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ABSTRACT 

 Dendrogenin A (DDA) is a mammalian cholesterol metabolite recently identified that 

displays tumor suppressor properties. The discovery of DDA has revealed the existence in 

mammals of a new metabolic branch in the cholesterol pathway centered on 5,6α-

epoxycholesterol and bridging cholesterol metabolism with histamine metabolism. Metabolic 

studies showed a drop in DDA levels in cancer cells and tumors compared to normal cells, 

suggesting a link between DDA metabolism deregulation and oncogenesis. Importantly, 

complementation of cancer cells with DDA induced 1) cancer cell re-differentiation , 2) blockade 

of 6-oxo-cholestan-3β,5α-diol (OCDO) production, an endogenous tumor promoter and 3) lethal 

autophagy in tumors. Importantly, by binding the liver X receptor (LXR), DDA activates the 

expression of genes controlling autophagy. These genes include NR4A1, NR4A3, LC3 and TFEB. 

The canonical LXR ligands 22(R)hydroxycholesterol, TO901317 and GW3965 did not induce 

these effects indicating that DDA delineates a new class of selective LXR modulator (SLiM). The 

induction of lethal autophagy by DDA was  associated with the accumulation in cancer cells of 

lysosomes and of the pro-lysosomal cholesterol precursor zymostenol due to the inhibition of the 

3β-hydroxysteroid-Δ
8
Δ

7
-isomerase enzyme (D8D7I). The anti-cancer efficacy of DDA was 

established on different mouse and human cancers such as breast cancers, melanoma and acute 

myeloid leukemia, including patient derived xenografts, and did not discriminate bulk cancer 

cells from cancer cell progenitors. Together these data highlight that the mammalian metabolite 

DDA is a promising anticancer compound with a broad range of anticancer applications. In 

addition, DDA and LXR are new actors in the transcriptional control of autophagy and DDA 

being a “first in line” driver of lethal autophagy in cancers via the LXR. 

 

Key words: Dendrogenin A; oxysterol; Nur77; lysosomes; cell death; OCDO 
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1. Introduction 

 Dendrogenin A (DDA) is the first cationic steroid discovered to date as an endogenous 

metabolite in mammals. DDA defines a new structural class of mammalian steroidal alkaloids [1-

4]. DDA is the product of a stereo-selective condensation of 5,6α-epoxycholesterol (5,6α-EC) 

with histamine. DDA materializes the existence of a new metabolic branch at the crossroad 

between cholesterol and histamine metabolism. Cholesterol is a neutral semi rigid lipid necessary 

for mammalian life [5]. Cholesterol is important not only to the constitution of membranes, but 

also to the formation of various bioactive lipids such as steroid hormones, bile acids (BA) and 

oxysterols (OS). While the physiological role of steroid hormones is well established, BA and OS 

were first considered as catabolic products or side products of cholesterol. More recently, 

researchers discovered that several of these metabolites displayed biological properties [6-11] 

supporting a physiological function for BA and OS. These metabolites were found to act through 

nuclear receptors such as LXR, FXR, ER, ROR, GR or through G-protein coupled receptors [6-8, 

11-15].   

 

2. The dendrogenin hypothesis 

 The hypothesis on the existence of dendrogenins as new metabolites came from 

biochemical pharmacology studies on tamoxifen (Tam). Tam is an anticancer agent widely used 

for the treatment and the chemoprevention of estrogen receptor positive breast cancers [16-18].  

Tam was initially defined as a selective estrogen receptor modulator (SERM), blocking the 

mitogenic action of 17β-estradiol by competition on estrogen receptor α (ERα) and displaying 

tissue selective agonist or antagonist properties [16-18]. Since the seventies, Tam remains the 

lead compound in the family of SERMs and has not yet been supplanted to date by any other 

SERM for anticancer applications. Extensive studies on the biochemical pharmacology of Tam, 
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showed that the mechanism of action mediating its anticancer action was more complex than first 

thought, and involved, in addition to ER, the “microsomal antiestrogen binding site” (AEBS) [19-

31]. The AEBS is not a nuclear receptor, but is an intracellular membranous high affinity binding 

site for Tam[32]. The AEBS is a hetero-oligomeric proteinaceous complex located on the 

membranes of the endoplasmic reticulum from cancer cells and hepatocytes [24, 33-35]. The 

AEBS is made of two subunits: the 3β-hydroxysteroid-Δ
8
Δ

7
-isomerase (D8D7I) and the 3β-

hydroxysteroid-Δ
7
-reductase (DHCR7) [24, 33-35]. Tamoxifen inhibited the D8D7I and induced 

the accumulation of zymostenol in BC cells and in the blood of patients [19, 21, 23, 24, 36-39]. 

