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After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative
staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off
at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This ‘revolution in
resolution’ is happening largely thanks to new developments of new-generation cameras used for recording the
images in the cryo electron microscope which have much increased sensitivity being based on complementary
metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-
EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and
address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with
other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified
here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such
multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified
or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.

Introduction
The key event in cryo electron microscopy (cryo-EM)
has been the introduction of cryo methods that al-
low preserving the biological sample in a hydrated
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Biology Infrastructure for Europe; kDa, kilo Dalton; MSA, multi-variate statis-
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and functional state (Dubochet et al., 1988). One
of the reasons for the importance of cryo methods
is that artefacts due to sample dehydration, fixation,
adsorption and staining can be avoided, thus allow-
ing the sample to be observed in a functionally rel-
evant state. Sample preservation is thus an advan-
tage of cryo methods that is worth considering both
for single particle analysis of complexes extracted
from the cellular context and the analysis of cell sec-
tions (i.e. in contrast to plastic embedding, fixation
etc.). The second good reason to use cryo methods is
that they allow performing high-resolution analysis,
whereas conventional methods intrinsically limit the

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited and is not
used for commercial purposes.

81C© 2016 The Authors. Biology of the Cell published by Wiley-VCH Verlag GmbH & Co. KGaA on behalf of Société Française des Microscopies and Société de
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attainable resolution. This second aspect was rather
clear early on when cryo techniques were introduced
in the field, as illustrated by the stunning amount of
molecular structures visible by eye on cryo-EM im-
ages of various samples such as viruses, chromatin
and ribosomes (Dubochet et al., 1988). However,
it became obvious that the main limitation in see-
ing high-resolution details and being able to re-
construct them computationally in three dimensions
(3D) was the ability to record appropriate images
with good contrast and at the same time preserve the
high-resolution information (i.e. avoid defocussing
the microscope too much). For decades, the record-
ing medium was photographic film (negatives, e.g.
SO-163 from Kodak) which had the advantage of
being able to record a large field of the specimen
(�8 × 10 cm film support size) and at high resolution
(grain size around 10 μm), and have a good detective
quantum efficiency (DQE) as compared with charge-
coupled devices (CCDs). Nevertheless, CCDs had the
advantage of direct data acquisition, that is no need
for digitising negatives on a scanning device, an as-
pect that facilitates automation of image processing.
However, the strongest and latest breakthrough is the
introduction of direct electron detectors (based on a
complementary metal oxide semiconductor (CMOS)
detector with a direct detection device (DDD) sen-
sor) which have much higher sensitivity than film or
CCD thanks to their direct measurement of electron
events, requiring no amplification of the signal nor
fibre or lens optics (e.g. CCDs operate through an
electron to light conversion by a scintillator followed
by coupled fibre optics). Latest-generation variants
of these direct electron detectors comprise (i) back-
thinning of the silicon chip to avoid multiple electron
scattering events, (ii) counting-mode to measure in-
dividual electron events at high read-out speeds (tens
to hundreds of frames per second), (iii) localisation of
the electron impact position with sub-pixel precision
(i.e. super-resolution mode). Specific characteristics of
these cameras have been described (McMullan et al.,
2009; Ruskin et al., 2013; McMullan et al., 2014;
Kuijper et al., 2015; Spear et al., 2015) and include an
overall high DQE across the entire frequency range,
wherein the particularly increased amplitudes in the
low frequency range provide a much improved image
contrast. An additional feature is the high read-out
speed that allows dose fractionation and movie pro-
cessing (Brilot et al., 2012; Campbell et al., 2012;

Li et al., 2013; Veesler et al., 2013; Allegretti et al.,
2014; Scheres, 2014), that is beam-induced specimen
drift can be motion-corrected by aligning a series of
low-dose images taken on one given area of the spec-
imen (Kunath et al., 1984); in addition, sub-frames
with optimised dose can be selected for image pro-
cessing (exposure filtering; Grant et al., 2015). It
is these major technological developments of new-
generation detectors that have recently introduced a
‘revolution in resolution’ in the cryo-EM field, anal-
ogous to the impact of the Pilatus & Eiger pixel
detectors in the field of X-ray crystallography (Broen-
nimann et al., 2006; Rajendran et al., 2011; Casanas
et al., 2016). This has greatly contributed to a strong
increase of the amount of structures determined by
cryo-EM within the last few years (Figure 1).

