography (HPLC U3000, Dionex, Sunnyvale, CA, USA) coupled

with a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a heated ESI probe. MS
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analyseswere performed in the positive FTMSmode at a resolution of 60,000 (atm/z 400). Analysis of intracellular central metabolites

was performed by high performance anion exchange chromatography (Dionex ICS 5000+ system, Sunnyvale, USA) coupled with a

LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a heated ESI probe. Samples

were analyzed in the negative FTMS mode at a resolution of 60,000 (at m/z 400). Isotopic cluster of each amino acids and central

metabolites was determined by extracting and integrating the exact mass of all 13C-isotopologues with Tracefinder software

(Thermo Fisher Scientific). Isotopic cluster of each amino acids and central metabolites was determined by extracting and integrating

the exact mass of all 13C-isotopologues with Tracefinder software (Thermo Fisher Scientific). The correction was performed with

IsoCor adapted for higt resolution mass spectrometry. Carbon isotopolog distributions were expressed relative to the sum of all

analyzed isotopologs.

NMR Sample Preparation

Medium supernatants were mixed with D2O containing the internal standard TSP-d4 (Trimethylsylilpropionic acid d4) at 0.5 mMwith

0.25 M DCl 0.025 M before analysis.

PML and PGC-1a Silenced Cell Lines
For generation of PML-silenced stable cell lines fromCAOV3, OC314 andOVCAR4OCCL, PLKO.1-derived vectors with two different

shRNAs targeting human PML (TRCN0000003866 and TRCN0000003868 for shPML#1 and shPML#2, respectively), or expressing a

scrambled shRNA (shCTRL #SHC001), were purchased from Sigma-Aldrich. Viruses were produced by co-transfection (with Lipo-

fectamine 2000, Invitrogen #11668) of 293T cells with the vector plasmid, a vesicular stomatitis virus envelope expression plasmid

(Vsvg) and a second-generation packaging plasmid (pPax2). Purified viral particles were used at multiplicity of infection 5 to infect

CAOV3, OC314 and OVCAR4 OCCL overnight. Infected cells were selected with puromycin (1 mg ml�1) (GIBCO #A11138-03) for

1 week, before experimental use. Stable cell lines were propagated in DMEM (GIBCO, Thermo Fisher Scientific #11995) with glucose

(4.5 g / l), 4 mM L-glutamine (Thermo Fisher Scientific # 25030081), 1 mM sodium pyruvate (Thermo Fisher Scientific # 11360070)

supplemented with 10% fetal bovine serum (FBS, BioSera #FB-1003/500), penicillin (100 U / ml) and streptomycin (100 mg / ml;

Thermo Fisher Scientific # 15140122) and 1 mg ml�1 of puromycin (GIBCO# A11138-03).

For the short interfering RNA (siRNA) experiment, 2-3 3 105 cells were plated in six-well plates to reach 80% confluency after

3 days, depending on doubling time. After 24 hr, cells were transfected with 20 nM of non-targeting siRNA (siCtrl, Dharmacon

#D-001810-02) or PML-targeting siRNA (Dharmacon siPML#1: #J-019734-06; siPML#2: #J-019734-07; siPML#pool, a

mix of 4 individual siPML #J-019734-05 / 06 / 07 / 08) or PGC-1a-targeting siRNA (Dharmacon siPGC-1a#1: #J-005111-05;

siPGC-1a#2: #J-005111-07) using 4 mL of DharmaFECT 1 transfection reagent in 2 mL final volume according to the manufacturer’s

instructions (Dharmacon #T-2001-02).

Growth, Migration and Anchorage Independent Growth
Growth Kinetics

Cells were seeded at 2 3 104 cells per well in 24-well plates (Corning #353047) and at indicated time points counted using Vi-Cell

analyzer (Beckman Coulter). The number of living cells was measured by trypan blue exclusion.

Migration Assays

24-well cell culture insert (Costar # 3422, 8 mm pore size) were used for migration assay. After 24 hr serum starvation, 5 3 104 cells

were plated to the upper side of the Transwell device, in triplicates, in 100 mL of serum-freemedium, whereas the lower well contained

600 ml of regular 10% FBS culture medium in order to create an FBS gradient. We ended the experiment after O.N. incubation. At

the end of the experiment, the remaining cells in the upper side of the Transwell device were removed. Migrating cells at the bottom

side of the Transwell device were fixed and stained with crystal violet for 20 min and then counted in 5 different representative fields

(x 10 objective, Zeiss Axioplan microscope, AxioCamERc 5 s).

