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Abstract

Laryngeal paralysis (LP) is the inability to abduct the arytenoid cartilages during inspiration,

resulting in a partial to complete airway obstruction and consequent respiratory distress.

Different forms of LP with varying age of onset exist in dogs. Hereditary early onset forms

were reported in several dog breeds. In most breeds, hereditary LP is associated with other

neurologic pathologies. Using a genome-wide association study and haplotype analyses,

we mapped a major genetic risk factor for an early onset LP in Miniature Bull Terriers to a

~1.3 Mb interval on chromosome 11. Whole genome sequencing of an affected Miniature

Bull Terrier and comparison to 598 control genomes revealed a 36 bp insertion into exon

15 of the RAPGEF6 gene (c.1793_1794ins36). The imperfect genotype-phenotype correla-

tion suggested a complex mode of inheritance with a major genetic risk factor involving a

recessive risk allele. Homozygosity for the insertion was associated with a 10- to 17-fold

increased risk for LP. The insertion allele was only found in Miniature Bull Terriers and Bull

Terriers. It was absent from >1000 control dogs of other dog breeds. The insertion sequence

contains a splice acceptor motif leading to aberrant splicing in transcripts originating from the

mutant allele (r.1732_1780del). This leads to a frameshift and a premature stop codon,

p.(Ile587ProfsTer5), removing 64% of the open reading frame. Our results suggest an impor-

tant role of RAPGEF6 in laryngeal nerve function and provide new clues to its physiological

significance.

Author summary

Laryngeal paralysis (LP) leads to respiratory distress in affected dogs and can be fatal in

severe cases. Many different forms of LP with different etiologies exist. Striking breed pre-

dispositions suggest that genetic factors contribute to some forms of LP. During the last

years, dog breeders noticed an increased prevalence of an early onset LP in Miniature Bull
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Terriers. We mapped a major risk locus for this specific form of LP to a ~1.3 Mb interval

on dog chromosome 11. Whole genome sequence analysis of an affected dog and compar-

ison to 598 control genomes revealed a single protein-changing genetic variant in the crit-

ical interval. This variant, a 36 bp insertion into a coding exon of the RAPGEF6 gene,

creates a cryptic splice site and leads to the expression of an aberrantly spliced transcript

with a premature stop codon. This suggests that the insertion results in a loss-of-function

allele. Dogs that are homozygous for the insertion have a 10- to 17-fold increased risk to

develop LP. The genotype-phenotype association is not perfect, suggesting that other

genetic and/or environmental factors also contribute to the development of LP. Our

results suggest an important role of RAPGEF6 in laryngeal nerve function.

Introduction

Sufficient abduction or opening of the arytenoid cartilages of the larynx during inspiration is

essential for breathing [1]. In dogs with laryngeal paralysis (LP), function of one or both recur-

rent laryngeal nerves is impaired resulting in an insufficient abduction [2]. Therefore, the

main clinical sign of dogs with LP is respiratory distress [2–4]. The degree of respiratory dis-

tress and the clinical presentation are correlating with the fact of unilateral or bilateral disease

and the degree of nerve impairment (paresis versus paralysis) [5]. Clinical signs may vary and

include voice impairment (dysphonia), progressive primarily inspiratory laryngeal stridor,

exercise intolerance, life-threatening episodes of breathing difficulties, and in cases of bilateral

laryngeal disease syncope and cyanosis [2–4].

Non-hereditary and hereditary forms of LP are known [2,6]. Beside traumatic, neoplastic

or iatrogenic diseases leading to non-hereditary LP, the most common form of LP is the geriat-
ric onset laryngeal paralysis polyneuropathy (GOLPP) in middle-aged and older large and giant

breed dogs. GOLPP is supposed to be part of a generalized polyneuropathy [4,7–9]. Hereditary

forms of LP in young dogs have been reported in Bull Terriers [10], Bouviers des Flandres

[11], Siberian Huskies and Siberian Husky crosses [12,13]. Hereditary LP has been reported to

be associated with a juvenile-onset polyneuropathy in Dalmatians [8], Rottweilers [14], white

coated German Shepherds [15], American Staffordshire Terriers [16] and in isolated dogs

from different breeds [12]. Genetic variants in the DCNT1 candidate gene were evaluated in

Leonbergers and Labrador Retrievers with LP but were not found to be associated with the dis-

ease [17]. In Leonbergers, LP and recessive polyneuropathy have been described as a canine

homolog of human Charcot-Marie-Tooth neuropathy [18]. More recently, genetic variants in

ARHGEF10 and GJA9 were shown to cause polyneuropathy in Leonbergers, which includes

LP as a clinical sign [19,20].

