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Abstract 21 

Although the global deleterious impact of antibiotics on the intestinal microbiota is well known, the 22 

temporal changes in microbial diversity during and after an antibiotic treatment are still poorly 23 

characterized. We used plasma and fecal samples frequently collected during and up to one month after 24 

treatment in 22 healthy volunteers assigned to a 5-day treatment by moxifloxacin (N=14) or no 25 

intervention (N=8). Moxifloxacin concentrations were measured both in plasma and feces, and bacterial 26 

diversity was determined in feces by 16S rRNA gene profiling and quantified using Shannon index and 27 

number of operational taxonomic units (OTUs). Nonlinear mixed-effects models were used to relate drug 28 

pharmacokinetics and bacterial diversity over time. Moxifloxacin reduced bacterial diversity in a 29 

concentration-dependent manner, with a median maximal loss of 27.5% of the Shannon index (min;max: 30 

17.5;27.7) and 47.4% of the OTUs number (30.4;48.3). As a consequence of both the long fecal half-life of 31 

moxifloxacin and the susceptibility of the gut microbiota to moxifloxacin, bacterial diversity indices did not 32 

return to their pre-treatment levels until days 16 and 21, respectively. Finally, the model characterized the 33 

effect of moxifloxacin on bacterial diversity biomarkers, and provides a novel framework for analyzing 34 

antibiotic effects on the intestinal microbiome.  35 
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Background 36 

A large body of data describes the role of the intestinal microbiome in various host processes, including 37 

metabolic, nutritional and immunological processes (1, 2) and in inhibiting the growth of potentially 38 

pathogenic microorganisms within the intestines (3, 4). These insights have been unveiled by the growing 39 

use of next generation sequencing techniques, making possible to investigate the impact of uncultivable 40 

bacteria on health and disease. Among such methods, profiling of the 16S rRNA gene consists in 41 

sequencing a subset of the 9 hypervariable regions of the bacterial genes encoding the 16S rRNA. Based 42 

on their homology, the huge amount of sequences obtained can be clustered into operational taxonomic 43 

units (OTUs), used for characterizing the composition of the bacterial community (5). This composition can 44 

then be summarized for each sample using synthetic indices of diversity, such as the total number of 45 

observed OTUs, which characterizes the richness from an ecological perspective, or the Shannon diversity 46 

index (6), a composite index of the richness and the distribution of OTUs in the community. These indices of 47 

within-sample diversity, also called “alpha diversity”, are now widely used for evaluating the relationships 48 

between the microbiome and human health, and were recently shown to be highly predictive of mortality in 49 

a hamster model of C. difficile infection (7). This suggests that such markers could be useful to measure the 50 

impact of treatment on the microbiota, and possibly be predictive of clinical outcomes (8). 51 

A major cause of microbiome disruption, called dysbiosis, is the administration of antibiotics (9-13). In that 52 

respect, fluoroquinolones antibiotics have a particularly severe impact on the gut microbiome due to their 53 

high concentrations achieved in feces (14). Through its disruptive effect on the resident bacterial flora, 54 

antibiotic administration creates a large space that can be colonized by potentially resistant bacterias. 55 

These bacterias may then be disseminated in the environment, making antibiotic-modifed gut microbiota the 56 

epicentre of bacterial resistance spread (10, 14, 15). In spite of the well-studied impact of repeated 57 

administrations of antibiotics on the intestinal diversity (13), we still lack of a precise characterisation of the 58 

association between drug concentrations, both in plasma and feces, and temporal changes in intestinal 59 

microbiome (16). This can be done using mathematical models, but parameter estimation of these models 60 

is hampered by the high level of both interindividual and intraindividual variability of bacterial diversity, 61 

making it difficult to obtain reliable parameter estimates. This difficulty can be in part circumvented by the 62 

use of mixed-effect models that specifically tease out the two sources of variability and allow to precisely 63 
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estimate parameters, as shown in the context of antibiotic pharmacokinetic/pharmacodynamic assessment 64 

