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Type I natural killer T (NKT) cells have gained considerable interest in anticancer immune 
therapy over the last decade. This “innate-like” T  lymphocyte subset has the unique 
ability to recognize foreign and self-derived glycolipid antigens in association with the 
CD1d molecule expressed by antigen-presenting cells. An important property of these 
cells is to bridge innate and acquired immune responses. The adjuvant function of 
NKT cells might be exploited in the clinics. In this review, we discuss the approaches 
currently being used to target NKT cells for cancer therapy. In particular, we highlight 
ongoing strategies utilizing NKT cell-based nanovaccines to optimize immune therapy.

Keywords: natural killer T cells, adjuvant, α-galactosylceramide, CTL response, nanovaccines, dendritic cells, 
cancer

iNTRODUCTiON

Invariant or type I natural killer T cells (referred as NKT cells) represent a highly conserved subset 
of non-conventional T lymphocytes endowed with a remarkably broad range of immune effector and 
regulatory functions. These cells recognize foreign and self-derived glycolipid antigens presented 
by the monomorphic MHC/HLA class I-like molecule CD1d expressed by antigen-presenting 
cells, including dendritic cells (DCs) [for reviews, Ref. (1–5)]. NKT cells express on their surface a 
semi-invariant T cell receptor (TCR) composed by a unique TCR-α chain paired with a restricted 
number of β-chains. Rapidly after natural activation (inflammation, infection), NKT cells produce 
huge amounts of cytokines including T helper (Th)1-like (INF-γ), Th2-like (IL-4), Th17-like (IL-17, 
IL-22), and regulatory (IL-10) cytokines. This flexibility depends on the mode of stimulation, on the 
location and on the NKT cell subset challenged. Of note, NKT cells can be activated by direct TCR 
triggering and also via cytokines, without TCR engagement (5). With their ability to swiftly release 
cytokines, NKT cells have also the potential to lyse cellular targets following TCR recognition of lipid 

Abbreviations: NKT, natural killer T; DCs, dendritic cells; TCR, T cell receptor; α-GalCer, α-galactosylceramide; CAR, chi-
meric antigen receptor; aAVC, artificial adjuvant vector; PLGA, polylactic-coglycolic acid; CTL, cytotoxic CD8+ T lymphocyte; 
TLR, toll-like receptor; Trp2, tyrosinase-related protein 2.
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antigens (6). This property is important in immune surveillance 
against tumor cells and could be exploited for immune-based 
therapy. The role of NKT cells in various pathologies including 
cancer, infection, acute, and chronic inflammation and autoim-
mune diseases has been evidenced in experimental models and in 
humans (5). Along with their natural (beneficial or detrimental) 
role in pathological settings, NKT cells can also be manipulated by 
means of specific CD1d-restricted ligands. For instance, exposure 
of antigen-presenting cells to α-galactosylceramide (α-GalCer) 
triggers potent innate and acquired immune responses. Of par-
ticular interest is the exquisite capacity of NKT cells to promote 
DC maturation and, as a consequence, to trigger potent T and 
B  cell responses (7). This unique property, and given that the 
CD1d/NKT axis is conserved in humans (with no HLA restric-
tion), could be used in clinical situations, including cancer. There 
is a strong interest to exploit the adjuvant effects of α-GalCer or 
related glycolipid derivatives to develop more efficient NKT cell-
based vaccines (8–10). We herein review the effects of α-GalCer 
in preclinical and clinical studies and discuss ongoing and future 
strategies that aim to optimize NKT cell-based antitumor therapy 
with a particular focus on nanovector delivery systems. These 
systems, particularly those allowing encapsulation of tumor anti-
gens and α-GalCer derivatives (adjuvant), might realize maximal 
therapeutic benefit with minimal toxicity.

