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Abstract 
Motivation: The HLA system plays a pivotal role in both clinical applications and immunology research. 

Typing HLA genes in patient and donor is indeed required in hematopoietic stem cell and solid organ 

transplantation, and the MHC region exhibits countless genetic associations with immune-related 

pathologies. Since the discovery of HLA antigens, the HLA system nomenclature and typing methods 

have constantly evolved, which leads to difficulties in using data generated with older methodologies. 

Results: Here, we present Easy-HLA, a web-based software suite designed to facilitate analysis and 

gain knowledge from HLA typing, regardless of nomenclature or typing method. Easy-HLA implements 

a computational and statistical method of HLA haplotypes inference based on published reference 

populations containing over 600,000 haplotypes to upgrade missing or partial HLA information: “HLA-

Upgrade” tool infers high-resolution HLA typing, and “HLA-2-Haplo” imputes haplotype pairs and 

provides additional functional annotations (e.g. amino-acids and KIR ligands). We validated both tools 

using two independent cohorts (total n=2,500). For HLA-Upgrade, we reached a prediction accuracy of 

92% from low to high-resolution of European genotypes. We observed a 96% call rate and 76% 

accuracy with HLA-2-Haplo European haplotype pairs prediction. In conclusion, Easy-HLA tools 

facilitate large-scale immunogenetic analysis and promotes the multi-faceted HLA expertise beyond 

allelic associations by providing new functional immunogenomics parameters. 

Availability: Easy-HLA is a web application freely available (free account) at: https://hla.univ-nantes.fr. 

Contact: easyhla@gmail.com 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

 
HLA genes from the major histocompatibility complex (MHC) encode 

a specific group of cell surface molecules mediating recognition of non-

self antigens by the immune system. HLA plays key roles in 

transplantation management and success. HLA matching between a 

patient and potential donors is essential in hematopoietic stem cell 

transplantation (HSCT) (Copelan, 2006; Loiseau et al., 2007) and solid 

organ transplantations (Held et al., 1994). Donor-recipient compatibility 

is defined by the number of alleles shared across HLA-A, -B, -C, -DRB1, 

and -DQB1 genes. The chance of graft success is optimal when donor and 

recipient are fully compatible and have the lowest number of HLA alleles 

mismatches (Lee et al., 2007; Zachary and Leffell, 2016). The level of 

typing resolution is positively correlated with the probability of allele 

matching during donor search. Additionally, time restrictions in solid 

organ transplantation from deceased donors often make HLA allele high-

resolution typing impossible, and only intermediate resolution or even 

low-resolution genotyping may be available at the time of organ 

allocation. Beyond these major clinical impacts, HLA has been frequently 

associated with numerous immune-related pathologies (MacArthur et al., 

2017; Vince et al., 2014; Tian et al., 2017). 

MHC genomic region on chromosome 6 (6p21.3) is the most complex 

and polymorphic locus of the human genome (Howell et al., 2010). The 

MHC counts more than 220 genes (Horton et al., 2004), including 21 

polymorphic HLA genes from the classical HLA class I (e.g. HLA-A, 

HLA-B and HLA-C) and HLA class II (e.g. HLA-DRB1 and HLA-

DQB1). The HLA system comprises more than 22,000 described alleles 

(Robinson et al., 2015) (https://www.ebi.ac.uk/ipd/imgt/hla/stats.html). 

HLA alleles correspond to a specific sequence of HLA genes and can be 

considered as single nucleotide variants (SNVs; including tetra-allelic 

ones as well as insertions and deletions) haplotypes. HLA haplotypes can 

be constructed from these HLA alleles; here, we consider the 5 main genes 

HLA-A~B~C~DRB1~DQB1 for haplotyping, and named the 5-gene 

haplotypes as the following example: 

A*34:02~B*14:01~C*08:02~DRB1*04:05~DQB1*03:02. The 

complexity of this region is not only due to its diversity but also to its 

linkage disequilibrium (LD). LD is defined as the non-random association 

of neighboring polymorphisms, i.e. the difference between the observed 

frequency of allele combinations (haplotypes) and the expected frequency 

under random transmission. LD and haplotype frequencies are shaped by 
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selective pressure, genetic drift, non-random mating, recombination 

events, and shared genetic effect between alleles (Goodin et al., 2018; 

Ahmad et al., 2003). 

HLA typing techniques have considerably evolved over the years with 

a wide array of methods providing increasing levels of resolution (Erlich, 

2012, Table 1). Historically, phenotyping was performed by detecting 

HLA proteins on cell surface with specific antibodies. These serology-

based methods have progressively been replaced with DNA-based typing. 