(17-19).  65 

Here we aimed to employ the tools of mathematical and statistical modelling to analyze the relationship 66 

between antibiotic gut exposure and temporal changes in gut microbiome, using the Shannon index and the 67 

number of OTUs as synthetic markers of diversity. We focus our analysis on healthy volunteers treated by 68 

moxifloxacin, a fluoroquinolone with high oral bioavailability and a high volume of distribution at steady-69 

state, which exhibits an excellent penetration in body tissues (20, 21) and whose elimination occurs 70 

primarily through the intestinal route (22). 71 

Material and methods 72 

Healthy volunteers and sample collection 73 

 We used data from the CL-1002 trial (NCT02176005), a prospective, open label, randomized 74 

clinical trial conducted in 2014 at the Clinical Investigation Center of the Bichat hospital, Paris (France). The 75 

trial was approved by French Health Authorities and Independent Ethics Committee. Full details of the trial 76 

have been reported elsewhere (23). We focused here on 22 subjects of this trial who received moxifloxacin 77 

alone (n=14) or were not treated (negative control group, n=8). 78 

 Briefly, healthy volunteers over 18-year-old without exposure to antibiotics in the preceding 3 79 

months were prospectively included after obtention of their informed consent. Subjects in the moxifloxacin 80 

group received 400 mg of moxifloxacin orally, once a day for 5 days (from D1 to D5), and all subjects were 81 

followed until D37. A total of 24 blood samples were collected in each moxifloxacin-treated volunteer on D1 82 

(just before treatment administration and at 0.5h, 1h, 1.5h, 2h, 3h, 4h, 6h, 12h, and 24h post administration) 83 

and at the last day of treatment, i.e. on D5 (just before treatment administration and at 0.5h, 1h, 1.5h, 2h, 84 

3h, 4h, 6h, 12h, 24h, 32h, 48h, 56h, and 72h post administration). Thirteen fecal samples were collected in 85 

all volunteers at screening (between D-21 and D-3), just before the first administration of moxifloxacin 86 

(baseline), once a day from D2 to D9, and then at D12, D16, D37.  87 

  Moxifloxacin assays were performed using specifically developed and validated bioanalytical 88 

methods (see Supplementary Methods). Total plasma moxifloxacin concentrations were determined by 89 

reverse phase high-performance liquid chromatography coupled with fluorescence detection (lower limit of 90 

quantification, 0.01 µg/mL). Fecal concentrations of free moxifloxacin were determined on the 11 samples 91 
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collected at: baseline, D2, D3, D4, D5, D6, D7, D8, D9, D12 and D16 by tandem mass spectrometry 92 

detection (lower limit of quantification, 0.04 µg/g). 93 

Targeted metagenomic analysis of the intestinal microbiota 94 

The 7 fecal samples collected at:  screening, baseline, D3, D6, D9, D16 and D37 were analysed by 95 

16S rRNA gene profiling. Microbial DNA was extracted using an extraction protocol optimized at 96 

GenoScreen, partially based on commercially available extraction kits (QIAamp DNA stool Kit, Qiagen, 97 

Germany) with the addition of chemical and mechanical lysis steps.  98 

The V3-V4 region of the 16S rRNA gene was then amplified using an optimized and standardized amplicon-99 

library preparation protocol (Metabiote®, GenoScreen, Lille, France). Positive (Artificial Bacteria Community 100 

comprising 17 different bacteria, ABCv2) and negative (sterile water) controls were also included. Briefly, 101 

PCR reactions were performed using 5 ng of genomic DNA and in-house fusion barcoded primers (final 102 

concentrations of 0.2 μM), with an annealing temperature of 50°C for 30 cycles. PCR products were purified 103 

using Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA), quantified according to 104 

GenoScreen’s protocol, and mixed in an equimolar amount. Sequencing was performed using 250-bp 105 

paired-end sequencing chemistry on the Illumina MiSeq platform (Illumina, San Diego, CA, USA) at 106 

GenoScreen. 107 

Raw paired-end reads were then demultiplexed per sample and subjected to the following process: 108 