Soft Agar Assays for Anchorage-Independent Growth

4 3 104 cells were passed 4-5 times through a 21G syringe, resuspended in complete medium with 0.3% agarose (Sigma Aldrich

#A2576) and appropriate antibiotics and layered onto a 15 mL tubes (BD Biosciences, #352059) overlaid with medium

without agarose. After two weeks, growthmedia was removed and viable colonies were stained with 2.5mg / ml iodonitrotetrazolium

chloride (Sigma Aldrich #I10406), scanned and finally quantified using the ImageJ software. All these experiments were done in at

least 3 replicates.

PML Immunofluorescence
33 105 cells were seeded onto glass coverslips placed inside a six-well plate. 48 hr later cells were fixed in 4%paraformaldehyde for

20 min, rinsed in PBS and blocked for 15 min in 3% BSA and 0,1% Triton. Cells were incubated with a specific antibody recognizing

PML (1:500; Santa Cruz #SC-5621) for 45 min followed incubation with a goat polyclonal secondary antibody to rabbit IgG (Alexa

Fluor 488, 1:1000, ABCAM #ab150077). Cells were stained with DAPI (2 mL / ml, Invitrogen #D1306) for nuclei detection. Slides

were examined using an Upright Epifluorescence Microscope with Apotome (Zeiss), and images were acquired with identical expo-

sure times and settings using a digital camera. Fluorescence image analysis was performed using the ImageJ software. For antiox-

idant impact on PML-NB, cells were treated with N-acetyl-L-Cystein (NAC at 5 mM, Sigma #A7250) for 48 hr and then processed as

described above.
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Features of Oxidative Stress
Briefly, cells were seeded onto six-well plates and grown up to 70% confluency, incubated directly with fluorescent probes for basal

conditions. Then excess reagent was removed by washing the cells with PBS, trypsinized and resuspended in PBS solution contain-

ing 1%FBS for flow cytometric analysis. Flow cytometry data were acquired using an LSR FORTESSA analyzer (BD biosciences). For

ROS quantification upon treatment, cells were treated for 24 hr with Carboplatin (at [5.10�5M] ACCORD, 10mg /ml) and Paclitaxel (at

[10�6M], KABI, 6mg /ml) or Ironomycin (at 6 mM, synthesis is described inMai et al., 2017), and then processed, as described above.

Cellular ROS

Cells were incubated with 2 mM CellRox Reagent (Life Technologies, #C10422) for 30 min at 37�C in the dark.

Lysosomal Fe2+ Content

Cells were incubated with 5 mM RhoM probes (RhoNOX-M lysosomal specificity for 60 min at 37�C in the dark. For normalization to

lysosomal content that varies between cells, Lysosensor probe (1 mM, Life Technologies, #L7535) was used. The formula was

applied: lysosomal Fe2+ = RhoM speMFI / Lysotracker speMFI.

Lipid Peroxide Product

Cells were incubated with 2 mM Bodipy C11 Reagent (Life Technologies # D3861) for 60 min at 37�C in the dark.

For Bodipy C11 IF, 33 105 cells were seeded onto glass coverslips placed inside a six-well plate. 48 hr later cells were incubated

with 2 mM Bodipy C11 Reagent for 60 min and then fixed in 4% paraformaldehyde for 20 min, rinsed in PBS. Slides were examined

using an Upright Epifluorescence Microscope with Apotome (Zeiss) and images were acquired with identical exposure times and

settings using a digital camera.

Immunoprecipitation
2 3 106 CAOV3, OC314 and OVCAR4 OCCL were plated into 10 cm Petri dishes (Corning #353003). 24 hours later, cells were tran-

siently silenced for PML (see PML and PGC-1a Silenced Cell Lines). 48 hr post transfection, cells were washed with cold PBS and

scraped on ice. Cell suspensions were centrifuged at 13,000 rpm for 10 min at 4�C. Cell pellets were flash frozen in liquid nitrogen,

resuspended in IP lysis buffer (50mMHEPES pH7.5, 150mMNaCl, 1mMEDTA, 1mMEGTA, 10%glycerol, 1%Triton X-100, 25mM

NaF, 1 mM Na3VO4, 10 mM b-glycerophosphate, 5 mM sodium pyrophosphate, 0.5 mM PMSF) supplemented with EDTA-free pro-

tease inhibitor cocktail tablet (Roche #1836170) and incubated on ice for 20 min with vortexing every 5 min. Cell extracts were centri-

fuged at 13,000 rpm for 10 min at 4�C and supernatants were transferred into fresh tubes. The protein concentration was determined

using the BCA Protein Assay kit – Reducing Agent Compatible according to themanufacturer’s instructions (Thermo Fisher Scientific