If the sample permits it, such cameras in princi-
ple allow – in synergy with advanced image process-
ing informatics tools – to determine 3D structures
in the 3 Å resolution range. Such resolution values
allow building and refining atomic models against
the cryo-EM maps. To illustrate this in more detail,
we will now provide some examples of recent high-
resolution cryo-EM analysis from projects of our lab-
oratory (Figure 2) and we will discuss the integrative
role of cryo-EM in synergy with other complemen-
tary methods. This reflects the general trend of the
field towards cellular structural biology which relies
more and more on multi-resolution and multi-scale
approaches to address the molecular and cellular or-
ganisation of living cells (Figure 3).

Single particle cryo-EM analysis
The strength of current cryo-EM relies on the
combination of cutting-edge instrumentation (high-
resolution cryo electron microscopes equipped with
direct electron detectors, such as those made
available through the European and French in-
frastructures Instruct and FRISBI, see https://
www.structuralbiology.eu/ and http://frisbi.eu/) and
advanced image processing. Image processing and 3D
reconstruction represent important components of
modern cryo-EM because they allow getting unique
and detailed 3D insights into the object of interest,
much beyond a visual 2D description at low reso-
lution. Images obtained on a transmission electron
microscope are 2D projection images of the object
and therefore contain all internal features of the 3D
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Figure 1 Recent increase of cryo-EM and cryo-ET studies
as illustrated from the number of map depositions in the
EMDB as a function of time and resolution
(A, B) Largely thanks to developments of high-sensitivity de-

tectors, the year 2013 (arrow) marks a transition of the expo-

nentially growing number of structures determined by cryo-

EM or cryo-ET, that is the curve became bimodal with a

steep increase in the last 4 years which is likely to con-

tinue considering the vast amount of biological objects that

now become amendable to cryo-EM and cryo-ET analy-

sis. This is also visible in the growing contribution of high-

resolution cryo-EM structures over the four last years (B). The

data are taken from the http://www.ebi.ac.uk/pdbe/emdb/

and http://www.rcsb.org/pdb/ websites (as of September 26,

2016).

object which is seen under different orientations.
Thus, reversely, a 3D map of the object can be
obtained from 2D projection images by back-
projection, that is the views of the 3D object seen
under different orientations (viewing angles) can be
combined into a single 3D reconstruction; this con-

cept applies to both single particle cryo-EM and cryo
electron tomography (cryo-ET; for detailed basics on
image processing and 3D reconstruction see for ex-
ample reviews by van Heel et al., 2000; Ray et al.,
2003; Briggs et al., 2013; Lučič et al., 2013; Milne
et al., 2013; Scheres, 2014; Carazo et al., 2015; Car-
roni et al., 2016). An assumption in the 3D recon-
struction process is that the input images describe
the same object that it is functionally, structurally
and conformationally homogenous. While this is the
case for a single tomogram (recorded on one single
object), it is rarely the case when averaging tech-
niques are used, that is sub-tomogram averaging and
single particle reconstruction using images describ-
ing (and tentatively merging) physically different
objects. Sample heterogeneity can make the inter-
pretation of 3D maps difficult or even impossible
and might significantly limit the attainable resolu-
tion of the 3D reconstruction. Therefore, methods
for 3D classifications to enable structure sorting are
becoming an essential tool for the high-resolution
analysis of single particle cryo-EM data, allowing the
simultaneous analysis of several structures that are
in equilibrium with each other. Examples of these
are approaches based on cross correlation analysis us-
ing reference structures (template-based supervised
classification, Gao et al., 2004) or based on multi-
variate statistical analysis (MSA) including local vari-
ance analysis in the particle images (White et al.,
2004; Klaholz et al., 2004; Orlova & Saibil, 2010),
resampling and bootstrapping methods to identify
flexible regions in a macromolecular complex and
perform 3D classifications (Penczek et al., 2006; Si-
monetti et al., 2008; Fischer et al., 2010; Klaholz,
2015; Liao et al., 2015), unsupervised classification
(Fu et al., 2006) and maximum-likelihood (ML) based
3D classifications (Sigworth 1998; Scheres et al.,
2010; Scheres et al., 2010; Lyumkis et al., 2013).
The three categories of 2D/3D classification methods
thus comprise (i) template-based methods which are
intrinsically reference-biased, (ii) classification based
on statistical analysis using MSA and bootstrapping
methods and (iii) ML-based sorting; methods (ii) and
(iii) are now commonly used as they turn out to
be more robust during cryo-EM image processing
of variable structures. These methods start from a
low-resolution identification of larger conformational
changes of the macromolecule of interest and then it-
eratively extend towards high-resolution sorting and
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Figure 2 Examples of high-resolution cryo-EM and cryo-ET studies using direct electron detectors
(A) The introduction of CMOS-based direct electron detectors in the EM field has led to a ‘revolution in resolution’ thanks to