(1) search and removal of both forward and reverse primer using CutAdapt, with no mismatches allowed in 109 

the primers sequences; (2) quality-filtering using the PRINSEQ-lite PERL script (24), by truncating bases at 110 

the 3′ end with Phred quality score <30; (3) paired-end read assembly using FLASH (25), with a minimum 111 

overlap of 30 bases and >97% overlap identity. 112 

Diversity analysis was performed using the Metabiote Online v2.0 pipeline (GenoScreen, Lille, 113 

France) which is partially based on the QIIME software v1.9.1 (26). Following the steps of pre-processing, 114 

chimera sequences were detected and eliminated (in-house method based on Usearch v6.1). Then, 115 

clustering of similar sequences (97% identity threshold for an affiliation at the genus level on the V3-V4 116 

regions of the 16S rRNA gene) was performed with Uclust v1.2.22q (27) through an open-reference OTU 117 

picking process and complete-linkage method, finally creating groups of sequences or "Operationnal 118 

Taxonomic Units" (OTUs). An OTU cleaning step corresponding to the elimination of singletons was 119 
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performed. Diversity in each fecal sample was estimated using 2 indices of alpha-diversity, the Shannon 120 

diversity index and the number of observed OTUs. 121 

Modeling strategy 122 

  First we developed a pharmacokinetic model of plasma moxifloxacin using total drug 123 

concentrations Both one- and two- compartment models with first-order absorption and first-order 124 

elimination were tested. The absorption delay of moxifloxacin in the central compartment was modelled 125 

using either a lagtime or absorption transit compartments (28). As moxifloxacin was administered through 126 

the oral route, we estimated an apparent volume of distribution after oral administration    . 127 

  Second, the model was extended to account for fecal pharmacokinetics, assuming a fixed fecal 128 

weight of 200 g/day in all subjects, allowing us to reconstruct pharmacokinetic profiles in both plasma and 129 

feces. Moxifloxacin elimination from the central compartment was divided into an intestinal elimination and 130 

an extra-intestinal elimination, both being assumed to have first-order rates. Several structural models with 131 

various numbers of elimination transit compartments between plasma and the lower gastrointestinal tract 132 

were tested. As enteric recirculation had been reported for fluoroquinolones (20), we also tested several 133 

models for moxifloxacin reabsorption, occurring either from one of the transit compartments between 134 

plasma and the lower gastrointestinal tract or from the lower gastrointestinal tract to the plasma 135 

compartment. 136 

  Third, a semi-mechanistic model was developed assuming that moxifloxacin impacted microbiome 137 

diversity as follows (29). The evolution of the diversity index   in the absence of the drug was written as: 138 

  

  
              (equation 1) 139 

where     is a zero-order constant for the production of the diversity, and      is a first-order rate constant 140 

for elimination of diversity. At steady state, 
  

  
   , and thus    

   

    
 in the absence of treatment. The 141 

initiation of antibiotic treatment perturbs this equilibrium and can alter either lead to a reduction of     or to 142 

an increase of      (    
 , equation 2):  143 

    
     

       

       
       (equation 2) 144 

with    being the fecal concentration of free moxifloxacin,      the maximal increase of     , and      the 145 

concentration leading to 50% of the maximal effect of moxifloxacin. 146 
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Statistical methods  147 

  We used nonlinear mixed effects models to analyse the evolution of pharmacokinetic and 148 

pharmacodynamic data. Data from treated individuals were used for the pharmacokinetic analysis, 149 

whereas data from both groups were used for the pharmacodynamic analysis (with fecal concentrations 150 

assumed to be 0 in the control group, see equation 1). Intraindividual correlation of repeated data was 151 

taken into account by random effects. Population parameters were estimated by likelihood maximization 152 

using the stochastic approximation expectation maximisation algorithm (SAEM) (30), implemented in 153 