Importantly, zymostenol accumulation was associated with the induction of a protective 

autophagy [7, 19, 21, 22, 32, 36, 40], which impaired Tam efficacy and therefore constitutes a 

mechanism of resistance [19, 32]. It was next showed that the AEBS complex carried out a 

cholesterol-5,6-epoxide hydrolase (ChEH) enzymatic activity [41]. Biochemical studies 

established that the D8D7I was the catalytic subunit and the drug-binding site of the 

ChEH/AEBS complex [41, 42]. The AEBS is known as a promiscuous binding site interacting 

with different structural families of compounds including SERMs, diphenyl methane compounds 

like tesmilifene, phenothiazines, as well as endogenous metabolites such as ring-B oxysterols, 

unsaturated fatty acids, or histamine [3, 19, 25, 28, 29, 42-44]. The AEBS is present in BC cells 

and other cell lines representative of different cancers [23, 24, 26, 27, 45, 46]. Histamine was the 

only non-lipidic compound ever described as an AEBS ligand, and the AEBS was considered as 

an intracellular binding site for histamine (HIC) for a while [47, 48]. Histamine is involved in 

pleiotropic physiological functions such as neurotransmission, inflammation and gastric acid 

secretion [49] and was proposed to play a role in cell proliferation through the AEBS-HIC [47, 

50-53]. Tam and selective AEBS ligands were considered as antagonists of histamine on HIC 

[46, 54, 55] before the molecular identification of the AEBS was made. High affinity AEBS 
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ligands induced breast cancer cell differentiation into lactating cells via binding to the AEBS and 

modulation of the cholesterol metabolism in cancer cells [20-23, 44]. Looking at the 

physiological importance of D8D7I and DHCR7, geneticists showed that null mutations on 

DHCR7 and D8D7I were associated with severe alteration of mammalian development, and these 

syndromes were not reversed by cholesterol complementation [56, 57]. Since DHCR7 and D8D7I 

carried out the AEBS/ChEH complex, this would suggest that 5,6-EC metabolism could play a 

role in developmental processes in mammals and may required the production of compounds that 

could activate pluripotent cell differentiation and may induce re-differentiation of de-

differentiated cells like cancer cells. We thus postulated that 5,6-ECs or their putative metabolites 

could be involved in the control of cell differentiation. 5,6-EC exist as two diastereoisomers 

(5,6α-EC and 5,6β-EC) that display different biological properties and are prone to different 

metabolic fates [58]. In BC cells expressing the sulfotransferase SULT2B1b, it was found that the 

3β-sulfated form of 5,6α-EC (but not 5,6β-EC) was the second messenger of AEBS ligands 

(including Tam) in their induction of BC cell differentiation and LXR-dependent cell death [19, 

20]. Other metabolic transformations of 5,6-EC would be possible at the level of the epoxide 

group, which can make addition reaction of with nucleophiles (i.e. –SH or –NH2 groups) in the 

presence of a catalyst [58, 59].  A member of the epoxide hydrolase family: the cholesterol-5,6-

epoxide hydrolase (ChEH) is required for the hydration of the epoxide group of both 5,6-EC 

isomers in cells and tissues to produce cholestane-3β,5α,6β-triol (CT) [42, 60, 61].  CT was not 

found to display cell differentiation properties [42], but instead to inhibit osteoblastic 

differentiation of rat bone marrow stromal cells [62]. CT is prone to sulfation by SULT2B1b but 

not to fatty acid esterification by the AcylcoA-Cholesterol:Acyl Transferase (ACAT) on its 3β-

hydroxyl group [20, 58]. The biological properties of the 3β-sulfated form of CT have never been 

investigated to date. In BC cells, CT was found extensively metabolized into 6-oxo-cholestan-
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3β,5α-diol (OCDO), which was shown to be a tumor promoter [6, 63]. Looking at 5,6-EC 

chemical reactivity, 5,6α-EC (but not 5,6β-EC) was found prone to conjugation reactions with 

nucleophilic groups on its epoxide ring in the presence of a catalyst  [3, 58, 59, 64]. Because of 

the positioning of the epoxide group at the junction of ring A and B on the steroid backbone and 

for thermodynamic reasons, this reaction gave a single product of addition with nucleophiles [58, 

59]. The product of this conjugation reaction resulted from a trans-diaxial epoxide ring opening 

with the concerted engrafting of the nucleophilic group at C6 in a β orientation, and the formation  

of a hydroxyl group on C5 in an α orientation [58, 59]. The facts that:1) 5,6α-EC was the only 

isomer to react, 2) 5,6α-EC gave a single product of condensation with nucleophiles, and 3) the 

reaction needed a catalyst to occur, suggested a metabolic transformation pathway of 5,6-EC [3]. 