Today, full-length HLA genes sequenced through NGS (Next-Generation 

Sequencing) provides the highest standard and resolution. In parallel with 

HLA typing methods, nomenclature has greatly evolved (Table 1), which 

nowadays significantly hampers retrospective analyses and HSCT 

compatible donor search from archived HLA datasets recorded in low/mid 

resolutions with possibly some missing genes (e.g. HLA-C or HLA-

DQB1) (Hurley et al., 2004). This major pitfall for clinics and biomedical 

research highlights the crucial need for high-resolution allele imputation 

from low or intermediate resolution in order to reduce allele ambiguity by 

simultaneously increasing genotype resolution and imputing unknown 

genes (Madbouly et al., 2014). 

 

Name Typing Resolution Nomenclature 

Broad 

serology 

Phenotyping 

(lymphocytotoxicity) 

Low B14 

Split  

serology 

Phenotyping 

(lymphocytotoxicity) 

Low B64 B65 

First-

field 

Genotyping 
(PCR SSP) 

Low B*14 

NMDP 

code 

Genotyping 

(PCR SSO) 

Intermediate 14:HUJ 

Second-

field 

Genotyping 
(Sanger sequencing 

and/or Next 

generation 
sequencing) 

High B*14:01 

B*14:02 

Table 1 - Common nomenclature reporting HLA types. HLA alleles nomenclature 

established by the World Health Organization (WHO) nomenclature Committee 

(http://hla.alleles.org/nomenclature/committee.html). Nomenclature is regularly updated. 

Here we consider HLA-B*14:01:01 as an example. "NMDP codes" allele codes narrow the 

list of alleles that must be considered at a given locus by eliminating some possibilities (e.g. 

B*14:HUJ means that the typing is either B*14:01 or B*14:02). "NMDP codes" are 

implemented and updated by the NMDP 

(https://bioinformatics.bethematchclinical.org/hla-resources/allele-codes/allele-code-

lists/allele-code-list-in-alphabetical-order/). PCR SSO: sequence specific oligonucleotide. 

PCR SSP: sequence specific primers (Howell et al., 2010). 

 

Finally, many current typing technologies are not designed to deliver 

full-length HLA haplotypes. Knowledge of haplotype pairs can be 

particularly useful to determine if unrelated individuals have a chance to 

be haplo-identical in a HSCT clinical setting; and in research, haplotypes 

are necessary for functional annotations. Familial explorations can be 

performed to determine haplotypes from parental genotypes, however, this 

technique is expensive and challenging to implement as it requires access 

to relatives’ DNA. Beyond this family-based approach, computational 

haplotype inference based on probabilistic models from genotypic data 

has been proposed (Salem et al., 2005). Several methods for haplotype 

inference exist, from algorithms based on parsimony (Clark, 1990) or on 

likelihood (such as the Expectation-Maximization -EM- algorithms) 

(Excoffier and Slatkin, 1995) to Bayesian algorithms (Stephens and 

Donnelly, 2003). Overall, the most commonly used methods to compute 

HLA haplotypes are EM-based algorithms (Eberhard et al., 2013), which 

can accommodate several loci with an arbitrary number of alleles for a 

large number of individuals with ambiguous haplotypes (Eberhard et al., 

2013; Salem et al., 2005). However, they show limited performance with 

small sample size and do not support haplotype determination from a 

unique individual. Moreover, results are dependent on inherent dataset 

characteristics: individuals genetic heterogeneity, number of loci, and 

genotype resolution (Eberhard et al., 2013). These methods are not always 

straightforward or need powerful computation (Salem et al., 2005). 

Previously, a maximum likelihood-based HLA haplotype imputation 

technique was validated on several datasets for unrelated HSCT donor 

search (Gourraud et al., 2005). This method computes the most likely 

haplotype pair from HLA genotypes based on HLA genotypes frequencies 

throughout donor transplant registries. Most of the reference haplotype 

frequencies come from the large reference population of the National 

Marrow Donor Program (NMDP). NMDP designates the US voluntary 

bone marrow donor registry. This registry has proposed several 

breakthroughs in the field of bone marrow transplantation by making 

available the large HLA haplotype database used in the current study, and 

also, by creating a specific nomenclature: "NMDP codes". These codes 

allow to describe HLA typing with some allele ambiguity represented by 

2 to 5 letter codes (table 1). 

Following this strategy, we developed Easy-HLA, a user-friendly web 

application designed to deliver a complete suite of HLA annotations 

(freely available through a secure connection at https://hla.univ-nantes.fr). 

From HLA genotypes and regardless of resolution level, Easy-HLA can 

statistically resolve HLA genotype ambiguity, and increase HLA data 

resolution and functional annotations. Easy-HLA facilitates the use of 

HLA data collected from both classical and historic laboratory procedures. 