FRee α-GalCer iN ANTiTUMOR THeRAPY: 
FROM PReCLiNiCAL STUDieS TO 
CLiNiCAL DeveLOPMeNT

Alpha-GalCer is a marine sponge-derived glycosphingolipid orig-
inally discovered in a screen for antitumor compounds (11, 12).  
This seminal discovery has led to the development of synthetic 
α-GalCer derivatives as a family of powerful glycolipid agonists 
for NKT cells in order to promote protective immune responses 
against infections and cancers (13–15). α-GalCer triggers a mixed 
response by NKT  cells including the production of IFN-γ, a 
cytokine important in tumor immune surveillance and inhibition 
of angiogenesis. Different agonists with Th1-promoting functions 
(which appear to be more adapted for anticancer therapies) have 
been described (13, 16). Preclinical studies have highlighted the 
potent antitumor effect of α-GalCer and α-GalCer derivatives 
against solid tumors (sarcoma, melanoma and colon, prostate, and 
lung carcinoma) and hematological malignancies (lymphoma) 
(12, 17–21). Mechanisms involved include early production of 
IFN-γ by NKT cells and NK cells and secretion of IL-12 by DCs 
(20). This success has led to clinical trials in patients with advanced 
lung cancer. Free soluble α-GalCer was used. Unfortunately, no 
or low clinical benefits were reported among patients (22–24). 
These disappointing results might be due to the lower number 
of NKT cells in patients relative to healthy individuals and/or to 
their diminished (but reversible) activation threshold capacity 
(22–32). Hence, one concern in NKT cell-based therapy is the 
diminished NKT cell count and/or function, although this cannot 
be generalized to all advanced cancer patients. Various means 
of circumventing this potential drawback are being developed 
including infusion of autologous ex vivo-expanded NKT  cells. 

This approach can lead to clinically relevant antitumor responses 
(33–39). In vivo transfer of NKT cells expressing chimeric antigen 
receptor in order to redirect their cytotoxicity against tumor 
cells has also been explored in preclinical studies. This approach 
may provide potent antitumor activity (40, 41). Moreover, the 
reprogramming of NKT cells to induced pluripotent stem cells 
and their subsequent re-differentiation into more functional 
NKT cells (compared with the parental cells) is opening up new 
avenues in this field (42, 43). Another reason that might explain 
disappointing clinical data relates to the uncontrolled delivery of 
α-GalCer, which might lead to suboptimal primary and secondary 
activation of NKT cells. This later issue prompted researchers to 
inoculate α-GalCer in a vectorized (cellular or acellular systems) 
form in order to better control the delivery of the active principle 
and to generate more efficient innate and acquired immune-based 
antitumor responses.

veCTORiZATiON OF α-GalCer iN 
CeLLULAR SYSTeMS

Cellular systems in which α-GalCer is incorporated can act as 
potent (NKT cell-based) cellular adjuvants. As described below, 
these cellular systems include DCs, non-antigen presenting cells, 
and cancer cells. Studies in mice have demonstrated that α-GalCer 
loaded in DCs has a higher ability to activate NKT cells and to 
trigger antitumor responses relative to α-GalCer injected in a free 
(non-vectorized) form (18, 44). In the same line, adoptive transfer 
of α-GalCer-loaded autologous peripheral blood mononuclear 
cells or DCs induced clinical benefits in some patients (lung can-
cer and head and neck cancer), an effect that correlates with IFN-γ 
production (23, 33, 34, 36, 45–49). Of note, adoptive transfer of 
autologous NKT cells along with α-GalCer-pulsed mononuclear 
cells or DCs led to encouraging clinical results in term of prolonged 
median overall survival time (35, 36, 50). This effect was associ-
ated with a significant infiltration of NKT cells into the tumor (36) 
Hence, this combination therapy led to significant clinical efficacy, 
although technical and economic issues still persist.

Taniguchi’s group was the first to exploit artificial adjuvant vec-
tors (aAVCs) to enhance NKT cell-based antitumor responses (8). 
This system can induce both innate and long-term memory CD8+ 
T cell responses against cancer. For instance, inoculation (single 
dose) of allogeneic fibroblasts (used as a vector cell) into which 
tumor antigen mRNA and CD1d with α-GalCer were introduced 
led to a long-lasting antitumor response (51–54). The same group 
has designed a human aAVC consisting of embryonic kidney cells 
transfected with the human melanoma MART-1 antigen and 
CD1d and pulsed with α-GalCer. This cellular system promoted 
antitumor response in humanized mice (55). Mechanistically, 
it is likely that allogeneic cells are selectively taken up by DCs 
and that the subsequent cross-presentation of tumor antigens to 
CD8+ T cells and α-GalCer to NKT cell is critical in the promo-
tion of strong and long-lasting tumor-specific cytotoxic CD8+ T 
lymphocytes (CTL) responses.