Diagnosis of LP is based on clinical signs, clinical examination and has to be confirmed by

laryngeal endoscopic inspection in anesthesia [21], because clinical signs are not exclusive for

LP [4]. Many different underlying causes such as laryngeal tumor or laryngeal collapse can

mimic clinical signs of LP.

Recently, a missense variant in ADAMTS3 was identified in Norwich Terriers with Upper

Airway Syndrome. This variant is predisposing to respiratory obstruction due to airway edema

within some dog breeds. [22].

Although not documented in the recent scientific literature, there are anecdotal reports

from breeders that an early onset form of LP is common in Miniature Bull Terriers (Fig 1). We

therefore initiated this study with the aim of unraveling the underlying genetic cause for LP in

Miniature Bull Terriers.
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Results

Clinical phenotyping

Laryngoscopy was performed in 36 Miniature Bull Terriers (S1 Table). For none of these dogs,

previous trauma or other neurologic diseases had been reported. The examined dogs com-

prised 33 dogs with breathing problems including inspiratory stridor, dyspnea, exercise intol-

erance, and in some cases cyanosis and syncope; one dog with cough and syncope without

inspiratory stridor or dyspnea and two dogs without breathing problems. In all dogs with

inspiratory stridor (n = 33), bilateral LP with abnormal laryngeal function, lacking abduction

of the arytenoids during inhalation and/or paradoxical movement of focal folds was diagnosed.

The dog with cough and the two dogs without any breathing problems showed physiologic

abduction during inhalation (Fig 2).

In contrast to normocephalic dogs with physiologic laryngeal function (Fig 2C) or normo-

cephalic dogs with LP (Fig 2D), the corniculate processes of the arytenoid cartilages in Minia-

ture Bull Terriers appeared to be more closed with loss of the dorsal arch of the rima glottides
(Fig 2A and 2B). Therefore, in Miniature Bull Terriers with LP smaller rimae glottidis in the

upper half of the laryngeal inlet were observed than in dogs with GOLPP (Fig 2D and 2E).

This fact may explain the severe respiratory distress seen in affected Miniature Bull Terriers.

Fig 1. Miniature Bull Terrier affected by laryngeal paralysis (LP). This dog underwent surgery and now carries a

permanent tracheostomy tube to alleviate its breathing problems. Tracheostomy is a problematic procedure in dogs as

the tracheostoma requires permanent skillful management to avoid infections.

https://doi.org/10.1371/journal.pgen.1008416.g001
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Mapping of the LP locus

Due to the striking breed predisposition of Miniature Bull Terriers for a clinically homogenous

early onset form of LP, we hypothesized that a new genetic variant might be involved in causing LP

in this breed. For the genetic analysis, we performed a genome-wide association study (GWAS)

with genotypes from 85 Miniature Bull Terriers. The phenotypes were partly obtained during

endoscopic examinations (18 cases / 1 control) and partly based on owners’ reports (5 cases / 61

controls; S1 Table). After quality control, the pruned dataset consisted of 22 LP cases, 59 controls

and 102,578 markers. We obtained a single strong association signal with 50 markers exceeding the

Bonferroni-corrected genome-wide significance threshold after adjustment for genomic inflation

(PBonf. = 4.9 x 10−7). All significantly associated markers were located on chromosome 11 within an

interval spanning from 18.3 Mb– 20.9 Mb. The most significant SNV was BICF2P1324705 with a

pc1df-value of 4.1 x 10−9 at position 19,230,371 bp on chromosome 11 (Fig 3).

The results of the GWAS indicated a recessive mode of inheritance as most of the cases

were homozygous for the risk haplotype. To narrow down the identified region, we visually

inspected the phased haplotypes of the cases and performed autozygosity mapping. We

searched for homozygous regions with allele sharing and found a region of ~1.4 Mb, which

was shared between 17 of the 22 cases (Fig 4). The critical interval for the LP risk variant corre-

sponded to the interval chr11:19,028,794–20,387,962 (CanFam 3.1 assembly).