In this article, we present our application and its validation using 

independent cohorts delivering optimized information for immunogenetic 

investigations. 

2 Implementation 

Easy-HLA is a web-based application suite designed to predict 

haplotypes from HLA genotypes. The input HLA genotypes can be 

entered with low/mid resolution and/or can contain ambiguities, in a single 

request (one individual genotype) or batch mode (several individuals 

genotypes). Regarding security and data storage, the loaded data files are 

deleted immediately after analysis completion, and the output data files 

are safely conserved on our server for one week. 

We implemented our tools with web scripting languages using PHP 

combined with the pgSQL procedural language. The pgSQL language is 

used to interrogate the haplotype database and find haplotype pairs 

corresponding to the input genotype. PHP functions were designed to 

query multiple databases (serological identity, NMDP nomenclature 

equivalence) to translate the HLA nomenclature complexity. We used 

estimates from maximum likelihood-based statistical method to infer HLA 

haplotypes and subsequently predict unavailable HLA information.  

2.1 Database 

Easy-HLA main algorithm is based on HLA haplotype frequencies 

from a large reference population, these frequencies were obtained with a 

maximum likelihood-based HLA haplotype imputation technique 

previously validated (Gourraud et al., 2005). We stored our data in a 

PostgreSQL database. The core reference haplotype frequencies come 

from the National Marrow Donor Program (NMDP) published in 2013 for 
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uses in clinical transplant and immunological research (Gragert et al., 

2013). From the HLA genotypes of 6.59 million US subjects, the NMDP 

estimated high-resolution HLA haplotypes frequencies in five ancestral 

populations using an EM algorithm (Schaid et al., 2002). The large sample 

size allows an accurate estimation of rare alleles and haplotypes 

frequencies. The NMDP haplotype database thereby reports frequencies 

of over 600,000 haplotypes divided into 5 ancestral populations (African-

Americans: 198,216; Asian and Pacific Islanders: 158,307; Europeans: 

304,697; Hispanics: 220,020; Native-Americans: 36,417). We completed 

this large dataset with RFGM, a French population database containing 

more than 16,000 haplotypes (Gourraud et al., 2015; Pappas et al., 2015). 

The user has the possibility to choose the best matching reference 

population with his/her input individual(s) ancestry among these 6 

reference datasets. 

2.2 Algorithm 

From each HLA genotype, our algorithm enumerates each possible 

haplotype pair and computes the corresponding likelihood. Considering a 

diploid genotype (G) for three HLA genes (A, B and C) and two alleles 

per gene (upper and lower cases), we obtain four distinct theoretical 

haplotype pairs (or diplotypes, d1-4, equation 1). We can generalize the 

computation of N theoretical diplotypes from a diploid genotype (G) for x 

genes (with heterozygous alleles) with the equation N=2x−1. 

 

Equation 1- Enumeration of diplotypes 

𝐺(A a ∼  Bb  ∼  Cc) {

d1 (A  ∼  B  ∼  C, a  ∼  b  ∼  c)

d2 (A  ∼  b  ∼  C, a  ∼  B  ∼  c)

d3 (A  ∼  b  ∼  c, a  ∼  B  ∼ C)

d4 (A  ∼  B  ∼  c, a  ∼  b  ∼  C)

 

 

Our algorithm is founded on a reference database of HLA haplotype 

frequencies (f) in different populations: haplotypes not reported in the 

reference dataset are removed from the haplotype list (a~B~C 

strikethrough in d3 in equation 1), resulting in n previously observed pairs 

of haplotypes (here, n=3) and therefore reducing the space of haplotypes 

to explore. 

We calculated genotypic frequencies from haplotype frequencies by 

following Hardy Weinberg's genetic distribution law. When a diplotype is 

homozygous, the likelihood (L) is the squared value of the haplotype 

frequency (f2). When the diplotype is heterozygous the likelihood (L) is: 

Equation 2- Likelihood of an enumerated heterozygous diplotype 

𝐿(d1(A  ∼  B  ∼  C, a  ∼  b  ∼  c)) =  2 ∗ 𝑓(A  ∼  B  ∼  C) ∗ 𝑓(a  ∼  b  ∼  c) 

 

Where f(A ∼ B ∼ C) and f(a ∼ b ∼ c) corresponds to the respective 

frequencies of each haplotype. The number of homozygous diplotypes is 

low (Gragert et al., 2013), therefore we consider only the likelihood for 

heterozygous diplotypes. 