Tumor cells are rich sources of tumor antigens. However, due to 
the low immunogenicity of tumor antigens, combined adjuvants 
are requisite in order to develop cancer vaccines. Shimizu and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Ghinnagow et al. Adjuvant Function of NKT Cells 

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 879

collaborators were the first to evaluate the capacity of α-GalCer-
pulsed tumor cells (melanoma) to act as a cellular adjuvant (56). 
Numerous studies have validated the efficacy of this strategy 
in therapeutical settings in the mouse system (solid tumor and 
hematological malignancies) (57–66). Mechanistically, inocu-
lated α-GalCer-pulsed tumor cells are selectively taken up by DCs 
(as for aAVC), which have a unique capacity to cross-present anti-
gens from dying cells. It is also possible that the killing of CD1d-
expressing tumor cells by activated NKT cells leads to the release 
of tumor antigens and to their subsequent cross-presentation by 
DCs. Whatever the mechanism, it is likely that the presentation 
of both α-GalCer and tumor antigens by the same DC is critical 
in the development of the protective tumor-specific CTL-based 
antitumor response. Whether this strategy could be exploited in 
the human setting to harness cancer progression and recurrence, 
without inducing autoimmunity, is still unknown. Cooperative 
action of toll-like receptor (TLR) ligands and iNKT cells on DC 
function is a well-recognized phenomenon (67). Of interest, 
relative to inoculation of α-GalCer-loaded tumor cells alone, 
coadministration of α-GalCer-loaded tumor cells and TLR9 
agonists augments the antitumor response (66).

Introduction of α-GalCer and tumor antigens in antigen-pre-
senting cells has also been attempted in preclinical models. DCs 
expressing the mammary tumor-associated antigen Her-2 and 
pulsed with α-GalCer trigger potent antitumor responses (68). 
The use of different models of tumors revealed that this strategy 
was effective both in prophylactic and therapeutic settings (69). Of 
interest, vaccination with DCs transduced with OVA (used here 
as a model tumor antigen) plus CCL21, a chemokine that attracts 
both T  cells and NKT  cells, protects against OVA-expressing 
tumors (70). Finally, human embryonic stem cell-derived DCs 
genetically engineered to express CD1d can prime CD8+ T cells 
against tumor antigens (71). The potential benefit of this latter 
strategy in cancer immunotherapy is being studied. In conclu-
sion, cell-based vaccines to optimize α-GalCer activity in vivo are 
promising although technical, logistical, and financial difficulties 
might limit the development of such vaccines.

veCTORiZATiON OF α-GalCer iN 
ACeLLULAR SYSTeMS

Definition of Nanovectors
Development of nanovectors (<1 μm) holds great potential for 
cancer immunotherapy, including antitumor vaccines (72–74). 
The interest of using nanosized carriers able to incorporate 
α-GalCer (with or without tumor antigen) to optimize NKT cell-
based anticancer therapy has recently emerged. Encapsulation 
of α-GalCer into nanovectors might offer several advantages 
relative to soluble α-GalCer. This includes preferential internali-
zation by antigen-presenting cells (due to the size), slower and 
sustained release of α-GalCer in CD1d-containing endosomes, 
and minimal side effects (due to the lower amount required for 
a similar biological effect). Moreover, compared to cell-based 
vectorization, nanovectors are less invasive and costly (no 
adoptive transfer). Nanovectors offer the unique opportunity to 
deliver both adjuvant (including α-GalCer) and tumor antigens 

to the same antigen-presenting cells, especially DCs (75–77). 
Nanovectors represent an interesting class of delivery vehicles 
able to induce potent and long-lasting immune responses (78, 79).  
Surprisingly enough, few studies have exploited this unique 
property to enhance the antitumor functions of NKT cells.