their much increased sensitivity (as an example, here the Falcon camera from the FEI company; setup installed on the Polara

and Titan Krios cryo electron microscopes at the Centre for Integrative Biology, IGBMC; available through infrastructure access

at https://www.structuralbiology.eu/ and http://frisbi.eu/). (B) First high-resolution structure determination of the human 80S

ribosome (Khatter et al., 2015). The map obtained from single particle cryo-EM image processing and 3D reconstruction (40S

and 60S ribosomal subunits are labelled, the exit site tRNA is colored in red) allows visualising side-chains of amino acids and

nucleic acids whose position needs to be known with precision to perform structure-based drug design (panels on the right;

including a first human 80S complex with an antibiotic; Myasnikov et al., 2016). Two aspects can be highlighted there: (i) a

resolution in the 3 Å range that is required to derive detailed atomic models can nowadays be obtained even for asymmetric

objects, and (ii) cryo-EM has the potential to be used for structure-based drug design. (C) Comparison of cryo-ET reconstructions

(after sub-tomogram averaging) obtained using either a CCD camera or a CMOS camera, illustrating the increased amount of

structural features that can be visualised (poly-ribosome assembly, 60S and 40S ribosomal subunits are labelled in blue and

yellow, respectively; Myasnikov et al., 2014). (D) Single particle cryo-EM reconstruction of the 1358 bacteriophage capsid (cross-

section through the 3D reconstruction; Orlov et al., unpublished) in which secondary structure elements such as α-helices and

residue details (side-chains; white arrow) can be visualised.
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Figure 3 Scale of things and the integrative role of cryo-EM in molecular and cellular structural biology
Schematic representation of the multi-scale and multi-resolution approach in structural biology. Various examples of macro-

molecular complexes studied in our group are shown to illustrate the integrative role of cryo-EM/cryo-ET at the interface with

complementary methods such as X-ray crystallography, NMR, SAXS (towards the molecular and atomic levels on the right)

and FIB/SEM, super-resolution fluorescence microscopy (PALM, STORM/GSDIM, STED etc.) and optical/confocal microscopy

(towards the cellular level on the left). Right to left: crystal structure of translation initiation factor IF2 and SAXS analysis of IF2

(Simonetti et al., 2013a), single particle cryo-EM structure of the 100 kDa nuclear receptor complex USP/EcR (Maletta et al.,

2014); the structures are zoomed 4× for visualisation; middle: single particle cryo-EM analysis of the human 80S ribosome

(Khatter et al., 2015) and the 1358 bacteriophage (Orlov et al., unpublished) and cryo-ET analysis of eukaryotic polyribosomes

(Myasnikov et al., 2014); left: super-resolution imaging (GSDIM) of RNA polymerase (green) and histone H2B (red) and cluster

analysis using new tools (Andronov et al., 2016a, 2016b); FIB/SEM analysis of HeLa cells (Orlov et al., 2015).

structure refinement (discussed in more detail in
Klaholz, 2015).

Recent examples of high-resolution single par-
ticle cryo-EM analysis include work on various
complexes such as viruses, ribosomes, proteasome,
β-galactoside and so on (among many others: Chen
et al., 2009; Zhang et al., 2013; Bai et al., 2013;
Wong et al., 2014; Banerjee et al., 2016; Earl et al.,
2016; Fischer et al., 2015; Khatter et al., 2015; Gre-
ber et al., 2015). Among the macromolecular com-
plexes that we recently studied in our laboratory to

high resolution (3 Å resolution range) using cryo-EM
are the human ribosome and a virus (phage 1358);
moreover, we also analysed a macromolecular assem-
bly of poly-ribosomes by cryo-ET. These projects all
benefited from the direct electron detector technol-
ogy, high-resolution cryo electron microscopes and
appropriate image processing (Figure 2).