Because histamine was known as a ligand of the AEBS/ChEH complex [47, 48], it was 

postulated that biogenic amines such as histamine or polyamines (spermine, spermidine or 

putrescine) could produce compounds with potent cancer cell differentiation properties at low 

concentrations. A series of conjugation products were synthesized and screened for their 

capacities to induce cell differentiation.  

 

2. DDA is an inductor of cell differentiation and a mammalian metabolite  

 The conjugation of 5,6α-EC with histamine gave as single product of transformation 

identified as 5α-hydroxy-6β-[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3β-ol also named 

dendrogenin A (DDA) (Figure 1A) [64]. DDA induced on cancer cells, in vitro and in vivo, the 

appearance of a “normal-like” phenotype at sub-nM concentrations evidencing a re-

differentiation of cancer cells. 5,6-EC or histamine had no effects in the same conditions [1-4, 

64]. As an example, DDA induced the differentiation of melanoma cells into melanocytes, and of 

breast cancer cells of ductal origin into lactating cells [4, 64]. In addition, DDA was shown to 
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induce the differentiation of pluripotent cells and normal neural stem cells into neurons [64, 65]. 

Dendrogenin A (DDA) was confirmed as a mammalian metabolite in 2013, and was detected in 

several mammalian tissues including breast, brain, liver, spleen and blood [4]. Evidences were 

obtained that DDA can be produced endogenously by an enzyme [4], and we have recently 

succeeded in our quest on the molecular identification of this enzyme confirming the enzymatic 

nature of DDA production. (Poirot M & Silvente-Poirot S et al, unpublished observations). The 

presence of DDA in serum indicated that DDA circulates in the body and could eventually feed 

tissues and organs. Quantification of DDA in tissues were done by reverse phase HPLC 

purification and mass fingerprint of fractions of interest to discriminate DDA from its inactive 

isomer C17 (Figure 1B) [4]. A new method of dosage is being developed using liquid 

chromatography tandem mass spectrometry. This new method is fast, resolving, has a weak 

carryover, and efficiently separates DDA from its C17 isomer and other steroidal alkaloids from 

the same family [66]. The use of this method will make possible to analyze large cohort of 

samples. Despite a high expression of the AEBS/ChEH in cancer cells, DDA was not detected 

and DDA levels were found strongly decreased in breast cancers samples from patients compared 

to “normal” adjacent tissues, indicating a deregulation of DDA metabolism in cancers [4].  These 

observations ruled out the hypothesis that the AEBS/ChEH, even if it could concentrate 5,6α-EC 

and histamine at their ligand binding site, was not sufficient to contribute to DDA biosynthesis 

and to catalyze the reaction by a proximity effect in cancer cells[67-69]. The recent molecular 

identification of the DDA synthase showed that this enzyme was different from the AEBS/ChEH 

and that a loss in DDA synthase expression on breast tumors explained the decrease in the DDA 

level (M Poirot Silvente-Poirot et al, unpublished results). Pharmacological studies showed that 

DDA induced cancer cell differentiation and death on cells of murine and human origins (Figure 

2) [4, 64]. It was shown that DDA was active in vivo at low concentrations (0.015 µg/kg) to 
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prevent and inhibit the development of BC and melanoma on immunocompetent mice [4]. This 

effect was accompanied by cancer cell differentiation and tumor infiltration by T lymphocytes 

and dendritic cells, suggesting a possible activation of an immune response by DDA against the 

tumor [4]. DDA was found to be a potent and selective inhibitor of the ChEH, with no impact on 

other known epoxide hydrolases, and DDA did not display any ER modulatory activity [4]. DDA 

is, to date, the most potent endogenous inhibitor of ChEH compared to other ring-B oxysterols [4, 

41, 42]. Importantly, the Ki of DDA for ChEH was 120 nM, which is the range of its endogenous 

concentration in healthy tissues [4]. To determine whether DDA might be of clinical interest, the 

efficacy of DDA was tested on melanoma and leukemia human cancers and the mechanisms 

mediating DDA-induced cell death were studied. 