Nanovectors include a multiple range of particulate systems 
including (among others) virus-like particles, dendrimers, silica 
microspheres, micelles, nanogels, nanoemulsions, liposomes, 
carbon nanotubes, metallic nanoparticles, and polymeric nano-
particles, which include nanospheres and nanocapsules (Table 1 
and not shown). The physical properties as well as the advantages 
and drawbacks of nanovectors are presented in Table  1. For 
vaccine development, a major goal is to target DCs. Uptake of 
nanovectors by DCs depends on several physicochemical proper-
ties including the size, shape, surface charge, hydrophobicity, and 
hydrophilicity of nanovectors. To target more selectively DCs, it 
is possible to arm nanovectors with ligands or antibodies on their 
surface. Among the different delivery systems for antigen encap-
sulation in vaccines, particularly for cancer therapy, polymeric 
nanoparticles have many advantages including low toxicity, high 
biodegradability, amenability to controlled release of the bioactive 
agents (antigen and adjuvant), preservation of their stability, and 
potential for surface functionalization (79, 80). Currently, there 
is a long list of polymers used to produce nanovectors including 
plasma albumin, chitosan, polyethyleneimine, polylactic acid, and 
polylactic-coglycolic acid (PLGA). PLGA is one of the most suc-
cessful biocompatible and biodegradable polymers (approved for 
in vivo use by the United States Food and Drug Administration). 
PLGA-based nanoparticle systems are particularly interesting 
since they allow high antigen density, incorporation of different 
classes of molecules including proteins and lipids, ability to reach 
MHC I pathway after uptake by DCs, and slow release kinetics 
delivery (75, 81–85). Attempts have been made to incorporate 
α-GalCer in nanosized vectors, with or without tumor antigens 
(Table  2). Here, we detail the effect of vectorized α-GalCer in 
innate and acquired immune-based antitumor responses.

vectorization of α-GalCer without Tumor 
Antigen
Preclinical studies suggest that α-GalCer vectorized in nanovectors 
is of potential interest. This relies mainly on passive (untargeted) 
and active (targeted) delivery of α-GalCer to antigen-presenting 
cells. For instance, silica microspheres coated with lipid bilayers 
plus α-GalCer target mouse CD169-expressing macrophages 
and DCs, both cell types being critical in the primary activation 
of NKT  cells (86, 87). Others and we have demonstrated that 
PLGA-based nanoparticles are internalized by DCs to promote 
NKT  cell activation (88, 89). Another study has shown that 
α-GalCer incorporated in octaarginine-modified liposomes 
are passively taken up by antigen-presenting cells and strongly 
activate NKT cells. This leads to therapeutic protection against 
B16F10 lung metastases (90). In order to optimize the targeting of 
α-GalCer to antigen-presenting cells, nanovectors can be armed 
with ligands or antibodies that bind to specific markers. For 
instance, liposomes decorated with oligomannose that binds to 
mannose receptor and DC-SIGN target DCs in vivo and potently 
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TAbLe 1| Physical properties, advantages and drawbacks of nanovectors.

Table 1 | Dendrimers 1.5–14.5 nm Chemical homogeneity, high, degree of surface functionality 
and versatility, controlled degradation

Multistep syntheses, elevated cost

Micelles 10–100 nm Capacity and compatibility with the loaded drug, minimized 
cylotoxicity

Low drug loading, low drug incorporation 
stability, limited targeting ability

Nanogels 20–200 nm Large Surface area, high capacity to absorb water and other 
biological fluids, functional modification of the surfaces to 
prevent rapid clearance by phagocytic cells

Difficulties to remove the solvents and 
surfactants (toxicity)

Nanoemulsions ≈100 nm Stable structures. Large effective surface area (enhances the 
bioavailability of the active compound)

Special application techniques (high pressure 
homogenizers, ultrasonics), expensive 
equipment. Emulsions require large amounts 
of surfactants (toxic)

Liposomes 400 nm to 
5 μm

Controlled release of the active principle (reduced side effect 
relative to the free form), economical production, good 
tolerability, specific targeting, can transport up to 10,000 
active compounds
Approved for clinical use

Rapid clearance due to the 
reticuloendothelial system low-term stability

Multilamellar vesicles 200 nm to 
1 μm

Large unilamellar vesicles 20 nm to 
200 nm

Possibility to incorporate PEG and antibodies/ligands  
onto the surface to lengthen blood circulation and target 
immune cells

Small unilamellar vesicles

Carbon nanotubes

Single-walled

Multi-walled (2–10 layers 
of graphene sheet)

Radius of 
up to 1 nm

Excellent chemical and thermal stability, ordered structure, 
high mechanical strength, high electrical and thermal 
conductivity, metallic or semimetallic behavior, high surface 
area, and bioavailability

Lack of solubility in aqueous media  
(may be solved by chemical modification 
and functionalization), potential toxic effects, 
aggregate formation (alteration of their 
general physico-chemical properties)