Analysing the structure of the human ribosome
can be considered to be the ultimate goal in struc-
tural studies of eukaryotic ribosomes, but it had to
overcome the common a priori thinking that human
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ribosomes would be too inhomogenous and difficult
to analyse. In order to address this issue, we de-
veloped biochemical protocols for the high-quality
preparation of human ribosomes (Khatter et al.,
2014) and their high-resolution structural analysis
using advanced high-resolution cryo-EM and atomic
model building (Figure 2; Khatter et al., 2015). The
combination of data acquisition on a DDD camera,
high-resolution image processing including 3D clas-
sifications and atomic model building and refinement
using tools from the field of X-ray crystallography
[PHENIX (Afonine et al., 2012), Chimera (Yang
et al., 2012) and Coot (Emsley et al., 2010), among
other available tools (e.g. Buster, REFMAC, CNS etc.;
Smart et al., 2012; Brown et al., 2015; Adams et al.,
2013; Natchiar et al., in prep.)] allowed determining
the first atomic structure of the human ribosome. In
this context, it is worth noting that the procedures for
atomic model building and refinement into cryo-EM
maps are evolving a lot recently, illustrating a strong
synergy between crystallographic methods and cryo-
EM (Brown et al., 2015; Barad et al., 2015; Sobolev
et al., 2015; Natchiar et al., in prep.). The struc-
tural analysis of the human ribosome enabled full
integration down to the atomic level, thus providing
unprecedented insights into nucleotide and amino
acid side-chains which can be analysed with respect
to sequence conservation using a new tool for inte-
grated sequence and 3D structure analysis of large
macromolecular complexes (Beinsteiner et al., 2015).
For example, it uncovered specific molecular interac-
tions of the 28S rRNA with the universally conserved
CCA end of the tRNA in the exit site. The structure
opens the possibility of studying the molecular basis
of interactions of drugs with the human ribosome,
as well as functional complexes with mRNA, tRNA
and protein factors. A follow-up study is the first
structure of a ligand complex with the human ri-
bosome that we recently determined, highlighting
the potential of the human ribosome as a drug tar-
get for protein synthesis deregulations such as cancer
(proliferating cells are dependent on elevated protein
synthesis rates) and illustrating the capacity of high-
resolution cryo-EM for structure-based drug design
studies (Figure 2; Myasnikov et al., 2016). For com-
parison, our previous studies of bacterial translation
initiation complexes were limited to a much lower
resolution (8–10 Å; Simonetti et al., 2008; Simon-
etti et al., 2013a,2013b; Eiler et al., 2013; Simonetti

et al., 2016) but nevertheless allowed addressing the
localisation of initiation factors and tRNA, thus pro-
viding a solid basis for synergies with other methods
including X-ray crystallography and solution SAXS.

Another example of a high-resolution single par-
ticle cryo-EM study is our ongoing structural analy-
sis of the capsid of the lactococcal siphophage 1358
virion. Previously, negative staining EM and cryo-
EM were used to determine the structure of the
different parts of this tailed bacteriophage from the
Siphoviridae family and to assemble an overall com-
posite structure of the phage (Spinelli et al., 2014).
The building units comprise the capsid, the connec-
tor, the tail and the base-plate. The structural analy-
sis of the capsid using high-resolution cryo-EM now
provides unprecedented insights in the 3–4 Å range
(refinement ongoing; Orlov et al., unpublished). The
quality of the structure is illustrated by the wealth of
structural details that can be seen even by eye in the
cross-section of the 3D reconstruction including sec-
ondary structure elements and side-chains. Indeed,
zig-zag shapes in the densities reveal α-helices and
protruding densities correspond to the amino acid
side-chains (Figure 2, bottom right). This highlights
the fact that a resolution has been reached that is
sufficient for tracing the peptide backbone and po-
sitioning side-chains from the amino acid sequence,
thus allowing an atomic model refinement against the
cryo-EM map. Considering that phage 1358 infects
L. lactis strains and has some similarity to Listeria
phages, these structural investigations may be useful
for medical and agricultural implications.