 

3. DDA induces lethal autophagy in cancer cells. 

 It was shown that DDA was cytotoxic on human and mouse cancer cells of various tissue 

origins including melanoma and leukemia cells [7, 64, 70].  DDA induced a dose- and time-

dependent cytotoxicity in both melanoma and acute myeloid leukemia (AML) cell lines 

indicating that DDA effects were receptor-mediated, while the C17 compound (Figure 1B), a 

geometric isomer of DDA, was inactive. It was shown that DDA induced characteristics of 

apoptosis, but caspase inhibitors failed to protect cells against DDA showing that apoptosis was 

not the driver of DDA cytotoxicity. DDA cytotoxicity was shown to require transcription and 

translation of new genes. The screening on the expression of a panel of transcription factors 

stimulated by DDA revealed a huge increase in NR4A1 (Nur77) and NR4A3 (NOR1) mRNAs 

expression in melanoma cells. This stimulation was confirmed at the protein level [7]. Knock 

down experiments in cancer cells showed that these transcription factors were required in DDA 

cytotoxicity [7]. The contribution of Nur77 to cell death was mainly related to caspase 
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independent cell death [71] and lethal autophagy [72-76] when over expressed. Because DDA 

was shown to be a potent inhibitor of ChEH [4], and because the inhibition of ChEH was 

associated to the accumulation of pro-autophagic sterol zymostenol [19, 40], the impact of DDA 

on cholesterol metabolism in cancer cells was studied. In vitro and in vivo studies showed that 

DDA did not induce 5,6-EC accumulation. As opposed to other known ChEH inhibitors, 

cholesterol epoxidation was not stimulated by DDA, even if DDA induced ROS production. The 

explanation was that DDA induced catalase expression, the enzyme that destroys H2O2. This 

mechanism impairs the cholesterol epoxidation process. By comparison the ChEH inhibitors Tam 

and PBPE stimulated H2O2 production but had no impact on catalase expression [7], and they 

induced 5,6-EC formation and accumulation [7, 19]. DDA induced the accumulation of the 

cholesterol precursor zymostenol in cancer cells as observed with other high affinity ChEH 

inhibitors [7, 19]. Because zymostenol accumulation [19, 21, 22, 36, 44] and NR4A1 [73, 75, 76] 

have been linked to autophagy, the impact of DDA on autophagy was studied. It was found that 

DDA induced various characteristics of autophagy such as the formation and the accumulation of 

autophagosomes, lysosomes, and autolysosomes in melanoma and acute myeloid leukemia cells 

[7]. DDA did not induce a blockage of autophagy as observed for several compounds [77, 78] but 

on the contrary stimulated the autophagic flux [7]. Pharmacologic and genetic inhibitions of 

autophagy and NR4A protein expression inhibited DDA-induced tumor cell death, evidencing 

that DDA induced a lethal autophagy (Figure 2). This is the opposite to what was found with 

ChEH inhibitors such as Tam or PBPE which induced a protective autophagy in cancer cells [7, 

19, 21, 22, 70]. Because DDA is not a SERM like Tam, but is an AEBS ligand and a ChEH 

inhibitor like PBPE, and because DDA induces a lethal autophagy and not a survival autophagy 

like Tam and PBPE, the existence of another molecular target for DDA that could explain this 

effect was investigated.  
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4. DDA is a ligand and modulator of the nuclear receptors LXR. 

 Microscopic autoradiography of cancer cells treated with 
14

C-labelled DDA showed that 

DDA was mainly present into the nucleus of cells [7], suggesting that DDA could activate a 

ligand-dependent transcription factor. DDA being an OS and NOR1 which expression is 

stimulated by DDA being under the transcriptional control of the OS receptor [20, 79-82] liver-

X-receptor (LXR) [83], it was investigated whether the LXR could be a DDA target. LXR belong 

to the nuclear receptor superfamily and exist as two isoforms, LXRα (NR1H3) and LXRβ 