MONOLIX v4.3.2 (Lixoft, Orsay, France, www.lixoft.eu). Data below the lower limit of quantification were 154 

treated as left-censored data. Their contribution to the likelihood was computed as the probability that 155 

these data are indeed below the lower limit of quantification(31). Estimates of the individual parameters 156 

were computed as the mode of the a posteriori distribution and used to predict individual pharmacokinetic 157 

and pharmacodynamic profiles for the following treatment regimens: moxifloxacin daily doses of 400 mg 158 

and 800 mg for 5- and 10-day treatment duration. Model selection at each step of the model building was 159 

performed using the Bayesian information criteria (BIC), and model evaluation was conducted by 160 

investigating several goodness-of-fit plots. Full details on the statistical model and parameters estimation 161 

are available in Supplementary Text S1. 162 

Measures of antibiotic impact on the microbiome 163 

  The following parameters were computed for moxifloxacin-treated subjects using estimated 164 

individual parameters (Supplementary Text S1): mean transit time between the central compartment and 165 

the lower gastrointestinal tract, maximal loss of each bacterial diversity index in the intestinal microbiome 166 

after the beginning of treatment (nadir), the time for which this maximal loss was achieved (time to nadir) 167 

and the time at which each diversity index returned to 95% of its baseline value. The cumulated impact of 168 

moxifloxacin on diversity was obtained by computing the area under the curve for each diversity index up 169 

to 42 days after the beginning of treatment. 170 

Results 171 

The median age was 33.2 years (min; max 23.3; 59.5) and 8 were males (36.4%). Median weight 172 

was 65.2 kg (56.7; 86.0). Full characteristics of included subjects can be found in (23). 173 

http://www.lixoft.eu/
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Pharmacokinetic analysis of moxifloxacin in plasma and feces 174 

 A total of 322 values of total moxifloxacin plasma concentration and 138 values of fecal 175 

concentration of free moxifloxacin were collected in the 14 treated patients (see Supplementary Figure S1). 176 

Plasma concentrations were best described by a two-compartment model with first-order elimination and 177 

first-order absorption using transit compartments to model the absorption delay (Figure 1). A compartmental 178 

model including two transit compartments between plasma and the lower gastrointestinal tract best fitted 179 

the fecal data, with enteric recirculation of moxifloxacin from the lower gastrointestinal tract to the central 180 

compartment (Figure 1). The mathematical expressions of the final pharmacokinetic model are presented in 181 

the Supplementary Text S2. 182 

The evolution of moxifloxacin concentration in plasma and feces predicted by the model is presented in 183 

Supplementary Figure S2 (panels A and B). Nearly all parameters of the pharmacokinetic model could be 184 

estimated with a good precision (with r.s.e. below 30%), except for absorption related parameters     and 185 

   (Supplementary Table S1). The two rate-constant parameters for the absorption and the elimination 186 

transit compartments models were estimated and not supposed to be identical (which would have led to an 187 

increase in BIC). The model well characterized the evolution of both plasma and fecal concentrations of 188 

moxifloxacin over time in the 14 treated healthy volunteers (Supplementary Figure S3). Other goodness-of-189 

fit plots for this pharmacokinetic model were satisfactory (Figure 2 and Supplementary Figure S4). 190 

 Of note, the fecal weight of Pf was assumed to be 200 g/d in all volunteers at all time.  As what is 191 

observed and fitted are the concentration in the feces, Cf, defined as Af/Pf, a change in Pf results in a 192 

similar change in Af to keep Cf unchanged. As plasma pharmacokinetics (Ac and Ap) are not affected by 193 

modification of the fecal weight, then kct1 should increase by the same proportion. As elimination of 194 

moxifloxacin from plasma is not affected by the fecal weight, the sum of kct1 (intestinal elimination from 195 

plasma) and ke (extra-intestinal elimination from plasma) is constant. So when kct1 increases, ke 196 

decreases: the first consequence of our assumption on the fecal weight is that it impacts the proportion of 197 

the intestinal elimination of moxifloxacin. In addition, for equation (2) to be similar, k fc should be divided by 198 

that proportion. As the rate of elimination of moxifloxacin from the fecal compartment is not affected by the 199 

fecal weight, the sum of kfc, (reabsorption from the lower intestinal tract to the plasma) and k f (elimination 200 

of moxifloxacin from the lower intestinal tract) should be kept constant. Then, when k fc decreases, kf 201 
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increases: the second consequence of our assumption on the fecal weight is that it impacts the proportion 202 