Cryo-ET analysis and sub-tomogram
averaging
Cryo-ET is particularly useful to analyse unique cellu-
lar structures. Rather than obtaining a 3D reconstruc-
tion from different orientational views of physically
different objects like in single particle cryo-EM, it
is obtained from images acquired while rotating the
sample with predefined angles. The images of a tilt
series can then be aligned to reconstruct a tomogram
(see for example Briggs, 2013; Lučič et al., 2013;
Dubrovsky et al., 2015; Asano et al., 2016). If com-
mon sub-structures exist these can be extracted as
sub-tomograms, aligned and averaged to form sub-
tomogram averages with an improved signal-to-noise
ratio (Wan et al., 2016; Galaz-Montoya et al., 2016).
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Such approaches have been used in the past to anal-
yse, for example, the cellular structure of the nuclear
pore complex (NPC), of membrane-bound ribosomes,
of actin filaments in combination with segmentation
tools and template-based identification of the com-
ponents (Frangakis et al., 2002; Medalia et al., 2002;
Beck et al., 2004; Ortiz et al., 2006). Recently, stun-
ning insights into cellular sub-structures have been
obtained (Hagen et al., 2015; Nans et al., 2015;
Chang et al., 2016; Irobalieva et al., 2016; Kosin-
ski et al., 2016; Lin et al., 2016; Mahamid et al.,
2016), achieving in a first case even side-chain reso-
lution (Schur et al., 2016) using optimised cryo-ET,
sub-tomogram averaging and a new dose-symmetric
tilt acquisition scheme that preserves high-resolution
data more isotropically (Hagen et al., 2016). We
used cryo-ET in combination with sub-tomogram
averaging and molecular modelling to address the
supramolecular organisation of eukaryotic polyribo-
somes which can form large macromolecular assem-
blies (Brandt et al., 2010; Myasnikov et al., 2013;
Afonina et al., 2014; Myasnikov et al., 2014; Afonina
et al., 2015). This allowed deriving the 3D structure
of one of the largest asymmetric complexes to date
(�100 MDa, comprising over 20 ribosomes on the
same mRNA molecule; Myasnikov et al., 2014). The
structure allowed the visualisation of the three func-
tional parts of the polysome assembly: the central
core region that forms a rather compact left-handed
supramolecular helix and the more open regions that
harbour the initiation and termination sites at either
ends. The helical region forms a continuous mRNA
channel where the mRNA strand bridges neighbour-
ing exit and entry sites of the ribosomes and pre-
vents the mRNA from looping between ribosomes.
This structure provides unprecedented insights into
protein- and RNA-mediated inter-ribosome contacts
that involve conserved sites through 40S ribosomal
subunits and long protruding RNA expansion seg-
ments. These findings shed new light on the molecu-
lar machinery of the ribosome and its mode of action
in the cellular context. The impact of direct electron
detectors is illustrated by the improved resolution of
the tomograms (Figure 2). In the future, contrast-
increasing phase plates may be helpful to address
more of the molecular details within polysomes, pos-
sibly in combination with double tilt cryo-ET which
provides 3D reconstructions with less reconstruction
artefacts (Myasnikov et al., 2013; one of the first ex-

amples of single particle cryo-ET together with some
other examples: Dudkina et al., 2010; Murata et al.,
2010; Wang et al., 2011).

Integrative role of cryo-EM and current
trends in complementary approaches
Another aspect of cryo-EM is its integrative role in
multi-scale and multi-resolution approaches that in-
tegrate molecular and cellular levels by combining
various structural methods such as X-ray crystallog-
raphy, fluorescence imaging or focussed-ion beam
milling as exemplified here by some recent stud-
ies from our laboratory on ribosomes, viruses, chro-
matin and nuclear receptors (Figure 3). An important
consideration is that challenging objects require the
right choice of the method (Ménétret et al., 2013),
each having intrinsic limitations, but when combined
these methods can create synergies at the interfaces
that overcome the individual limits. For example, in
X-ray crystallography a typical bottleneck is crystalli-
sation, but it is not much restricted to a particular ob-
ject size as illustrated by the possibility of crystallis-
ing small organic compounds and large complexes
such as ribosomes and viruses (including very large
viruses with a diameter in the 1000 Å range). How-
ever, in cryo-EM, a typical limitation is the lower size
of a complex because the lower the molecular weight
of the macromolecule the smaller the image contrast
is, which limits the possibility of accurately deter-
mining the structure. Nevertheless, there are clear
trends in the cryo-EM field to move towards smaller
complexes. An example of this is our recent study of a
100 kDa complex, the first structure of a full-length
nuclear receptor bound to an inverted DNA repeat,
the USP/EcR complex in insects where EcR is the
ecdysone receptor (Maletta et al., 2014); it revealed
an asymmetric organisation of the complex although
the DNA is almost symmetric (Figure 3); note that
the data were collected at a reduced acceleration volt-
age (100 kV) to increase the image contrast. This
represents a technical advance in the field with re-
spect of studying relatively small complexes by cryo-
EM, thus opening the possibility to study many other
biological complexes and drug targets previously be-
lieved to be too small for cryo-EM. Other examples
in the field are the studies of a 50 kDa RNA (Baird
et al., 2010) and most recently the 3.8 Å resolution
structure of a 93 kDa protein (Merk et al., 2016),
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highlighting the fact that high-resolution structures
can also be obtained on relatively small complexes,
provided the biological samples behave well and can
be imaged well (i.e. low aggregation, stability in
relatively low-salt or low-detergent concentrations,
good particle distribution etc.).