Diameter of 
>10 nm

Metallic nanoparticles 5–500 nm Biological capacity to catalyze reactions in aqueous media at 
standard temperature and pressure, use in molecular imaging

Toxic chemicals, high-energy requirements 
of production

Polymeric nanoparticles

Nanospheres

Continuous matrix 
systems in which loaded 
drugs are generally 
dispersed in and 
entrapped by different 
binding systems

10 nm to 
1 µm

Slower and sustained release of the active principle (adjuvant, 
antigens), high physical stability, simple formulation, 
multifunctionality, incorporation (absorption or covalent 
conjugation) of hydrophilic polymers (e.g., PEG/PEO-chains, 
polysorbate 80 polysaccharides). Cationic systems enhance 
DC uptake, possibility to graft ligands or antibodies to 
enhance the targeting

Quickly eliminated from the bloodstream 
(need specific design to escape the 
reticuloendothelial system cells)

Nanocapsules

Core (hydrophobic or 
hydrophilic) structure 
surrounded by a 
polymeric shell in which 
the drugs are confined

10 nm to 
1 µm

Natural polymers (dextran, Chitosan, albumin, gelatin, starch) 
Copolymers (PFLA, PGA, PLGA) approved by the FDA for 
clinical use, multiple functionalization (PLGA nanoparticles) for 
use in cancer immunotherapy
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stimulate NKT cells toward a Th1 direction (91). Encapsulating 
α-GalCer in liposomes bearing on their surface glycans specific 
for the sialoadhesin CD169 strongly activates NKT cells in vivo 
(92). Our recent data demonstrate that, relative to non-vectorized 
α-GalCer, α-GalCer incorporated into antibody-armed PLGA 
nanoparticles that target DCs increases NKT  cell-based innate 
immune responses (93).

vectorization of α-GalCer and Tumor 
Antigens
Passive (Untargeted) Delivery
Very few studies have been devoted so far to study the potential 
benefit of encapsulating α-GalCer and tumor antigens in nano-
sized vectors. A pioneer study from McKee and colleagues ana-
lyzed the consequences of α-GalCer and antigen co-encapsulation 
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TAbLe 2 | Utilization of α-GalCer-encapsulated nanovectors to promote NKT cell activation and antitumor responses.

Nanovectors Antigen Targeting and NKT cell response Antitumor response Reference

Silica microspheres No Targeting of dendritic cells (DCs) and  
CD169-expressing macrophages (NKT) cell activation

Not tested (86, 87)

Virus-like particles Lymphocytic 
choriomeningitis 
virus-derived 
peptide gp33

NKT cell activation gp33-specific CTL response (94)
Protection against melanoma (prophylactic 
setting)

Liposomes No Targeting of DCs (Mannose receptor, DC-SIGN) via surface 
oligomannose NKT cell activation (Thl biais)

Not tested (91)

No Targeting of macrophages (sialoadhesin CD169) via glycan 
ligands NKT cell activation (mouse and human)

Not tested (92)

No Targeting of antigen-presenting cells (octaarginine-modified 
liposomes) strong NKT cell response

Antitumor effects (melanoma)
Therapeutic setting

(90)

Tyrosinase-related 
protein 2 (Trp2)

NKT cell activation CTL response-antitumor effects
Therapeutic setting

(97)

PLGA-based NPs 
(passive targeting)

No Better primary activation of NKT cells (IFN-γ) Not tested (88, 89)

OVA NKT cell activation Higher CTL response relative to soluble OVA 
and α-GalCer and to TLR-based nanovaccine
Protection against melanoma
Prophylactic and therapeutic settings

(95, 96)

PLGA-based NPs 
(active targeting)

No Targeting of DEC205-expressing DCs Not tested (93)
Better primary activation of NKT cells compared to soluble 
α-GalCer
Reduced unresponsiveness of NKT cells upon restimulation

OVA Same extent of NKT cell activation relative to NPs without 
OVA

Robust OVA-specific CTL response
Antitumor effects (melanoma, lymphoma)
Prophylactic and therapeutic settings

(93)

Trp2
Gp100

Targeting of Clec9a-expressing DCs
NKT cell activation
Better primary and secondary activation of NKT cells

CTL response against tumor self antigens (107)
Antitumor effects (melanoma)
Prophylactic and therapeutic settings