(NR1H2) [84]. OS are oxygenation products of cholesterol [85], and while side chain OS were 

found to be agonists on LXR, ring B-OS were reported to exert cell and gene context-dependent 

antagonist, agonist, or inverse agonist activities on the LXR [20, 79, 80]. Tests using LXR-

dependent gene reporter assays showed that DDA inhibited dose-dependently the stimulation of 

the reporter gene by the agonist 22(R)hydroxycholesterol with an IC50 of 76±12 nM for LXRβ 

and 362±52 nM for LXRα [7]. This established a potent regulatory activity on the LXR different 

from side chain-OS that displayed only agonist activity on such assays [8]. A similar approach 

was used to established that DDA did not modulate other ligand-dependent nuclear receptors 

such as steroid hormone receptors or SXR, AHR, VDR, RAR and PPAR[7]. The direct targeting 

of LXR by DDA was supported by DDA binding experiments performed on purified ligand 

binding domain LXR isoforms through both a ligand competition assay and surface plasmon 

resonance assays. Molecular modeling and docking experiments of DDA-ligand-binding domain 

of LXR isoforms complexes revealed the importance of specific chemical groups of DDA in their 

interaction with specific amino acids of LXRs. Structure-activity studies with DDA analogues 

modified on specific chemical groups of DDA such as the imidazol ring (C41, Fig 1B), the 

hydroxyl in C5 (C31, Fig 1B) or the sterol side chain (C51, Fig 1B), as well as the DDA isomer 
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in which histamine was grafted on 5,6α-EC by the imidazol ring (C17, Fig 1B), induced a loss or 

an inversion in the LXR modulatory activities of DDA. Although it was shown on the gene 

reporter assay that DDA was an antagonist. DDA treatment of cancer cells increased in an LXRβ-

dependent manner the levels of mRNAs encoding NR4A1, NR4A3, LC3A and LC3B, while the 

prototypical LXR ligands 22(R)HC, GW3965 and T0901317 had little or no effects [7] (Table 1). 

Looking at the LXR-dependent gene expression at the mRNA level. It was found that DDA 

repressed ABCA1 mRNA expression while it stimulated the expression of SCD1, two LXR-

dependent genes. DDA stimulated the expression of the LDLR at the mRNA level. LDLR is 

known as indirectly regulated through LXR-Idol pathway at the protein level [86], but no 

regulation of Idol mRNA expression by DDA was found at least on mouse embryonic fibroblast 

even if 22(R)HC increased Idol expression in an LXRβ-dependent manner [7]. LDLR is known to 

be primarily under the transcriptional control of the transcription factor SREBP2, which is 

activated when the intracellular cholesterol decreases [87]. However, chromatin 

immunoprecipitation assays showed that DDA repressed the binding of LXRβ on an enhancer 

region close to the LDLR gene suggesting a direct regulation of  LDLR by LXRβ, while it was 

found on the same study that 22(R)HC increased LXRβ binding [7]. Thus, it is probable that 

DDA cholesterol efflux and influx in cancer cells and a detailed analysis will required further 

investigations. Altogether, these data showed that DDA was an LXR modulator rather than an 

antagonist. The use of a gene ontology (GO) that could be regulated by LXR led to the 

identification of several genes regulating autophagy and lysosome biogenesis,  in particular the 

transcription factor EB (TFEB), known as a master regulator of both pathways [88-90]. DDA 

decreased LXRβ-binding to a TFEB enhancer and stimulates TFEB expression in a 

concentration-dependent manner, while 22(R)HC did the opposite, evidencing that the LXRβ and 

LXR agonists act as repressors of TFEB, while DDA de-repressed this gene. In accordance with 
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this, DDA increased the activity of a TFEB-dependent gene reporter assay dose-dependently 

showing that DDA stimulated the transcriptional activity of TFEB [7]. The targeting of LXR by 

DDA was further confirmed through knockdown experiments showing that LXRβ was necessary 

for DDA-induced NR4A1, NR4A3, LC3 expression and lethal autophagy (Figure 3). Moreover, 

it was shown that LXR agonists partially reversed DDA cytotoxicity. Altogether, these data 

indicated that DDA triggered an LXR-dependent tumor cell death. This effect was specific of 

DDA and was not observed with other LXR ligands such as 22(R)HC, GW3965 and T091317 

and thus DDA appears as “first in line” on this effect (Table 1). These data revealed that DDA 

and LXRβ are new players in the control of autophagy and lysosomes biogenesis [70]. 

 

5. DDA triggers anticancer action in vivo on human cancer cells, including patient-derived 

AML.  