Among various structural biology methods that
use averaging techniques, a common limitation is
the sample homogeneity. While crystallisation (and
re-crystallisation) can contribute to the high-level pu-
rification of a chemical compound or even a large
macromolecular complex (e.g. PEG10000 precipita-
tion of yeast and human ribosomes; Ben-Shem et al.,
2010; Khatter et al., 2014; Khatter et al., 2015),
sample homogeneity often limits crystallisation.
However, the problem of sample heterogeneity can be
turned into an advantage when using single-particle
cryo-EM considering that with advanced image pro-
cessing and 3D classification tools (see section Single
particle cryo-EM analysis) different structures can be
sorted and separated into distinct sub-populations,
allowing to improve the refinement of a cryo-EM
structure by local masking and refinement to high
resolution and at the same time describe several con-
formational states of a complex that are in equilib-
rium with each other. Similarly, when using cryo-ET
and sub-tomogram averaging of similar structures
observed in situ in the cell (e.g. polyribosomes in
Figure 2), it is possible to classify the aligned to-
mograms and address several structures at the same
time (Heumann et al., 2011; Stölken et al., 2011;
Frank et al., 2012; Kuybeda et al., 2013; Xu et al.,
2013; Chen et al., 2014; Castaño-Dı́ez et al., 2016;
Obbineni et al., 2016). However, sorting is not pos-
sible on unique structures such as large regions of
the cell, in which case methods such as focussed-ion
beam/scanning electron microscopy (FIB/SEM) are
more appropriate (e.g. chromatin in Figure 3; Orlov
et al., 2015). FIB is a method originally emanating
from material sciences, which, when applied to bi-
ological specimens, appears to be one of the most
promising structural biology methods for future cell
biology studies (Villa et al., 2013; Kizilyaprak et al.,
2014; Rigort et al., 2015). In contrast to ultrami-
crotome sectioning of cells, which can exhibit knife
cutting and compression artefacts, FIB milling al-
lows obtaining high-quality cuts through the cell
that can be observed by SEM (section by section to
reconstitute a full tomogram, in the literal sense of

τομός tomos (Greek: cut). Alternatively, thin lamella
can be prepared by FIB milling and observed by
cryo-ET (e.g. Mahamid et al., 2015; Schaffer et al.,
2016; Zhang et al., 2016). Such analyses have the
great advantage of being in situ (Lučič et al., 2013)
and thus in the functional cellular context, but they
require the identification of the complexes of in-
terest by complementary methods such as fluores-
cence labelling. In an effort to allow the identifica-
tion of chromatin structures, we have explored the
possibilities of molecular imaging in cells through
single-molecule localisation microscopy (SMLM; e.g.
dSTORM, PALM; we used GSDIM, ground state de-
pletion microscopy followed by individual molecule
return). To make best use of super-resolution data, we
developed an integrated software pipeline for image
reconstruction, drift and chromatic aberration correc-
tion, co-localisation, resolution estimation, segmen-
tation, clustering and quantification of labelled com-
plexes (SharpViSu & ClusterViSu; Andronov et al.,
2016a, 2016b). In addition to be very useful in the
field of super-resolution microscopy, in the future
such informatics tools may become particularly use-
ful in the context of correlative light and electron
microscopy (CLEM) approaches (Koning et al., 2014;
Schirra et al., 2014; Arnold et al., 2016; Karreman
et al., 2016; Schorb et al., 2016) to address the cellu-
lar fine structure, identify and localise protein com-
plexes and visualise them at high resolution using
cryo-EM and cryo-ET, that is perform an identifica-
tion of the molecule-of-interest (MOI) rather than
only the overall region-of-interest (ROI). Examples
including SMLM (e.g. Kim et al., 2015) are stud-
ies of complexes such as RNA polymerase, nucleo-
somes, viruses or NPCs (Szymborska et al., 2013;
Löschberger et al., 2014; Laine et al., 2015) some of
which were reconstructed from super-resolution data
using cryo-EM 3D reconstruction methods (Szym-
borska et al., 2013; Andronov et al., in prep.).