Melan A Targeting of CLEC9a-expressing DCs
Expansion and activation of human NKT cells  
(expanded from PBMCs)

Expansion of human Melan A-specific CD8+ 
T cells

(107)
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in antitumor responses (94). In this work, α-GalCer and the gp33 
peptide derived from lymphocytic choriomeningitis virus (used 
as a model antigen) were incorporated into virus-like particles. 
This composite particle system induced a 10-fold more active 
gp33-specific CTL response, compared to free α-GalCer and 
gp33, and prophylactically protected against gp33-expressing 
melanoma. Mechanistically, it is likely that α-GalCer and gp33 are 
delivered in the endosomal compartment of antigen-presenting 
cells to load to CD1d and MHC Class I, respectively, thus favoring 
cross-presentation by DCs. Dölen and collaborators have recently 
demonstrated that encapsulating α-GalCer and OVA in PLGA-
based nanoparticles is efficient to trigger antitumor responses 
(95). Of interest was the observation that the response was 
superior compared to TLR agonist and OVA co-encapsulation. 
More recently, using a similar strategy, Li and colleagues showed 
that the immune responses triggered by α-GalCer and OVA 
encapsulated in PLGA nanoparticles was longer compared to that 
induced by its soluble counterparts (96). Of note, both intranasal 
and intraperitoneal injection of nanovaccine triggered robust 

antigen-specific CD8+ T cell response. Of interest, Neumann and 
colleagues investigated the effect of α-GalCer and tumor antigens 
co-delivery on antitumor responses using a cationic liposome (97). 
The self-antigen tyrosinase-related protein 2 (Trp2) was used. 
The authors found that the liposomal formulation elicits potent 
antigen-specific CTL response and prevents tumor progression 
in a therapeutic setting. Collectively, encapsulation of α-GalCer 
and tumor antigens in nanovectors, including liposomes and 
PLGA NPs (Table 2), elicits antitumor responses in experimental 
models. In these settings (passive delivery), DCs and probably 
other antigen-presenting cells are critically important.

Active (Targeted) Delivery in DCs
Our work was the first to investigate the consequences of active 
α-GalCer and tumor antigen delivery to DCs by means of mul-
tifunctional nanovectors. In light of the literature showing the 
unique ability of cross-priming DCs (CD8α+ DCs and BDCA3+ 
DCs in the mouse and human system, respectively) to initiate and 
maintain CTL responses (98–101), we decided to target this DC 
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FiGURe 2 | Promotion of CD8+ T cell responses upon direct [toll-like receptor (TLR)-based] and/or indirect [natural killer T (NKT) cell based] dendritic cell (DC) 
activation. Direct activation. Nanoparticles bearing TLR agonists are internalized by DCs (i.e., those that excel in cross-presentation) and activate endosomal 
TLRs (such as TLR3, TLR7/8, or TLR9). This rapidly leads to DC maturation and to the production of inflammatory cytokines and costimulatory molecules that in 
turn promote the differentiation and expansion of naïve CD8+ T cells. Indirect activation. In this setting, the delivery of α-GalCer in DCs leads to the exposition of 
the glycolipid on the cell surface in association with the CD1d molecule (at this stage, the DC is still immature). TCR triggering in NKT cells leads to the release of 
cytokines and to the expression of costimulatory (CD40) molecules culminating in DC maturation. In turn, mature DCs activate naïve CD8+ T cells. Direct and 
indirect activation. One may suppose that the two effects are additive, or even synergistic, to promote optimal CD8+ T cell responses that control tumor 
progression.