When HLA genotypes are specified with allelic ambiguities (low-

resolution) and/or untyped loci (incomplete genotype), multiple 

alternative diplotypes can be inferred. For allele ambiguity, the Easy-HLA 

imputation algorithm produces all possible HLA genotypes associated 

with the ambiguous input. Correspondingly, when a locus is missing (in 

our example, the HLA-B gene was not typed and is recorded as XX -see 

equation 3), Easy-HLA generates all possible alleles for this missing gene 

(B, b, and β). Equation 3 displays only haplotypes pairs reported in our 

reference database with a frequency above the user-defined threshold. 

Indeed, we do not show every possible theoretical haplotype pairs as many 

are not observed in our population datasets, and would therefore have a 

null estimated frequency. 

Equation 3- Enumeration of diplotypes from an incomplete genotype with 

a missing locus using all compatible haplotypes present in our database 

𝐺(A a ∼ XX  ∼  Cc) {

d1 (A  ∼  B  ∼  C, a  ∼  b  ∼  c)
d2 (A  ∼  b  ∼  C, a  ∼  B  ∼  c)

d3 (A  ∼  β  ∼  c, a  ∼  b  ∼  C)
d4 (A  ∼  β  ∼  c, a  ∼  β  ∼  C)

 

 

From an incomplete HLA genotype, Easy-HLA algorithm hence 

produces all possible diplotypes and then computes their corresponding 

likelihood. For each diplotype, a confidence measurement named post-

probability (Post-P) is calculated as the ratio of likelihood of a particular 

diplotype (L(dt)) among the likelihood of all n possible diplotypes (L(di)): 

Equation 4- Post-probability of each possible diplotype 

𝑃𝑜𝑠𝑡 − 𝑃(𝑑𝑡) =
𝐿(dt)

∑  𝐿(di)𝑛
𝑖=1

 

Where i is an index for enumerating the different diplotype, and n is the 

number of possible diplotypes. The post-probability of the most likely 

diplotype is then: 

Equation 5- Post-probability of the most likely diplotype 

𝑃𝑜𝑠𝑡 − 𝑃 =
max (𝐿(di))

∑  𝐿(di)𝑛
𝑖=1

 

 

The diplotype with the highest post-probability is by definition 

dependent of the haplotypes frequencies in the reference dataset. When 

interpreting the output, one has to be cautious when top post-probabilities 

are close, as the real haplotype pair might then not always be the most 

likely. 

From the likelihood of each predicted diplotype, Easy-HLA can then infer 

a high-resolution genotype for the incomplete or ambiguous input 

genotype. The likelihood (L) of the imputed high-resolution genotype is: 

Equation 6- Likelihood of the imputed high-resolution genotype 

𝐿(𝐺(𝐴 𝑎 ∼  𝐵𝑏  ∼  𝐶𝑐)) = ∑ 𝐿(

𝑛

𝑖=1

𝑑𝑖) 

Where i is an index for enumerating the different diplotypes di, n is the 

number of possible diplotypes and L is the likelihood of a diplotype 

obtained from haplotype frequencies f. 

2.3 Software presentation 

Easy-HLA input is an HLA genotype for each gene (HLA-A, -B, -C, -

DRB1, and -DQB1), accepting various levels of HLA nomenclature (see 

Table 1 - serology resolution, generic HLA genotyping obtained by 

molecular biology, or codes gathering different HLA alleles 

[NMDP/MAC UI codes]), as well as missing or incomplete genotypes 

(Figure 1). After logging into a personal account, the user has to enter a 

genotype and select the reference population matching his/her data among 

6: African-Americans, Asian/Pacific Islanders, Europeans, Hispanics, 

Native-Americans, or French.  Alternatively, it is possible to run a search 

on all combined populations, in that case the output does not provide any 

frequencies, but indicates the population in which the haplotypes are the 

most frequent. All data are securely collected, processed and stored. In 

batch mode, the user uploads a file containing the set of genotypes 

(automatically deleted after the imputation). In addition, the post-

probability threshold (confidence value) should be chosen carefully as it 

impacts the call rate (chance to have a result) and output accuracy (see 

below and Figure 2). On the user interface: a field is available to specify a 

frequency threshold to further restrict the list of possible diplotypes. 

Indeed, genotypes with a post-probability below the selected threshold are 

automatically excluded to prevent an over-representation of rare 

genotypes. Overall, Easy-HLA displays the different high-resolution 
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genotypes with their likelihood and post-probability starting with the most 

probable one (Figure 1A). Optionally, it is possible to select only the most 

probable high-resolution genotype (in batch mode). When our algorithm 

does not find a corresponding pair of haplotypes in the reference dataset 

for a given genotype, it cannot make a prediction and returns an 

information message: “No matching donor found with your selected 

criteria”. However in the HLA-2-Haplo module, if one reported haplotype 

corresponds to half the given genotype, the algorithm infers the missing 

second haplotype to propose a haplotype pair solving the genotype. 