Identification of a candidate causative variant

We sequenced the genome of an affected Miniature Bull Terrier at 12.5x coverage and called

single nucleotide variants (SNVs) and small indel variants with respect to the CanFam 3.1

Fig 2. Endoscopic images of the larynx. Frontal view from the oral cavity. E: epiglottis. Black A: arytenoid. RG: rima glottidis. VF: vocal fold. DA: dorsal arch

of the rima glottidis, CP: corniculate process of the arytenoid cartilages. RG is the gap between the two vocal folds. The images in the column “max.

inspiration” show the arytenoids at their most abducted/opened position (end of inspiration). Images in the column “max. expiration” are taken at the end of

expiration. The arytenoids are supposed to be in their most adducted position. (A, B) Miniature Bull Terrier (MB) with physiologic abduction during

inspiration. RG is wider open during inspiration (A, B left column) compared to expiration (A, B right column). Without doxapram (A), the abduction is less

pronounced than after stimulation with doxapram (B, immediately after intravenous administration of 1 mg/kg body weight (BW)). (C) Beagle with

physiologic laryngeal function. The arytenoids abduct during inspiration and the RG is larger than in expiration. (D) 10-year-old large-breed dog with

bilateral LP. In expiration, the vocal cords are not stretched tight anymore and collapsing. During inspiration (left column), arytenoids are not abducted. Due

to the negative pressure, both vocal folds are additionally collapsing inward and are reducing the area of the RG. Therefore, the RG is smaller during

inspiration than in expiration. (E) Miniature Bull Terrier with LP. No abduction of the arytenoids during inspiration can be observed. The RG is smaller

during inspiration than in expiration. Due to the contact of the corniculate processes (CP) of the arytenoid cartilages in in- and expiration and loss of the

dorsal arch of the RG, the upper half of the RG is nearly closed. Images S. Rösch.

https://doi.org/10.1371/journal.pgen.1008416.g002

Fig 3. Mapping of the LP locus by GWAS. The Manhattan plot shows a single significant signal at the beginning of

chromosome 11. The red line indicates the Bonferroni significance threshold (PBonf = 4.9 x 10-7). The quantile-quantile

(QQ) plot in the inset shows the observed versus expected–log(p) values. The straight red line in the QQ plot indicates

the distribution of p-values under the null hypothesis. The deviation of p-values at the right side indicates that these

markers are stronger associated with the trait than it would be expected by chance.

https://doi.org/10.1371/journal.pgen.1008416.g003
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reference genome assembly. Automated variant calling identified 2,891,932 homozygous vari-

ants in the affected Miniature Bull Terrier. We then compared these variants to whole genome

sequence data of 8 wolves and 590 dogs from genetically diverse breeds (other Miniature Bull

Terriers and Bull Terriers excluded). We filtered for variants, which were exclusively present

in the affected Miniature Bull Terrier. This hard filtering approach reduced the list to 1289

Fig 4. Definition of the critical interval for the LP locus. (A) Details of the GWAS signal on chromosome 11. Markers exceeding the Bonferroni

significance threshold were located between 18.3 – 20.9 Mb. (B) Haplotype analysis. Seventeen of the tested 22 cases were homozygous for a

shared haplotype spanning chr:19,028,794–20,387,962. The positions and p-values of the two best associated markers from the GWAS are

indicated. The position of the RAPGEF6 insertion is indicated in red. The critical interval is indicated at the bottom and defined by

recombinations on the left and right side of the shared central haplotype block. (C) Gene annotation for the critical interval. The NCBI annotation

release 105 listed 9 known protein coding genes (black), 5 computer-predicted protein-coding genes (grey) and one predicted gene for a non-

coding RNA (indicated in blue) in the critical interval.

https://doi.org/10.1371/journal.pgen.1008416.g004
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private homozygous variants in the affected dog, but none of them was located in the critical

interval (S2 Table, S3 Table).

As the automated variant calling pipeline had not yielded any plausible candidate variants

within the critical interval, we visually searched for additional structural variants. Inspection of

the short read alignments in the critical interval revealed five additional structural variants

with respect to the genome reference sequence in the LP affected dog. Four of them were

located in intergenic or intronic regions and not considered to be likely causative for LP. The

fifth of these structural variants represented an insertion into exon 15 of the RAPGEF6 gene

after position chr11:19,841,331 (S4 Table).