It was shown that DDA displayed chemopreventive and anticancer effects at low doses on 

syngeneic tumors implanted on immunocompetent mice. These affects were associated with 

cancer cell re-differentiation and  T lymphocyte and dendritic cell infiltration suggesting the a 

contribution of the immune system on the anticancer action of DDA [4]. DDA also killed human 

cancer cells in vitro at micromolar concentrations [64] suggesting that DDA could be active 

against human tumors in vivo. To investigate the efficacy of DDA on human cancers, DDA was 

tested on human cell lines or patient tumors implanted on immunodefficient mice. A new 

formulation of DDA was required to achieve higher concentration, and a lactate salt form of 

DDA with improve water solubility was produced [91]. Experiments were conducted by 

implanting melanoma cells lines B16F10 and SKMEL-28 on nude mice, acute myeloid leukemia 

cell lines HL-60 and KG1 on NOD/SCID mice. Administration of DDA to mice bearing 

established tumors showed a blockade in the tumor growth. Tumor analyses showed that DDA 
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treatment induced an over-expression of Nur77 and NOR1 and a stimulation of LC3-II 

expression and a punctation of LC3 was observed by immunohistochemistry. All these 

characteristics are those that were measured in vitro. The LXR-dependence of DDA effects in 

vivo was demonstrated both by genetic and pharmacologic approaches. The knock down of 

LXRβ in cancer cells using small hairpin RNA targeting LXRβ, induced a loss of sensitivity to 

DDA in these cells on in vitro and in vivo assays and the synthetic LXR agonist T0901317 

partially reversed DDA anticancer action [7]. Because DDA is not a modulator of most other 

nuclear receptor, DDA could be consider at the moment as a selective liver X receptor modulator 

(SLiM) [92], confirming that developing modulator of such compounds is of interest for 

therapeutic application as earlier suggested [93]. 

To further confirm the clinical interest of DDA, tests were conducted on primary tumors 

from patients with AML.  Theses cancer cells were found sensitive to DDA independently to 

their molecular and cytogenetic classification and thus AML cells with intrinsic resistance to 

cytarabin (AraC) or anthracyclins were found sensitive to DDA as well as cancer stem cells [7].  

DDA induced in vitro and in vivo an anticancer action of these cells blocking bone colonization 

by cancer cells. No toxicity was observed at active doses of 20 to 40 mg/kg and DDA met the 

important expectation for an LXR ligand that is candidate for a clinical evaluation [94]; DDA did 

not induced steatosis and hypertrigliceridemia in mice[7]. Importantly, DDA treatment led to the 

accumulation of DDA in tumors to reach an active anticancer concentration. Together these data 

established the strong anticancer potency of DDA in vivo on melanoma and AML. 

 

Conclusion 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 - 14 - 

If genomic and proteomic approaches led to an extensive characterization of the existing genes 

and proteins, the metabolome is still an underexplored universe [95] in which the immerged and 

hidden part of this iceberg remains to be characterized [96].  Lipids account for more than 30,000 

different species and specialists estimated that this number could grow up to 200,000 different 

species [97]. Among them, sterol lipids constitute an emerging class defining the sterolomics [98, 

99]. Cholesterol-5,6-epoxides (5,6-EC) was found at the center of a new branch [58] in the 

cholesterol pathway thanks to the recent identification of DDA [4].  The identification of DDA as 

a metabolite was possible because DDA was first chemically synthesized, chemical tools were 

produced (labeled precursors and DDA), specific analytical methods were set up, and because 

synthetic DDA displayed cancer cell re-differentiation properties at low concentrations in vitro. 

Studies on DDA metabolism led to the discovery that DDA was present in various mammalian 

tissues. The analyses of cancer cells and tumors revealed a deficiency in DDA presence 

highlighting a deregulation in DDA metabolism during carcinogenesis. This suggested that a 

DDA complementation therapy may constitute a possible therapeutic approach against cancer.  