The HLA-Upgrade module can predict a full 5 loci HLA-A, -B, -C, -

DRB1 and -DQB1 genotyping at high-resolution level by statistically 

resolving missing, low-resolution, or ambiguous typings such as NMDP 

codes. By updating HLA genotypes, HLA-Upgrade empowers the 

analysis of old cohorts or cohorts with a long delay of recruitment (Figure 

1B), for which HLA-C and HLA-DQB1 genes are often missing (only 

recently added in routine genotyping). 

The HLA-2-Haplo module predicts the most likely haplotype pair from 

a given genotype (Figure 1B) and provides their frequencies in different 

populations. HLA-2-Haplo can be a particularly useful tool to determine 

if unrelated individuals have a chance to be haplo-identical in a HSCT 

clinical setting and to provide supplementary information for research. To 

solve phasing ambiguity for a given HLA genotype, our algorithm 

compares the potential haplotype pairs with the previously reported 

haplotypes stored in our large reference database, and can impute the 

second haplotype if only one haplotype from the diplotype was previously 

observed. Three additional functions, only available in batch mode, are 

offered with this module: (1) HLA-expr delivers HLA-C predicted 

expression (based on allele specific mean HLA-C expression, see Vince 

et al., 2016); (2) HLA-AA provides HLA alleles amino acids; and (3) 

HLA-KIRlig indicates the KIR binding group (C1/C2 groups, Bw4/Bw6 

or KIR2DL2 ligands) for each individual HLA allele. 

 

Figure 1 - Easy-HLA software presentation. (A) Example of the single query mode. 

The patient genotype is entered for each gene in first or second-field, serology, NMDP 

codes or left empty. The user must choose the output resolution (2: second-field, 1: first-

field, 0: empty), the post-probability threshold and reference population. The output table 

contains full mid to high-resolution genotypes with their respective likelihood and post-

probability. (B) Easy-HLA delivers updated HLA information from low-resolution 

HLA typing. In this example, we start with a classical HLA serological genotype 

(A~B~DRB1~DQB1). HLA-Upgrade statistically predicts high-resolution genotypes (left 

panel), and can also predict an untyped locus, such as HLA-C (middle panel). Finally, HLA-

2-Haplo imputes the most likely haplotype pair. These predictions are all done in silico and 

as such prevent from additional genotyping in the laboratory. 

3 Performance 

3.1 HLA-Upgrade validation 

We validated the HLA-Upgrade module using two independent cohorts 

of unrelated individuals with high-resolution (second-field) HLA 

genotyping for HLA-A~B~C~DRB1~DQB1 loci: (1) 1,579 Europeans 

from the Nantes blood center, and (2) 917 individuals of African ancestry 

from CAAPA (Consortium on Asthma among African-ancestry 

Populations in the Americas) (Barnes et al., 1996; Mathias et al., 2016). 

To evaluate the database exhaustiveness on the presence of haplotypes 

from both cohorts in the database, we tested HLA genotypes at high-

resolution from both cohorts in HLA-Upgrade. We found 96.5% of the 

European cohort genotypes and 70.1% of the African-American cohort 

genotypes represented in the database. From these full high-resolution 

datasets, we simulated low-resolution HLA genotypes for both cohorts by 

creating 12 different situations based on 4 resolution levels (first-field, 

second-field, serology, and NMDP simulated with correspondence table 

[https://www.ebi.ac.uk/ipd/imgt/hla/]) and on 3 levels of input loci (HLA-

A~B~DRB1, HLA-A~B~C~DRB1, and HLA-A~B~C~DRB1~DQB1). 

We used HLA-Upgrade to predict full HLA-A~B~C~DRB1~DQB1 high-

resolution genotypes for each of the 12 simulated datasets, and defined 

accuracy as the percentage of correct predictions compared to the original 

HLA typing. We defined call rate as the number of predictions compared 

to the total number of expected predictions. 

The resolution level impacts prediction accuracy, prediction is almost 

twice as good for intermediate-resolution (NMDP) and high-resolution 

(second-field) genotypes compared to low resolution genotype (serology 

and first-field) (Figure S1). For the HLA-A~B~C~DRB1~DQB1 

genotype, the prediction accuracy was 58.1%, 58.6%, 97.6%, 100% for 

first-field, serology, NMDP and second-field resolution level respectively. 

Interestingly, split serology was as accurate as first-field HLA genotyping, 

meaning that the erroneous predictions are not based on split antigens. 