We amplified the RAPGEF6 exon 15 and flanking sequences by PCR and determined the

exact sequence of the insertion by Sanger sequencing. The insertion can be described as

XM_846793.5:c.1793_1794insTTTTTTTTTTTTTTTTTTTTTAGCCCTTGAAATTTT, or

c.1793_1794ins36 in abbreviated form. It consists of 21 T-residues and the duplication of 15

nucleotides flanking the insertion site (Fig 5).

Genotype-phenotype association

We genotyped 385 Miniature Bull Terriers, 75 Bull Terriers, and 681 dogs from 73 genetically

diverse breeds for the RAPGEF6 insertion. (S5 Table, S6 Table). Additionally, we visually

inspected the short read alignments for the RAPGEF6 c.1793_1794ins36 variant of 558 dogs

from diverse breeds and eight wolves with publicly available genomes (S2 Table). The insertion

allele was only found in Miniature Bull Terriers and Bull Terriers but not outside of these

breeds. The RAPGEF6 insertion was not found in 27 additional LP cases from the American

Staffordshire Terrier, French Bulldog, Pug, and Staffordshire Bull Terrier breeds (S5 Table).

Most of the LP affected Miniature Bull Terriers were homozygous for the insertion allele

(Table 1). However, the data showed an imperfect genotype-phenotype correlation as our

study comprised 13 dogs homozygous for the insertion whose owners had not reported any

breathing problems (n = 12) or endoscopy revealed no signs for LP (n = 1). On the other hand,

there were also 14 dogs with reported breathing problems, which were homozygous wildtype

or carried the insertion in heterozygous state. The genotype distribution suggested a complex

mode of inheritance involving a major genetic risk factor with recessive mode of inheritance.

Relative risk

The relative risk was calculated with a cohort of LP cases endoscopically diagnosed under stan-

dardized conditions (n = 21, diagnosed at Tierklinik Hofheim, Tierklinik am Kaiserberg and the

University of Leipzig; S1 Table). Miniature Bull Terriers homozygous for the RAPGEF6 insertion

had a 17.2-fold (95% CI: 7.29–40.7, p< 0.0001) increased risk for LP compared to dogs homozy-

gous for the wildtype allele or carrying the mutant allele in heterozygous state. (n = 193).

Relative risk was also calculated with all Miniature Bull Terriers fulfilling the inclusion cri-

teria (n = 243). In this cohort, homozygosity for the RAPGEF6 insertion was associated with a

9.91-fold (95% CI: 5.75–17.1, p< 0.0001) increased risk for LP compared with dogs, which

were homozygous wildtype or carried the insertion allele in heterozygous state. The risk in

dogs carrying the insertion in heterozygous state was not significantly increased compared to

dogs homozygous for the wildtype allele (RR = 1.75, 95% CI: 0.61–5.03, p = 0.30).

Functional confirmation

For the investigation of the functional consequences of the insertion on the transcript level, we

isolated RNA from blood samples of Miniature Bull Terriers with the three different genotypes

(wt/wt, wt/ins, ins/ins). RT-PCR with primers located in exon 12 and exon 17 of the RAPGEF6

RAPGEF6 variant in dogs
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gene yielded a band of the expected size in the wt/wt dog. The insertion allele gave rise to a tran-

script lacking 49 nucleotides from the 5’-end of exon 15, XM_846793.5:r.1732_1780del (Fig 6).

The formation of the aberrant transcript is due to the presence of a very strong splice acceptor

motif created by the insertion, which consists of 25 thymines followed by an AG dinucleotide.

The usage of the aberrant splice site leads to a shift in the open reading frame and an early

premature stop codon, XP_851886.2:p.(Ile578ProfsTer5). We did not experimentally verify

the expression of the mutant protein. Based on the mutant transcript sequence, 1029 (64%) of

the 1606 amino acids of the wildtype RAPGEF6 protein were predicted to be missing in the

mutant protein.