This hypothesis was validated on tumor implanted in mice showing that DDA displayed 

anticancer properties against various cancers. This was exemplified for breast cancer, melanoma 

and acute myeloid leukemia [4, 7]. The analysis of the cellular effects of DDA showed that it 

activated cancer cell differentiation and death. The nature of cell death was lethal autophagy as 

opposed to most chemotherapeutic drugs that induced apoptosis and protective autophagy [40, 

100, 101]. DDA does not affect normal cell fate in mice, and thus DDA targets specifically 

cancer cells in vivo, deserving further clinical evaluations. Analyses of the molecular mechanism 

involved in the effect of DDA revealed that autophagic genes stimulated by DDA were under the 

transcriptional control of LXRβ showing for the first time that this nuclear receptor controlled the 

expression of genes involved in autophagy and lysosome biogenesis. LXRβ was found necessary 
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to mediate DDA anticancer effects and the presence of LXRβ in cancer cells will condition a 

response to DDA. LXRβ is widely expressed in cancer cells of different origins and is up 

regulated in cancer cells compared to normal tissues [7, 102], strongly suggesting a possible 

efficacy on other cancers in addition to breast cancers, melanoma and AML as already shown in 

vitro on cancer cell lines [64]. Both LXR and autophagy have been shown to be involved in the 

control of immunity [93, 103-105], thus it would be of interest to determine if DDA have a 

positive impact on antitumor immunity which could strengthen its anticancer potency. In 

conclusion, DDA is a molecule from the self, with tumor suppressor and anticancer properties 

that induces lethal autophagy through an original mechanism making of DDA a "first in line" 

anticancer drug candidate. DDA is well tolerated in mice at therapeutic consentrations and 

exhibits the expected properties of a drug candidate for further application in LXR-targeted 

anticancer therapy. 

 

  

List of abbreviations 

AEBS, antiestrogen binding site; ChEH, cholesterol-5,6-epoxide hydrolase; dendrogenin 

A/DDA, 5α-hydroxy-6β-[2-(1H-imidazol-4-yl)-ethylamino]-cholestan-3β-ol; DHCR24, 3β-

hydroxysteroid-Δ
24

-reductase; DHCR7, 3β-hydroxysteroid-Δ
7
-reductase; D8D7I/EBP, 3β-

hydroxysteroid-Δ
8
,Δ

7
-isomerase; cholesterol, cholest-5-en-3β-ol; desmosterol, cholest-5,24-dien-

3β-ol; zymostenol, 5α-cholest-8-ene-3β-ol; zymosterol, 5α-cholesta-8,24-dien-3β-ol; 7-

dehydrocholesterol, cholest-5,7-dien-3β-ol;  lanosterol, lanosta-8,24-dien-3β-ol; 5,6α-EC, 5,6α-

epoxycholesterol; 5,6β-EC,  5,6β-epoxycholesterol; 5,6α-ECS, HA, histamine; ER, estrogen 

receptor; BC, breast cancer. 
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dendrogenin A (PubChem CID: 9806490); tamoxifen (PubChem CID: 2733526); zymostenol 

(PubChem CID: 101770); 5,6α-epoxycholesterol (PubChem CID: 227037); histamine (PubChem 

CID: 774). 
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Figure legends 

Figure 1. A) scheme presenting the biosynthesis of dendrogenin A from 5,6α-epoxy-

cholesterol and histamine. B) chemical structure of DDA inactive analogues.  

Figure 2: Anti-cancer properties of DDA. DDA induces cancer cell differentiation at nM 

concentration and lethal autophagy at µM concentration. 

Figure 3: Scheme describing the mechanism of lethal autophagy induced by DDA. The 

binding of DDA to the LXRβ and the transcriptional activation of LC3, TFEB, Nur77 and NOR1 

genes are essential for DDA to mediate lethal autophagy in cancers in vitro and in vivo.  The 

inhibition of the cholesterol-5,6-epoxide hydrolase (ChEH)  and of its D8D7 subunit by DDA 

leading to sterol accumulation participates to DDA-induced increase lysosome formation, an 

essential component of the autophagy machinery. This dual targeting may explain the sustained 

lethal autophagy induced by DDA. LY: lysosome; AP: autophagosome; AM: amphisome; AL: 

autolysosome. 

 

 

 

 

 

 

 

 

 

 



 

Table 1: Comparison between DDA and canonical LXR ligands on LXR-dependent 

genes expression and cancer cell fate. 

 

  LXR-dependent gene expression 

D8D7I 

inhibition 

Cell 

death 

Autophagy 

 LXRα/β ABCA1 SCD1 LDLR NR4A1 LC3A TFEB    

DDA yes - + + ++ + + + + + 

22(R)HC yes + 0 0 + 0 0 0 0 0 

TO901317 yes + + 0 0 0 n.d. 0 0 0 

GW3965 yes + + 0 0 0 n.d. 0 0 0 

yes: LXRα/β ligand; -: down regulation; +: up regulation; 0: no effect; n.d. not determined. 
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