Secondly, results obtained from NMDP codes and second-field HLA 

typing did not differ drastically, emphasizing the typing precision of the 
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high-definition PCR-SSO. Similarly, the level of input loci impacts the 

prediction accuracy (Figure S1 and Figure 2A): inputs lacking alleles from 

one gene (HLA-C or HLA-DQB1) resulted in a drop of accuracy. On 

average, HLA-C prediction was 20 points better when HLA-C was 

provided in input (Figure 2A). We showed similar results from inputs 

lacking HLA-DQB1 in the African cohort. The prediction accuracy per 

locus in the European cohort from first-field resolution HLA-

A~B~C~DRB1~DQB1 genotype inputs was 97% for HLA-A, 93% for 

HLA-B, 96% for HLA-C, 86% for HLA-DRB1 and 93% for HLA-DQB1 

(Figure 2A, left panel). As a comparison, the prediction accuracy per locus 

in the African-American cohort was 87%, 90%, 89%, 78%, 92% for HLA-

A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1, respectively (Figure 

2A, right panel). The prediction accuracy by locus for the European cohort 

was on average 10 points higher than for the African-derived cohort, 

probably because of the smaller sample size and larger HLA haplotype 

diversity in African-ancestry populations.  

Figure 2 - Validation of the HLA-Upgrade module in the European (EUR, left) and African-American (AFA, right) populations (post-probability threshold set at 

0%). HLA-A~B~C~DRB1~DQB1 high-resolution genotypes were predicted from different gene combinations of first-field genotypes: HLA-A~B~DRB1 (blue), HLA-

A~B~C~DRB1 (red), HLA-A~B~C~DRB1~DQB1 (dark blue). (A) Prediction accuracy per locus. (B) Prediction accuracy according to genotype post-probability. (C) Call 

rate according to genotype post-probability. (D) Prediction accuracy according to call rate. 
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For each input level (3, 4 or 5 genes), prediction accuracy (Figure 2B) 

and call rate (Figure 2C) of the full genotype change almost linearly with 

an increasing post-probability threshold (confidence measure). For the 5-

loci input level, accuracy increased from 58% to 92% in Europeans and 

from 35% to 64% in African-Americans for a post-probability threshold 

going from 0% (accepts everything) to 90% (includes genotypes with 

post-probability>90%), respectively. On the contrary, call rate decreased 

from 100% to 20% in Europeans and from 100% to 10% in African-

Americans for a threshold increasing from 0% to 90%, respectively. 

Correspondingly for the 3-loci input level, accuracy increased from 38% 

to 94% in Europeans and from 16% to 67% in African-Americans, and 

call rate decreased from 100% to 3% in Europeans and from 100% to 0% 

in African-Americans for a post-probability threshold of 0% and 90%, 

respectively. Results are consistent with the additional validation 

presented in Figure S4. 

The prediction accuracy increases as the call rate declines (Figure 2D), 

exemplifying a challenging risk/benefit balance that limits error risk 

(increased accuracy) at the cost of a lower number of output results (low 

call rate). The post-probability parameter is therefore crucial for HLA-

Upgrade prediction performances. By default, we recommend a post-

probability threshold set at 10% for exploratory research with HLA-

Upgrade, advocating for more results with a compromise on allele 

accuracy. At this threshold, we have a 100% call rate, but we eliminate 

genotypes with very low frequencies for European and African-ancestry 

populations. 

3.2 HLA-2-Haplo validation 

We validated HLA-2-Haplo module using two independent cohorts 

with high-resolution HLA-A~B~C~DRB1~DQB1: (1) 273 European-

ancestry (genotyping) and (2) 116 African-ancestry individuals (HLA 

imputation from SNP [single nucleotide polymorphism] genotypes) 

(Mathias et al., 2016; Barnes et al., 1996). African-ancestry individuals 

were previously genome-wide SNP genotyped (Johnston et al., 2017) and 

we imputed HLA alleles for the 5 loci HLA-A, -B, -C, -DRB1 and -DQB1 

with the HIBAG R package (Zheng et al., 2014). For each individual, we 

deduced haplotype pairs from parental HLA typing (hereditary familial 

study with parents/child trios). The method used is segregation analysis. 

Families were selected with an ascending minimum of one first degree 

relative (parents/children, figure S6). 

For each validation cohort, we predicted haplotypes with HLA-2-Haplo 

from the 5 HLA loci in high-resolution (Figure 3). Similarly to HLA-

Upgrade, post-probability measures the confidence of predicted 

haplotypes based on frequency. Prediction accuracy ranged from 76% to 

90% in Europeans and from 70% to 86% in African-Americans with a 

post-probability from 0% to 90%, respectively (Figure 3A). For both 

cohorts, we observed a drop of call rate after the post-probability threshold 

reached 40% and down to 45% for the 90% post-probability threshold 

(Figure 3B). Overall, prediction accuracy is relatively stable across call 

rates (Figure 3C). For HLA-2-Haplo, we recommend a default post-

probability threshold of 30%, where the call rate reaches a maximum 

whereas ambiguities with rare genotypes are minimal: call rate is then 99% 

and 96%, and accuracy is 70% and 76% for the African and European 

ancestry populations, respectively. 