Genotypes at ADAMTS3:c.2786G>A (p.Arg929His)

During this study, we additionally genotyped 373 Miniature Bull Terriers, 68 Bull Terriers, 89

French Bulldogs and 12 Pugs for the recently published ADAMTS3:c.2786G>A variant in

Fig 5. Details of the RAPGEF6 insertion. (A) Schematic representation of exon 15 of the RAPGEF6 gene. Please note

that the orientation is in the direction of transcription and reverse complementary with respect to the genome

reference sequence. The insertion consists of a poly-thymine stretch and a duplication of 15 bp of flanking sequence at

the integration site. (B) Targeted genotyping of the 36 bp insertion by fragment size analysis. PCR products from three

dogs with different genotypes were separated on a FragmentAnalyzer capillary gel electrophoresis instrument.

https://doi.org/10.1371/journal.pgen.1008416.g005
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dogs with upper airway syndrome [22]. This mutant allele was not present in Miniature Bull

Terriers, Bull Terriers and Pugs. Seventy (79%) French Bulldogs were homozygous for the

wildtype allele, 18 (20%) were heterozygous and one dog (1%) was homozygous for the mutant

allele. (S1 Table, S5 Table).

Table 1. Allele and genotype frequencies at RAPGEF6:c.1793_1794ins36 from Miniature Bull Terriers, Bull Terriers and dogs from other breeds.

Breed Phenotype n Allele Freq. Genotype Frequencies

wt ins wt/wt wt/ins ins/ins

Miniature Bull Terrier cases (all) 43 0.22 0.78 5 (0.12) 9 (0.21) 29 (0.67)

cases (endoscopy) 33 0.20 0.80 3 (0.09) 7 (0.21) 23 (0.70)

controls 200 0.70 0.30 94 (0.47) 93 (0.47) 13 (0.07)

unknown/excluded1 142 0.70 0.30 69 (0.49) 60 (0.42) 13 (0.09)

Bull Terrier unknown/excluded1 75 0.85 0.15 53 (0.71) 22 (0.29) -

American Staffordshire Terrier cases 19 1.00 0.00 19 (1.00) - -

controls 9 1.00 0.00 10 (1.00) - -

Staffordshire Bull Terrier cases 4 1.00 0.00 4 (1.00) - -

controls 6 1.00 0.00 6 (1.00) - -

Other breeds unknown 11072 1.00 0.00 1107(1.00) - -

Total 1605

1 Exclusion criteria: age of onset� 8 years, cases diagnosed with hypothyroidism, controls < 2 years
2 Including 566 genotypes obtained by visual inspection of WGS data in IGV (558 dogs, 8 wolves, S2 Table)

https://doi.org/10.1371/journal.pgen.1008416.t001

Fig 6. Experimental verification of the RAPGEF6 splice defect. (A) The genomic organization of the RAPGEF6 gene

in the region of exon 15, position of the insertion, and position of primers for RT-PCR are indicated. (B) RT-PCR was

performed with RNA isolated from blood samples of dogs with the three different genotypes. The picture shows a

FragmentAnalyzer gel image of the experiment. In the control animal, only the expected 758 bp product is visible. In

an LP affected dog homozygous for the insertion, a 709 bp product representing a transcript lacking 49 nucleotides is

visible. The genomic insertion leads to the use of an aberrant internal splice acceptor site and a transcript lacking the

5’-end of exon 15 (RAPGEF6:r.1732_1780del). The identity of the bands was verified by Sanger sequencing.

https://doi.org/10.1371/journal.pgen.1008416.g006
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Discussion

In the present study, we identified a 36 bp insertion into exon 15 of the RAPGEF6 gene as a

likely candidate causative variant underlying a major genetic risk factor for an early onset

form of LP in Miniature Bull Terriers. The risk locus was unambiguously mapped by GWAS

to chromosome 11 and haplotype analyses suggested a critical interval of ~1.4 Mb. The

reported insertion was the only phenotype-associated protein-changing variant detected

within the critical interval and experiments on the transcript level strongly suggested that the

insertion results in a complete inactivation of the RAPGEF6 gene. Homozygosity for the inser-

tion was associated with a greatly increased risk for LP. Our data were not compatible with a

simple Mendelian trait (monogenic autosomal recessive inheritance with full penetrance).