Current and near-future challenges in cryo-EM
developments comprise key questions such as (i)
how to push the resolution to the atomic level,
(ii) how to analyse flexible complexes and (iii) how
to integrate towards the cellular level. Two impor-
tant areas to address these are (i) the instrumenta-
tion and (ii) software developments. Instrumentation
(i) comprises for example high-resolution electron
microscopes, direct electron detector cameras with
higher DQE at high frequencies, energy filters to
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remove inelastically scattered electrons and reduce
the background in the images, correction of the spher-
ical aberration (Cs) to improve the optical system in
the column of the microscope, microelectron diffrac-
tion to determine the structure from small 3D crystals
(Nederlof et al., 2013; Sawaya et al., 2016; Shi et al.,
2016), spraying of small amounts on cryo-EM grids
(Chen et al., 2015; Razinkov et al., 2016), cryo trans-
fer between FIB and electron microscope for cryo-
ET (Schaffer et al., 2016) and contrast-increasing
phase plates placed in the back-focal plane of the
microscope (Danev et al., 2014; Dai et al., 2014;
Frindt et al., 2014; Walter et al., 2015; Chua et al.,
2016; Danev et al., 2016; Glaeser, 2016; Rhinow
2016; Khoshouei et al., 2016a); phase plates could
facilitate structure determination of relatively small
complexes (Khoshouei et al., 2016b), which were dif-
ficult to address previously and usually limited to
lower resolution (Baird et al., 2010; Orlov et al.,
2012; Maletta et al., 2014) even though DDDs have
helped a lot moving forward (Merk et al., 2016),
suggesting that synergies will appear for example be-
tween phase plates, energy filters and high-sensitivity
cameras to enable high-contrast high-resolution im-
age acquisition (a feature that usually contradicts it-
self considering the requirement of defocussing dur-
ing data collection to get some reasonable amount
of image contrast required for image processing).
Further software developments (ii) will be required
for automatic data acquisition for massive data col-
lection for single particle cryo-EM and cryo-ET
(e.g. reviewed in Tan et al., 2016; automatic beam
alignments including for Cs-corrected microscopes;
remote control), and on-the-fly image processing
during data collection, particle sorting and 3D clas-
sifications to address sample heterogeneity, automa-
tion in cryo-EM/cryo-ET structure determination,
automation of backbone tracing like in X-ray crys-
tallography, atomic model building and refinement
into cryo-EM/cryo-ET maps of large macromolecu-
lar complexes to move towards larger cellular struc-
tures. Taken together, the scientific community is
currently experiencing a very exciting era that is
moving more and more towards the integration
of various structural and imaging methods among
which cryo-EM, cryo-ET and FIB will play a key
role in multi-resolution integration. In close syn-
ergy with functional studies, this evolution towards
cellular structural biology will lead in the coming

years to unprecedented insights into cellular func-
tion and drug targets, including the analysis of the
dynamic changes of macromolecular complexes that
reflect their functional transitions in the cellular
environment.
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(2014) Atomic model of the F420-reducing [NiFe] hydrogenase by
electron cryo-microscopy using a direct electron detector. Elife
3:e01963. doi: 10.7554/eLife.01963.

Andronov, L., Lutz, Y., Vonesch, J.-L. and Klaholz, B.P. (2016a)
SharpViSu: integrated analysis and segmentation of
super-resolution microscopy data. Bioinformatics 32, 2239–2241

Andronov, L., Orlov, I., Lutz, Y., Vonesch, J.-L. and Klaholz, B.P.
(2016b) ClusterViSu, a method for clustering of protein complexes
by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 6,
24084

Arnold, J., Mahamid, J., Lucic, V., de Marco, A., Fernandez, J.J.,
Laugks, T., Mayer, T., Hyman, A.A., Baumeister, W. and Plitzko,
J.M. (2016) Site-Specific Cryo-focused Ion Beam Sample
Preparation Guided by 3D Correlative Microscopy. Biophys. J.
110, 860–869

Asano, S., Engel, B.D. and Baumeister, W. (2016) In Situ
Cryo-Electron Tomography: A Post-Reductionist Approach to
Structural Biology. J. Mol. Biol. 428, 332–343

Bai, X.C., Fernandez, I.S., McMullan, G. and Scheres, S.H. (2013)
Ribosome structures to near-atomic resolution from thirty
thousand cryo-EM particles. eLife 2:e00461. doi:
10.7554/eLife.00461.

Baird, N.J., Ludtke, S.J., Khant, H., Chiu, W., Pan, T. and Sosnick,
T.R. (2010) Discrete structure of an RNA folding intermediate
revealed by cryo-electron microscopy. J. Am. Chem. Soc. 132,
16352–163523

Banerjee, S., Bartesaghi, A., Merk, A., Rao, P., Bulfer, S.L., Yan, Y.,
Green, N., Mroczkowski, B., Neitz, R.J., Wipf, P., Falconieri, V.,
Deshaies, R.J., Milne, J.L., Huryn, D., Arkin, M. and Subramaniam,
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Löschberger, A., Franke, C., Krohne, G., van de Linde, S. and Sauer,
M. (2014) Correlative super-resolution fluorescence and electron
microscopy of the nuclear pore complex with molecular resolution.
J. Cell Sci. 127, 4351–4355

91C© 2016 The Authors. Biology of the Cell published by Wiley-VCH Verlag GmbH & Co. KGaA on behalf of Société Française des Microscopies and Société de
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J.M., Sachse, C., Kräusslich, H.G. and Briggs, J.A. (2016) An

92 www.biolcell.net | Volume (109) | Pages 81–93



Integrative role of cryo-EM in structural biology Review

atomic model of HIV-1 capsid-SP1 reveals structures regulating
assembly and maturation. Science 353, 506–508