Using the same validation cohorts, we compared performance of 

haplotype pair prediction between HLA-2-Haplo and the “haplo.stats” R 

package (Schaid et al., 2002), a statistical tool based on a maximum 

likelihood method for haplotyping when linkage phase is ambiguous in 

cohort studies (“haplo.em” function). Unlike the usual EM tools, their 

algorithm considers more than two alleles per locus, accept missing allele, 

and use a "progressive insertion": the algorithm progressively inserts 

batches of loci into haplotypes of growing lengths before iterating over the 

EM steps. 

We tested the impact of different sampling sizes for input genotypes 

(10, 50, 100, or all cohort) on the prediction accuracy (Figure S2, Table 

S1). Compared to HLA-2-Haplo predictions for Europeans (76% 

accuracy) and African-Americans (70% accuracy), the “haplo.stats” 

predictions were very dependent of sampling size and accuracy was 

systematically lower than HLA-2-Haplo. “haplo.stats’’ accurately 

predicted 22.6% [21.7-23.5] with 10 genotypes, 36.8% [36.4-37.1] with 

100 and up to 46.1% [46.0-46.2] with the Europeans whole cohort 

(n=273), and 14.9% [14.1-15.7] with 10 genotypes, 40.5% [40.3-40.7] 

with 100 and up to 42.4% [42.2-42.6] with the African-Americans whole 

cohort (n=116). Our results are therefore “more reproducible”, in the sense 

that a given genotype will always output the same results no matter what 

other individual observations are in the data set. This methodological 

characteristic explains why sample size does not impact prediction 

accuracy (70% for AFA and 76% for EUR) with HLA-2-Haplo. 

3.3 Execution 

To test our tools’ performance, we evaluated HLA-Upgrade runtime on 

under 48 conditions with a post-probability threshold of 0% and only the 

first result in output (Figure S3) including: 2 ancestral populations 

(European and African-American), 4 input file sizes (10, 100, 1,000 and 

5,000 genotypes), 3 resolutions (Split serological resolution, first-field and 

second-field) and 2 loci combinations (A~B~DRB1 and 

A~B~C~DRB1~DQB1). 

HLA-Upgrade took approximately 12 seconds to analyze files with 100 

second-field A~B~DRB1 genotypes of European ancestry, 8.6 minutes in 

first-field and 6.6 minutes in split serology. We observed a linear runtime 

progression with the different file sizes (Figure S3). First-field genotypes 

Figure 3 - Validation of the HLA-2-Haplo module in the European (EUR, dark blue) and 

African-American (AFA, red) populations. (A) Accuracy of haplotypes pairs prediction 

according to the calculated post-probability. (B) Call rate of haplotypes pairs prediction 

according to the calculated post-probability. (C) Accuracy of haplotypes pairs prediction 

according to the call rate. 
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required a longer execution time than the other two resolutions, which can 

be explained by a larger number of possible haplotypes. 

In addition to input file size and resolution, execution runtime was also 

impacted by the input level of missingness and the reference population 

database size. Indeed, a higher number of haplotypes to browse translates 

into increased runtime: runtime for A~B~DRB1 genotypes was 3-fold 

longer than for A~B~C~DRB1~DQB1 genotypes, and Europeans 

(304,697 haplotypes in the reference database) took on average 3-fold 

longer than African-Americans (198,216 haplotypes in the reference 

database). 

4 Discussion 

Easy-HLA is a web application suite designed to facilitate large-scale 

immunogenetic analyses and gain knowledge from HLA typing, 

regardless of the variety of nomenclature or typing methods. In this report, 

we presented two tools, HLA-Upgrade and HLA-2-Haplo, based on a 

large HLA haplotype reference database. Our tools integrate published 

external data comprising a published set of haplotype frequencies 

estimated from bone marrow donor registries (more than 6.5 million 

individuals and 600,000 unique haplotypes) in order to facilitate an 

accurate interpretation of the input dataset. 