Some of the discordant dogs in our study might have been due to erroneous phenotype assign-

ments, as LP can only be reliably diagnosed by endoscopy in living dogs. We had to work with

less reliable owner-reported phenotypes in order to obtain the required sample numbers for

this study. Heterogeneity and the existence of other clinically similar forms of LP in the breed

might explain some of the discordant cases that were not homozygous for the RAPGEF6 inser-

tion. We verified that ADAMTS3:c.2786G>A variant, reported to cause Upper Airway Syn-

drome in Norwich Terriers [22], does not segregate in Miniature Bull Terriers or Bull Terriers.

Being aware of the limitations of our study, we believe that the data nonetheless strongly sug-

gest the causality of the insertion.

The detected 36 bp insertion might have been the result of a retroposon insertion with sub-

sequent deletion of almost the entire retroposon, so that only 15 bp duplicated flanking

sequence and 21 bp of poly-A tail remained in the mutant allele [23,24]. Alternatively, we can-

not rule out the possibility that the insertion is the result of a non-homologous end-joining

repair process, in which the overhanging ends of a spontaneous double-strand break have not

been properly processed [25].

RAPGEF6 encodes the widely expressed Rap guanine nucleotide exchange factor 6. RAP-

GEF6 and the related RAPGEF2 form a distinct subfamily of guanine nucleotide exchange fac-

tors for RAP small GTPases [26–28]. RAPGEF6 is a downstream target of MRAS signaling

[27]. RAPGEF6 and RAP signaling have been reported to regulate a wide variety of cellular

functions including proliferation, differentiation, and cell adhesion [28]. However, the in vivo
function of RAPGEF6 is not well understood. Rapgef6-/- knockout mice are viable and reports

on their phenotypes are not entirely consistent. One study reported that Rapgef6-/- mice were

normal in terms of overall growth, appearance and fertility, but had an increased spleen weight

[29]. Later on, male infertility was observed in Rapgef6-/- mice [30]. Finally, a third study

reported subtle behavioral alterations and a slightly decreased body weight in Rapgef6-/- mice

[31].

Interestingly, one form of inherited polyneuropathy that also includes LP as a clinical sign

in Leonbergers is caused by a genetic variant in ARHGEF10 encoding Rho guanine nucleotide

exchange factor 10 [19]. RAPGEF6 and ARHGEF10 thus both represent guanine nucleotide

exchange factors that appear indispensable for the proper function of peripheral neurons with

long axons. In our study, the phenotype of RAPGEF6-/- dogs seemed to be restricted to changes

in laryngeal innervation with an early age of onset. ARHGEF10-/- dogs have a later age of onset

of clinical signs, but their phenotype comprises a broader variety of peripheral nerves. It has

been shown that a loss of ARHGEF10 leads to defects in axon ensheathment and myelination

[18,19].

Inherited forms of LP have been observed in at least three different human families. Auto-

somal dominant inheritance was postulated, but the causative genetic variants remain
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unknown [32–34]. Further studies are required to clarify whether RAPGEF6 variants might be

functionally involved in these or similar cases of human LP.

The RAPGEF6:c.1793_1794ins36 variant segregates in Miniature Bull Terriers and also Bull

Terriers. Miniature Bull Terriers were derived from Bull Terriers (see Material and Methods

for further details on breed history). The relatively high frequency of the disease associated

allele in the two breeds represents a major threat to the breeding programs. We recommend

the introduction of genetic testing and a targeted breeding program to decrease the prevalence

of LP. Future matings should be planned with at least one of the breeding animals being clear

(wt/wt) to avoid the birth of further homozygous mutant offspring. At the same time, it is

important to stress that carriers and even homozygous mutant animals should not be immedi-

ately excluded from breeding. We recommend to aim at a gradual reduction of the mutant

allele. An abrupt exclusion of all carrier animals from breeding would lead to a substantial loss

of genetic diversity in the breed and a further increase in inbreeding. This in turn is likely to

result in the increase of other yet unknown recessively inherited defects.

In conclusion, we identified the RAPGEF6:c.1793_1794ins36 variant leading to a splice

defect in the RAPGEF6 gene as candidate causative variant for LP in Miniature Bull Terriers.

The variant represents a major genetic risk factor for a complex trait. The genotype at this vari-

ant is not perfectly associated with the phenotype indicating heterogeneity and/or the presence

of additional modifier genes and/or environmental risk factors. The molecular pathogenesis of

LP remains unclear. Our data facilitate genetic testing of Miniature Bull Terriers and Bull Ter-

riers to prevent the non-intentional breeding of LP affected dogs. LP affected dogs may serve

as models to further clarify the elusive physiological role of RAPGEF6 in vivo.