Shi, D., Nannenga, B.L., de la Cruz, M.J., Liu, J., Sawtelle, S., Calero,
G., Reyes, F.E., Hattne, J. and Gonen, T. (2016) The collection of
MicroED data for macromolecular crystallography. Nat. Protoc. 11,
895–904

Sigworth, F.J. (1998) A maximum-likelihood approach to
single-particle image refinement. J. Struct. Biol. 122, 328–339

Simonetti, A., Marzi, S., Fabbretti, A., Hazemann, I., Jenner, L.,
Urzhumtsev, A., Gualerzi, C.O. and Klaholz, B.P. (2013a) Structure
of the protein core of translation initiation factor 2 in apo,
GTP-bound and GDP-bound forms. Acta Cryst. D69, 925–933

Simonetti, A., Marzi, S., Billas, I.M.L., Tsai, A., Fabbretti, A.,
Myasnikov, A.G., Roblin, P., Vaiana, A.C., Hazemann, I., Eiler, D.,
Steitz, T.A., Puglisi, J.D., Gualerzi, C.O. and Klaholz, B.P. (2013b)
Involvement of IF2 N domain in ribosomal subunit joining revealed
from architecture and function of the full-length initiation factor.
Proc. Nat. Acad. Sci. U.S.A. 110, 15656–15661

Simonetti, A., Ménétret, J-F., Martin, F., Myasnikov, A.G., Vicens, Q.,
Prongidi-Fix, L., Natchiar, S.K., Klaholz, B.P. and Eriani, G. (2016)
Ribosomal 18S rRNA base pairs with mRNA during eukaryotic
translation initiation. Nat. Commun. 7, 12622

Simonetti, A., Marzi, S., Myasnikov, A.G., Fabbretti, A., Yusupova, G.,
Yusupov, M., Gualerzi, C.O. and Klaholz, B.P. (2008) Structure of
the 30S translation initiation complex. Nature 455, 416–420

Smart, O.S., Womack, T.O., Flensburg, C., Keller, P., Paciorek, W.,
Sharff, A., Vonrhein, C. and Bricogne, G. (2012) Exploiting structure
similarity in refinement: automated NCS and target-structure
restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68,
368–380

Sobolev, O.V., Afonine, P.V., Adams, P.D. and Urzhumtsev, A. (2015)
Programming new geometry restraints: parallelity of atomic
groups. J. Appl. Crystallogr. 48, 1130–1141

Spear, J.M., Noble, A.J., Xie, Q., Sousa, D.R., Chapman, M.S. and
Stagg, S.M. (2015) The influence of frame alignment with dose
compensation on the quality of single particle reconstructions. J.
Struct. Biol. 192, 196–203

Spinelli, S., Bebeacua C., Orlov, I., Tremblay, D., Klaholz, B.P.,
Moineau, S. and Cambillau, C. (2014) CryoEM structure of the
lactococcal siphophage 1358 virion. J. Virol. 88, 8900–8910

Stölken, M., Beck, F., Haller, T., Hegerl, R., Gutsche, I., Carazo, J.M.,
Baumeister, W., Scheres, S.H. and Nickell, S. (2011) Maximum
likelihood based classification of electron tomographic data. J.
Struct. Biol. 173, 77–85

Szymborska, A., de Marco, A., Daigle, N., Cordes, V.C., Briggs, J.A.
and Ellenberg, J. (2013) Nuclear pore scaffold structure analyzed
by super-resolution microscopy and particle averaging. Science
341, 655–658

Tan, Y.Z., Cheng, A., Potter, C.S. and Carragher, B. (2016)
Automated data collection in single particle electron microscopy.
Microscopy (Oxf.) 65, 43–56

van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape,
T., Cohen, D., Stark, H., Schmidt, R., Schatz, M. and Patwardhan,
A. (2000) Single-particle electron cryo-microscopy: towards atomic
resolution. Q. Rev. Biophys. 33, 307–369

Veesler, D., Campbell, M.G., Cheng, A., Fu, C.Y., Murez, Z., Johnson,
J.E., Potter, C.S. and Carragher, B. (2013) Maximizing the potential
of electron cryomicroscopy data collected using direct detectors.
J. Struct. Biol. 184, 193–202

Villa, E., Schaffer, M., Plitzko, J.M. and Baumeister, W. (2013)
Opening windows into the cell: focused-ion-beam milling for
cryo-electron tomography. Curr. Opin. Struct. Biol. 23, 771–
777

Walter, A., Steltenkamp, S., Schmitz, S., Holik, P., Pakanavicius, E.,
Sachser, R., Huth, M., Rhinow, D. and Kühlbrandt, W. (2015)
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