FiGURe 1 | Schematic “ménage à trois” between CD8α+ DC, natural killer  
T (NKT) cells, and naive CD8+ T cells. (1) Anti-Clec9a-armed nanoparticles 
that carry α-GalCer and tumor antigen are taken up by CD8α+ DC via the 
endocytic receptor Clec9a. (2) The active components are delivered in the 
endosomes and presented via MHC class I (peptide) and CD1d (α-GalCer) to 
naïve CD8+ T cells and NKT cells, respectively. (3) In response to TCR 
triggering, NKT cells activate the maturation of CD8α+ dendritic cells (DCs) 
through cytokines and costimulatory (CD40) molecules. (4) Mature DCs 
transmit signals to naïve CD8+ T cells, which, in turn, differentiate into CTLs. 
(5) CTLs destroy tumor cells. Note that α-GalCer is acquired and presented 
by DCs that are also actively engaged in presenting peptides to T cells. This 
scheme does not consider reciprocal interactions between NKT cells and 
CD8+ T cells.
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subset. Moreover, we and others showed that CD8α+ DCs are very 
potent to stimulate primary and secondary NKT cell activation 
(93, 102). Finally, the fact that NKT cells can substitute “classical” 
CD4+ Th cells to license the DCs for cross-priming represents 
another reason explaining our devised strategy (103). Since 
cross-priming DCs express specific markers on their surface, 
we armed PLGA-based nanoparticles with antibodies in order 
to target these cells in  vivo. Although DEC205 is not entirely 
specific for cross-priming CD8α+ DCs, nanoparticles armed 
with anti-DEC205 antibodies and carrying both α-GalCer and 
OVA successfully led to antigen cross-presentation and to potent 
antitumor responses (93). Of interest, this strategy also led to a 
long lasting antigen-specific antibody response. The C-type lectin 
Clec9a (also known as DNGR1) is almost exclusively expressed 
by cross-priming mouse and human DCs and is known to confer 
potent CTL responses (104–106). Our recent data indicate that 
PLGA-based nanoparticles armed with anti-Clec9a antibodies 
and incorporating both α-GalCer and OVA can confer protec-
tion against OVA-expressing tumors (lymphoma) (107). We also 
investigated whether our vectorization/targeting strategy might 
break tolerance to tumor self-antigens, an important challenge 
for optimal antitumor therapy [for reviews see Ref. (108–112)]. 
Indeed, co-incorporation of α-GalCer and tumor melanoma-
derived self-antigens (including Trp2) triggered a potent CD8+ 
T  cell-mediated antitumor response (107). Hence, our vaccine 
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strategy, probably by enhancing DC/NKT cell/naive CD8+ T cell 
interactions (Figure  1), abrogates self-tolerance and promotes 
effective antitumor CTL responses. Signals incorporated by 
DCs are critical to shape the functions of naive T lymphocytes, 
including CD8+ T cells. Because maturation processes of DCs due 
to direct innate sensor (such as TLR) signaling might be differ-
ent to those triggered by NKT  cells, it would be interesting to 
compare the efficacy of TLR-based and NKT cell-based targeted 
nanovaccines in cancer therapies (Figure 2). Co-administration 
of soluble α-GalCer and TLR agonists with antigen was shown 
to enhance the CD8+ T cell response with augmented effect on 
tumor progression, relative to antigen mixed with an adjuvant 
alone (113). Therefore, encapsulation of both TLR ligands and 
α-GalCer derivatives in antibody-armed nanovectors might 
additively or synergistically enhance the responses, a hypothesis 
that needs further investigations.

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

Growing evidences demonstrate that α-GalCer (or α-GalCer 
derivatives) might be successfully used in cancer therapy. However, 
innovative strategies to better manipulate the adjuvant properties 
and the antitumor potentials of NKT cells are required. Among 
them, optimization of delivery systems that contain α-GalCer and 
tumor antigens to optimally activate NKT  cell-based immune 
responses remains an important goal. Cell-based vaccines that 
promote strong and long-lasting CTL responses offer an interest-
ing immunotherapeutic strategy for the future although concerns 
still exist (cost, invasive procedure). Nanovectors that passively or 
actively target (cross-priming) DCs are also of clinical interest. 
Future studies will aim to enhance the efficacy of delivery systems 
in order to improve cell targeting and to optimize the delivery of 

the active principles (α-GalCer and tumor antigens) in the right 
cellular compartment. Such development will require the use of 
more sophisticated nanovectors to improve surgical strikes and 
possibly the targeting of other (DC expressed) specific molecules. 
Complementary approaches including strategies that boost the 
number/function of NKT cells in patients (transfer of functional 
NKT  cells) and/or that aim to control immune suppression  
(e.g., check point blockers, immunomodulatory drugs) are of 
interest. Moreover, combination of NKT cell and TLR agonists 
might amplify the strength and the quality of the immune 
response in patients. An important area for future research is the 
development of humanized mouse models to accurately replicate 
the NKT cell response in humans. It is likely that, in a near future, 
the use of nanovector-based medicine will optimize antitumor 
responses for the sake of cancer patients, in combination with 
conventional immunotherapy.
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