Materials and methods

Ethics statement

All animal experiments were performed according to the local regulations. The dogs in this

study were examined with the consent of their owners. The collection of blood samples was

approved by the “Cantonal Committee For Animal Experiments” (Canton of Bern; permit 75/

16).

Animals and samples

Bull Terriers with their characteristic egg-shaped head were founded as a dog breed in the

1850s in the United Kingdom. Originally, there were no size standards in this breed and

smaller dogs were bred as a variety of the regular Bull Terrier. Eventually, two sub-populations

formed and the Miniature Bull Terrier with a maximum height of 35.5 cm was recognized as

an independent breed in 1991 by the American Kennel Club (AKC) and in 2011 by the Euro-

pean Fédération Cynologique Internationale (FCI). Therefore, Bull Terriers and Miniature

Bull Terriers share a common ancestral gene pool, but represent independent closed popula-

tions today.

This study included samples from 385 Miniature Bull Terriers (43 cases / 200 controls / 38

unknown phenotype / 104 excluded). The study also included 75 Bull Terriers (74 unknown

phenotype / 1 excluded), 28 American Staffordshire Terriers (19 cases / 9 controls), 90 French

Bulldogs (3 with impaired laryngeal function / 8 controls / 79 unknown phenotype), 12 Pugs

(1 with impaired laryngeal function / 2 controls / 9 unknown phenotype), 10 Staffordshire Bull

Terriers (4 cases / 6 controls) and>1000 dogs from many different breeds, which were

assumed to be free of early-onset LP (Table 1, S1 Table, S5 Table, S6 Table). EDTA blood sam-

ples were taken for DNA isolation. PAXgene blood tubes (Qiagen) were used to collect blood

samples for RNA isolation.
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Phenotype assignment

Case / control status was mostly based on owner’s report without endoscopic assessment of

the upper airways. Controls: Dogs age two years and older with no reported breathing difficul-

ties or diagnosed endocrinopathies were designated as controls. In three dogs, physiologic

laryngeal function had been endoscopically confirmed. Cases: Dogs with breathing difficulties

reported by the owner were designated as cases. Dogs with an onset of clinical signs older than

8 years and dogs suffering from hypothyroidism were excluded from association analyses and

classified as unknown regarding the LP phenotype. In 33 Miniature Bull Terriers with breath-

ing problems, laryngeal dysfunction had been endoscopically confirmed (S1 Table).

Laryngoscopy

Endoscopy of the upper airways was performed in three different institutions to assess laryn-

geal function. The examination was consented by the owners. Dogs were anesthetized with

randomly assigned anesthetic protocols. Dogs were positioned in sternal recumbency and the

head was elevated to the level of physiologic carriage by using e.g. a maxillary sling. The mouth

was opened and the larynx evaluated during spontaneous breathing with rigid straight 0˚-

endoscopes of different diameter (Karl Storz, Germany). In two institutions breathing was

additionally stimulated intravenously with doxapram hydrochloride (1–2 mg/kg body weight)

[4,35–37]. According to Gross et al. [37] laryngeal function was characterized as either normal

with visible abduction during inspiration or abnormal, without abduction during inspiration,

and resulting in the diagnosis of LP.

DNA isolation and SNV genotyping

We isolated genomic DNA from EDTA blood samples. Eighty-five dogs were genotyped for

220,853 SNVs on the illumina canine_HD chip (S1 File).

GWAS

A set of 23 cases and 62 controls was selected for the GWAS. GWAS was done using a mixed

model in RStudio with the GenABEL package. A polygenic model of the hglm package [38],

with a kinship matrix based on autosomal markers in the cleaned dataset as random effect, was

estimated and a score test for association using the function “mmscore” was performed. We

corrected for multiple testing using Bonferroni correction with a significance level of 0.05. QQ

plots were created using qqman version 0.1.4 [39].

Phasing and haplotype analysis

We inferred haplotype phase using the program fastPHASE version 1.4.0 [40]. We phased

chromosome 11 using all cases and control dogs together in a single run. We visually inspected

the phased haplotypes for the region of interest on chromosome 11 using Excel for shared hap-

lotype blocks among cases. Recombination events on either side of the shared disease-associ-

ated haplotype defined the borders of the critical interval.