HLA-Upgrade can successfully predict a full HLA-A, B, C, DRB1, and 

DQB1 high-resolution genotyping in different populations from low 

resolution and/or partially known HLA typing. As expected, HLA-

Upgrade performance positively correlates with HLA typing input 

resolution: when there is more uncertainty or missingness in input, 

prediction will be lower. Users must find a balance between highly 

confident results (high accuracy) and number of predicted genotypes (call 

rate). From our validation cohorts, we recommend a default post-

probability threshold at 10%. At this threshold, from the first-field HLA-

A~B~C~DRB1~DQB1 genotype, we predicted a high-resolution 

genotype with an accuracy of 78.5-92.3% and 85.5-96.9% per HLA locus 

and a call rate of 98.1% and 99.8% in African and European ancestry 

populations, respectively. We also validated HLA-Upgrade using the 1000 

Genomes project HLA data and obtained consistent conclusions in 

Europeans, Africans, Hispanics and Asian-Pacific Islanders (see Figure 

S4). We tested allele frequencies difference between imputed and non-

imputed data: this shows a good correlation with a very limited loss of 

diversity toward frequent alleles (Figure S7). Currently, HLA-Upgrade 

outputs the post-probability (confidence measure) for the overall 5-loci 

prediction. For future perspectives, we plan to implement an allele post-

probability and a locus post-probability to underline the high allelic 

variability and emphasize the impact of rare alleles amongst the different 

genotypes. As a proof-of-concept, we carried out a preliminary study to 

weight the accuracy by genotype frequencies. Indeed, we can consider that 

rare alleles should not carry the same weight as common alleles in our 

computation as they will skew the accuracy results. With weighting, our 

prediction is 43 percent point better for the A~B~DRB1 genotype and 30 

percent point for the A~B~C~DRB1~DQB1 genotype. Weighting the 

accuracy computation with HLA genotype frequency considerably 

improved accuracy for HLA-Upgrade in individuals of European ancestry 

(see figure S5), so this strategy is very promising.  

The HLA-2-Haplo module accurately predicts haplotype pairs from 

HLA genotypes. From high-resolution input and a 30% post-probability 

threshold, we obtained a 99% and 96% call rate and 70% and 76% 

prediction accuracy for African and European ancestry populations, 

respectively. Importantly, HLA-2-Haplo systematically outperforms 

“haplo.stats”, a pre-existing HLA haplotyping R package, independently 

of sample size.  

Both Easy-HLA inference tools rely on a statistical algorithm based on 

HLA haplotype frequencies from a large reference database (>600,000 

haplotypes from 5 different ancestral populations). One major strength of 

our strategy is the size and diversity of our reference registry including the 

biggest published haplotype frequency database from the NMDP (Gragert 

et al., 2013) and the RFGM databases (Gourraud et al., 2015). However, 

these databases also convey most of Easy-HLA’s limitations: 

exhaustiveness (96.5% European and 70.1% African-American cohort 

genotypes are present in the database), population diversity coverage 

(mixed populations (REF)), typing errors, resolution level, and HLA loci 

coverage. For example, the current haplotype frequency databases do not 

include HLA-DPB1. Our reference database samples HLA haplotypes 

from the USA and from France and therefore does not represent 

exhaustive HLA genetic diversity. However, we believe this bias is mostly 

compensated by the large size of the database, which allows both an 

accurate estimate of haplotype frequencies and the presence of many rare 

haplotypes, overall improving our predictions. Finally, Easy-HLA is 

flexible and our algorithms are fully compatible to evolve regularly with 

future database releases. 

Here, we developed algorithms implemented in a user-friendly web 

application to facilitate the analysis and reveal the full details of HLA 

typing. Easy-HLA tools are of great interest both for biomedical research 

and clinical applications. First, HLA-Upgrade allows to update archived 

HLA cohorts recorded in low/mid resolutions and/or with missing loci 

(such as HLA-C), which empowers the users to combine old and recent 

datasets to perform large immunogenetic association analyses with 

various immune-related pathologies. HLA-Upgrade could also be 

translated into clinics to assess HSCT compatibility between a patient and 

potential donors with low/mid-resolution. Second, HLA-2-Haplo predicts 

haplotypes that are the breeding-ground for further research investigations 

and for functional immunogenomic annotations: HLA-C expression 

(HLA-expr), amino acid equivalence (HLA-AA), and KIR ligand 

classification (HLA-KIRlig). Our tools are currently used in HSCT: first, 

for unrelated donors search using HLA-Upgrade to update an old typing 

in a donor database, and second, for haplo-identical transplantation using 

HLA-2-Haplo to predict haplotypes. Our tools have also been used in 

biomedical research: using HLA-Upgrade, we have updated 2 large solid-

organ transplantation cohorts from low-resolution to high-resolution 

genotypes, hence empowering us to now carry out allele, haplotype and 

immunogenetic data (HLA-2-Haplo additional functionalities) 

associations with graft survival. 

In conclusion, Easy-HLA (freely available online at: https://hla.univ-

nantes.fr) facilitates large-scale analyses and promotes the multi-faceted 

HLA expertise beyond allelic associations. Our tool perfectly illustrates 

how computational and statistical modelling can relay and upgrade high-

value experimental data to better enlighten clinical practice and sustain 

research. 
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