# 23250). For immunoprecipitation, 300 mg of fresh protein extract were incubated overnight at 4�C with rotation, with 50 mL of PGC-

1a (SantaCruz #sc-13067) coupled to magnetic beads (Dynabeads antibody coupling kit, Invitrogen #1143.11D) at 2 mg antibody per

mg dynabeads. Beads were washed three times using IP lysis buffer. Lastly, 50 mL of samples buffer 2x (Biorad #1610737) were

added on top of the beads and boiled for 5 min at 95�C. Western blot analysis of IP samples was performed as described above.

Cell Treatments and Cell Viability Assays
104 cells were seeded per well in 96-well plates in DMEMmedium with 10% FCS. Carboplatin (ACCORD, 10 mg / ml) and Paclitaxel

(KABI, 6 mg / ml), or Ironomycin (in-house drug), or CB-839 (at 10 mM, Selleckchem #S7655)), or Metformin (at 0.01 M, Sigma Aldrich

#317240) were added the next day at the appropriate concentration. Cell viability was assayed for IC50 determination at 48 hr for

Carboplatin + Paclitaxel and at 72 hr for Ironomycin treatment or at 96 hr for the time course experiment by using the resazurin assay.

To do so, 20 mL of resazurin reagent (0.05 mg / ml; Sigma Aldrich #R7017) was added to each well. Plates were incubated at 37�C for

2 hr and read in a Multi Detection plate reader (Fluostar, BMG Labtech).

qRT-PCR from Cell Lines
For gene expression analysis, total RNA isolation was performed using miRNEasy kit (QIAGEN, #217004) according to the manufac-

turer’s instructions. RNA concentrations were determined using a NanoDrop apparatus (NaNodrop Technologies). For each sample,

1 mg of total RNA was reverse transcribed using an iScript Reverse Transcription Kit (Bio-Rad #1708840). qRT-PCR was performed

using Power SYBR Green PCR Master Mix (Applied Biosystems, #4367659) on a Chromo4 Real-Time PCR detection System (Bio-

Rad) with primers at 300 nM final concentration. Primers (forward and reverse) used for quantitative (q)RT–PCR amplification were:

PML: 50– GTGAAGGCCCAGGTTCAG –30; 30– CCTCAGACTCCATCTTGATGAC –50. NDUFB8: 50– CTCCTTGTTGGGCTTATCACA

–30; 30– GCCCACTCTAGAGGAGCTGA –50. SDHB: 50– AAGCATCCAATACCATGGGG –30; 30–TCTATCGATGGGACCCAGAC –50.
UQCRC2: 50– GTTTGTTCATTAAAGCAGGCAGTAG –30; 30– TGCTTCAATTCCACGGGTTATC –50. MTCO2: 50– TCATTTTCCT

TATCTGCTTCC –30; 30– ACGGTTTCTATTTCCTGAGC –50. COX4I1: 50– ATGTCAAGCACCTGTCTGC –30; 30– CCCTGTTCATCTCAG

CAAA –50. ATP5A1: 50– ACTGGGCGTGTCTTAAGTATTG –30; 30– ACCAAGGGCATCAACTACAC –50. PPARGC1A: 50– CAGAGAACA

GAAACAGCAGCA –30; 30– TGGGGTCAGAGGAAGAGATAAA –50. CYCLOPHILIN-B: 50– AGGCCGGGTGATCTTTGGTCT –30;
30– CCCTGGTGAAGTCTCCGCCCT –50. Expression levels were normalized to CYCLOPHILIN-B and represented as fold change

compared to the control (2^(-DDCt)). For evaluation of siRNA or drug impacts on gene expression, cells were incubated 48 hours

with specific siRNA or with N-acetyl-L-Cystein (NAC at 5 mM, Sigma Aldrich #A7250) or Rosiglitazone (at 20 mM, Sigma Aldrich,

#R2408) before RNA isolation.
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Xenograft Experiment
Tumor Growth Analysis