Whole genome sequencing of an LP affected Miniature Bull Terrier

An Illumina PCR-free TruSeq fragment library with 400 bp insert size of an LP affected Minia-

ture Bull Terrier (MB003) was prepared. We collected 123 million 2 x 150 bp read-pairs or

12.5 x coverage on a HiSeq3000 instrument. The reads were mapped to the dog reference

genome assembly CanFam3.1 and aligned using Burrows-Wheeler Aligner (BWA) version

0.7.5a [41] with default settings. The generated SAM file was converted to a BAM file and the
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reads were sorted by coordinate using samtools [42]. Picard tools (http://sourceforge.net/

projects/picard/) was used to mark PCR duplicates. To perform local realignments and to pro-

duce a cleaned BAM file, we used the Genome Analysis Tool Kit (GATK version 2.4.9, 50)

[43]. GATK was also used for base quality recalibration with canine dbSNP version 139 data as

training set. The sequence data were deposited under the study accession PRJEB16012 and

sample accession SAMEA4867920 at the European Nucleotide Archive.

Variant calling

Putative SNVs were identified and annotated in each of 602 whole genome sequences as

described [44]. For the filtering of candidate causative variants in the case, we excluded 1 Mini-

ature Bull Terrier and 2 Bull Terriers without LP phenotype information. Thus, we used the

case genome and 598 control genomes, which were either publicly available [45] or produced

during other projects of our group or contributed by members of the Dog Biomedical Variant

Database Consortium [44]. A detailed list of these control genomes is given in S2 Table.

Gene analysis

We used dog CanFam 3.1 reference genome assembly together with the NCBI annotation

release 105 for all analyses. Numbering within the canine RAPGEF6 gene corresponds to the

accessions XM_846793.5 (mRNA) and XP_851886.2 (protein).

Sanger sequencing and targeted genotyping

We used Sanger sequencing to confirm the RAPGEF6:c.1793_1794ins36 candidate variant. A

265 bp or 301 bp fragment containing the variable position was PCR amplified (35 cycles)

from genomic DNA using AmpliTaq Gold 360 Master Mix (ThermoFisher). Primers are given

in the S7 Table. After treatment with shrimp alkaline phosphatase and endonuclease I, PCR

products were directly sequenced on an ABI 3730 capillary sequencer (ThermoFisher). We

analyzed the Sanger sequence data using the software Sequencher 5.1 (GeneCodes). To geno-

type larger numbers of samples, we performed fragment size analysis on a Fragment Analyzer

capillary gel electrophoresis instrument (Advance Analytical).

RNA isolation and RT-PCR

Total RNA was extracted from blood samples using the PAXgene Blood RNA Kit IVD (Qia-

gen). Polyadenylated mRNA was reverse transcribed into cDNA using the SuperScript IV

Reverse Transcriptase Kit (ThermoFisher) with oligo d(T) primers. Primer sequences for the

PCR on the synthesized cDNA are listed in the S4 Table. The products were analyzed on a

Fragment Analyzer capillary gel electrophoresis instrument (Advanced Analytical). The

sequence of the obtained RT-PCR products was confirmed by Sanger sequencing as described

above.

Relative risk

Relative risk (RR) for Miniature Bull Terriers was calculated by using the MedCalc online sta-

tistical tool. Based on the existing information, dogs were classified in eight groups (case,

endoscopy confirmed; case, owner reported; control, endoscopy confirmed; control, owner

reported; excluded, case� 8 years age of onset; excluded, control < 2 years of age; excluded,

hypothyroidism; phenotype unknown). All phenotype and genotype information used for the

calculation are listed in S1 Table.
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ADAMTS3 genotyping

We used Sanger sequencing to genotype the dogs for the ADAMTS3:c.2786G>A variant. A

230 bp fragment containing the variable position was PCR amplified from genomic DNA

using AmpliTaq Gold 360 Master Mix (ThermoFisher). Primers are given in the S7 Table.

After treatment with shrimp alkaline phosphatase and endonuclease I, PCR products were

directly sequenced on an ABI 3730 capillary sequencer (ThermoFisher). We analyzed the

Sanger sequence data using the software Sequencher 5.1 (GeneCodes).
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