of moxifloxacin reabsorbed from the lower intestinal tract to the plasma. 203 

We performed simulations with fecal weights of 100 g/day, 200 g/ day, 300 g/day and 400 g/day making the 204 

described changes in the population parameters. The simulations resulted in identical concentration-time 205 

profiles both in plasma and in feces. The proportions of moxifloxacin eliminated from the plasma by the 206 

intestinal route was 94.3%, 88.8%, 83.2% and 77.7% for fecal weights of 100 g/day, 200 g/day, 300 g/day 207 

and 400 g/day, respectively. The proportions of moxifloxacin reabsorbed from the lower intestinal tract to 208 

the plasma was 49.7%, 24.9%, 16.6% and 12.4% for fecal weights of 100 g/day, 200 g/day, 300 g/day and 209 

400 g/day, respectively. 210 

The median (min; max) concentration of free moxifloxacin in feces observed 24 hours after the first 211 

administration of moxifloxacin was 56.9 µg/g (21.7; 95.4), and increased up to 130.4 µg/g (79.2; 250.6) on 212 

the 5
th
 day of treatment. Median elimination half-lives from the central compartment and the lower 213 

gastrointestinal tract were 0.53 day (0.43; 0.67) and 1.0 day (0.76; 1.49), respectively. The median transit 214 

time of moxifloxacin between plasma and the lower gastrointestinal tract was 0.59 days (0.35; 1.23). The 215 

median time for fecal concentrations of free moxifloxacin to be below the lower limit of quantification was 216 

14.1 days (11.7; 19.3). 217 

Impact of drug concentrations on microbial diversity 218 

  A total of 142 samples were analysed by 16S rRNA gene profiling (90 in subjects treated by 219 

moxifloxacin and 52 in controls). Individual profiles of the Shannon index and number of OTUs are 220 

presented in Supplementary Figure S5.  221 

  Both indices of bacterial diversity remained constant in absence of treatment, leading to an 222 

estimated mean baseline value of 4.75 Shannon units (r.s.e., 2%) and 163 OTUs (r.s.e., 5%) for the 223 

Shannon index and the number of OTUs, respectively (Supplementary Table S2). Initiation of moxifloxacin 224 

led to a rapid drop in both diversity indices. This was attributed in our model to a drug concentration 225 

dependent effect in the elimination rate of bacterial diversity from feces (Figure 1 and Supplementary Text 226 

S2), with a rate increasing up to 38% (r.s.e. 14%) and 94% (r.s.e., 4%) for the Shannon and the number of 227 

OTUs, respectively. Given the extended presence of moxifloxacin in feces and the susceptibility of bacterial 228 

diversity to the drug (as measured by the parameter      which was shown to be similar for both indices, 229 
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see methods), our model predicted that the diversity only slowly returned to pre-treatment values after 230 

treatment cessation. Of note EC50 was estimated to 0.13 µg/g of feces, and was associated with a large 231 

interindividual variability (470%, see Supplementary Table S2). The model could well fit the evolution of 232 

both the Shannon index and the number of OTUs in all individuals (Figure 3 and Supplementary Figures S6 233 

and S7). The model prediction intervals are drawn in Supplementary Figure S2 (panels C and D). All 234 

parameters were well estimated (Supplementary Table S2), except the drug EC50, for which likelihood 235 

profiling (see Supplementary Text S1) was used to calculate the 95% confidence interval ([0.01 µg/g; 2 236 

µg/g], Supplementary Figure S8). 237 

  Pharmacodynamic indices derived from the model for the 14 subjects treated by moxifloxacin are 238 

presented in Table 1 and Figure 4. A median loss of 0.6 units of Shannon index (0.3; 0.7) and 26 OTUs (11; 239 