Tumor fragments from PDX models were grafted into the interscapular fat pad of 6-week-old female Swiss nude mice under avertin

anesthesia. When tumors reached a volume of 60-200 mm3, mice were blindly assigned to control (vehicle, NaCl 0.9%) or treated

groups (at least n = 9 per condition). Mice were treated intraperitoneally by carboplatin (ACCORD) at 66 mg / kg every three weeks

and paclitaxel (KABI) at 12 mg / kg once a week. Tumor growth was evaluated by measuring two perpendicular diameters of tumors

with a caliper twice a week. Individual tumor volumes were calculated as (V) = a3 b2 / 2, with ‘‘a’’ being the major and ‘‘b’’ the minor

diameter. For each tumor, the tumor volume at day n (Vn) was reported as the initial volume at time of inclusion (V0) and expressed as

relative tumor volume (RTV) according to the following formula: RTV = Vn / V0. Themean and SEMof RTV in the same treatment group

were calculated, and growth curves were established as a function of time. The percent of change to baseline was calculated at the

end of treatment per mouse in all PDXmodels analyzed using the following formula: (RTV from carboplatin or carboplatin + paclitaxel

treated mice/RTV from control mice) - 13 100. Baseline is the mean of the control group of mice. Studies were performed in compli-

ance with protocol and animal housing in accordance with national regulation and international guidelines and under the supervision

of authorized investigators. The experimental protocol and animal housing were in accordance with institutional guidelines as put

forth by the French Ethical Committee (Agreement C75-05 - 18, France).

Protein Extraction

The same protocol was used for PDX and HGSOC samples. In brief, proteins were extracted using boiling lysis buffer (50 mM Tris pH

6.8, 2% SDS, 5% glycerol, 2 mM DTT, 2.5 mM EDTA, 2.5 mM EGTA, 4 mM Na3VO4 and 20 mM NaF) supplemented with 2 x Halt

Phosphatase inhibitor (Perbio #78420) and complete EDTA-free protease inhibitor cocktail tablet (Roche #1836170). The protein

extract was snap frozen in liquid nitrogen and stored at �80�C.
Grafting experiments were performed by subcutaneous injection of 23 106 exponentially growing OC314-derived stable cell lines

shCTRL, shPML#2 into one flank of 6-week-old female Swiss nude mice (at least 3 mice per group). Tumor growth was evaluated

twice a week for 3 weeks.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in the R environment (https://cran.r-project.org, Versions 3.3.2 and 3.4.0) or using GraphPad

Prism software (version 7.0b). Data shown in this paper are generally represented as mean ± SEM from at least three independent

experiments, unless otherwise specified. Statistical tests used are in agreement with data distribution: Normality was first checked

using the Shapiro–Wilk test and parametric or non-parametric two-tailed tests were applied according to normality. Statistical tests

used have been indicated in the legends of the figures. Spearman’s correlation test was used to evaluate the correlation coefficient

between two parameters. Fisher’s exact test was used to determine an association between classes of ovarian cancers and clinical

parameters. To assess biological interpretation of the most differentially expressed metabolic proteins, Gene ontology (GO) enrich-

ment analysis was performed using the DAVID bioinformatics resources (https://david.ncifcrf.gov, Version 6.7). In order to avoid

redundancy into GO terms and summarize information, we used the REViGO (Reduce and Visualize Gene Ontology) software

(http://revigo.irb.hr, accessed January 2017), with a parameter similarity of 0.5. The optimal classification of HGSOC (from Curie

and TCGA cohorts) was assessed by consensus clustering method (Monti et al., 2003) using the following parameters: clustering

method: K-means, 1000 iterations, 80% of sample resampling. Survival analyses were carried out using Kaplan-Meier curves and

p values were computed by Log-Rank test using survival R package. Stratification of patients for Kaplan-Meier analyses were per-

formed using successive iterations to find the optimal sample size thresholds. Differences were considered to be statistically signif-

icant at values of p% 0.05. The cut-off value was thus defined as the one that maximally discriminates the 2 patient subsets in each

cohort. Overall survival was defined as: date of last news – date of diagnosis. Relapse at 12 months was defined as: date of relapse

(progression or metastasis) – date of the end of 1st line of treatment. If the event appears before 12 months: relapse = yes, otherwise

relapse = no.

DATA AND SOFTWARE AVAILABILITY

The results shown here are in part based upon data generated by the TCGA Research Network and available in a public repository

from the https://cancergenome.nih.gov/ website. The authors declare that all the other data supporting the findings of this study are

available within the article and its Supplemental Information files and from the corresponding author upon reasonable request. Orig-

inal and analyzed data have been deposited through Mendeley data website under https://doi.org/10.17632/fstsb2xfsf.1.
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