41) was achieved at 24 hours after the beginning of treatment. The maximal loss induced by moxifloxacin 240 

was 1.2 Shannon units (0.8; 1.3) and 77 OTUs (47; 100), achieved 7.0 (5.1; 11.4) and 8.5 (5.5; 13.8) days 241 

after treatment initiation, respectively. Results obtained for other simulated treatment regimens are 242 

presented in the Supplementary Table S3. 243 

Discussion 244 

Here, we characterized for the first time the drug-concentration dependent impact of antibiotic 245 

treatment on the temporal changes in bacterial diversity in the intestinal microbiome during and after 246 

treatment initiation.  247 

  The pharmacokinetic analysis revealed that moxifloxacin concentrations in the lower gastrointestinal 248 

tract rapidly reached a high plateau with median value of 130.4 µg/g at day 5, and only slowly decreased 249 

after treatment cessation, with a half-life of 1 day. This slow decrease in the lower gastrointestinal tract was 250 

captured in our model assuming a reabsorption of moxifloxacin from the lower gastrointestinal tract to the 251 

central compartment. Enteric recycling had been previously reported for moxifloxacin (20). Interestingly, 252 

reabsorption from the gut to the central compartment did not seem to occur from the upper parts of the gut, 253 

but rather from the lower gastrointestinal tract. This is consistent with the fact that moxifloxacin 254 

concentrations within the colonic mucosa are greater than those measured in the small bowel mucosa (32). 255 

This reabsorption process might explain the longlasting fecal excretion observed after treatment cessation, 256 

with concentrations in the lower gastrointestinal tract greater than 2 µg/g up to 5 days (2.9; 8.4) after the last 257 
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administration of moxifloxacin. As both indices of diversity were largely susceptible to moxifloxacin (with a 258 

similar EC50 equal to 0.13 µg/g), diversity was profoundly impacted up to 10 days after treatment cessation. 259 

These slowly decreasing concentrations of moxifloxacin create a replication space for resistant bacteria, 260 

consistent with the observation that the post treatment period is critical for the emergence of 261 

fluoroquinolone-resistant strains in the human fecal flora (33). Despite moxifloxacin mechanism of action on 262 

bacterial growth, in our model moxifloxacin appeared to increase the rate of elimination of bacterial 263 

diversity, with a reduction of the Bayesian Information Criteria by 60 units).  264 

  Despite the complexity of the measures performed, relying on metagenomic analyses, semi-265 

mechanistic mathematical models provided good description of the temporal changes of the diversity 266 

indices within the intestinal microbiome. Interestingly, the maximal effect of moxifloxacin on the two diversity 267 

indices was different, leading to differences in the time needed to return to baseline values. This confirms 268 

that the two indices do not exactly measure the same phenomena, and may be complementary to draw a 269 

complete picture of the microbiome dysbiosis induced by an intervention.  270 

Our approach shows that the complexity of the microbiome composition, along with the temporal impact of 271 

treatment on it, may be advantageously characterized using semi-mechanistic mathematical models and 272 

synthetic markers of microbiome diversity, such as the Shannon index and the number of OTUs. They can 273 

then be used to calculate simple metrics, such as the cumulated loss of bacterial diversity, and may be 274 

used to predict the impact of changes in experimental settings. This might prove to be very useful as 275 

microbiome data on multiple days are usually difficult to obtain reliably in the clinical context. Model can 276 

also be used to simulate the effect of different dosing regimens, such as increasing the daily dose to 800 277 

mg or the treatment duration to 10 days. Given the high susceptibility of bacterial diversity to moxifloxacin, 278 

we predicted that increasing the daily dose would result in only a minor additional effect on bacterial 279 

diversity, as compared to the dosing regimen studied here. Doubling the treatment duration from 5 to 10 280 

days would result in a 35% increase of the global impact of moxifloxacin on the bacterial diversity, as 281 

measured by the AUC between day 0 and day 42 of the change of diversity indices from day 0. Further, the 282 

use of a non-linear mixed effect model to estimate parameters, a statistical approach that advantageously 283 

optimizes the information available by borrowing strength from the between-subject variability, allowed us to 284 

precisely estimate parameters despite a limited number of samples per patient. 285 



 
 

Page 12 of 19 

Our work has some limitations. The main one is that only healthy subjects were included. Model 286 

parameters, in particular the interindividual variability of the pharmacodynamic parameters but also possibly 287 

the gut microbiome, could differ in a clinical context. For instance, it has been reported that parameters 288 

such as the body weight or the severity of the infection impact the pharmacokinetics of antibiotics, including 289 

moxifloxacin (34-36). Next, the      parameter could not be precisely estimated and was associated with a 290 

large confidence interval, which prevented to extrapolate our findings for lower dosing regimens. Next, we 291 

fixed the fecal daily weight to 200 g for all volunteers, whereas there is a high intra- and inter-individual 292 

variability in the feces generation. This assumption affects the values on four elimination rate-constants  293 

    ,   ,     and   , whose values should therefore be considered with caution. Furthermore, assuming the 294 

same values of fecal daily weight in all individuals at each sampling time, whereas it is known to vary, has 295 

an impact on the estimated variabilities of those parameters and on the residual error. It does however not 296 

have any impact on the pharmacodynamic model as it was written using fecal concentrations. Finally, we 297 

restricted our analysis to a global measure of diversity and we did not model the specific evolution of OTUs 298 

but this will require larger study population in order to account for the variability across patients and the high 299 

dependency within OTU dynamics. Such models will also gain from using technologies capable to measure 300 

absolute counts of OTUs and not only relative counts, such as coupling data from new generation 301 

sequencing together with flow cytometric counts of bacterial cells (37). 302 

  In summary, we provided here a modelling framework to measure the impact of antibiotics on the 303 

intestinal microbiome. Diversity indices obtained through next generation sequencing offer a simplified view 304 

of the dynamics of the bacterial community within the microbiome, and mathematical modeling allowed to 305 

precisely estimate several biomarkers to asses the global dysbiosis induced by moxifloxacin. This 306 

encourages to extend these results to the clinical setting for estimating the unwanted effects of drugs on the 307 

microbiome. Further, mathematical models make it possible to investigate the effect of various experimental 308 

conditions on an outcome, and could be helpful to develop strategies aiming to reduce antibiotics impact on 309 

the gut microbiota, via for instance locally released adsorbents, antibiotic-hydrolysing enzymes or optimized 310 

dosing regimens of antibiotics.  311 
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Figures legends 435 

Figure 1. Final compartmental model for plasma and fecal moxifloxacin pharmacokinetics (red) and for 436 

bacterial diversity indices (orange).  437 

    is the transfer rate bewteen each compartment for the absorption delay;    is the absorption rate to the 438 

central compartment;    is the extraintestinal elimination rate from the central compartment;     and     439 

are the transfer rates between the central compartment and the peripheral compartment;      is the 440 

elimination rate from the central compartment to the intestinal tract;     is the transfer rate between the 441 

lower gastrointestinal tract and the central compartment;    is the transfer rate between the intestinal 442 

transit compartments;    is the elimination rate from the lower gastrointestinal tract;     is the zero-order 443 

constant for production of the diversity index;      is the first-order elimination rate of the diversity index 444 

from the lower gastrointestinal tract. 445 

   is the concentration of free moxifoxacin in the lower gastrointestinal tract;      is the maximal effect of 446 

moxifloxacin on the elimination rate of the diversity index, and      is the concentration of moxifloxacin 447 

leading to 50% of the maximal effect. 448 

Data were available for the 3 compartments with bold boxes. GIT, gastrointestinal tract. 449 

 450 

Figure 2. Visual predictive checks for pharmacokinetic model. Plasma concentrations are depicted in the 451 

panel A and fecal concentrations are depicted in the panel B. The blue and red lines are the observed 452 

percentiles (10
th
, 50

th
, and 90

th
 percentiles), the blue and red ribbons are the corresponding 95% 453 

confidence intervals. The dashed black lines are predicted percentiles. Black points are the individual 454 

observations. 455 

 456 

Figure 3. Visual predictive checks for pharmacodynamic model. The Shannon index is depicted in the panel 457 

A (moxifloxacin-treated subjects) and panel B (untreated subjects) and the number of OTUs is depicted in 458 

the panel C (moxifloxacin-treated subjects) and panel D (untreated subjects). The blue and red lines are the 459 

observed percentiles (10
th
, 50

th
, and 90

th
 percentiles), the blue and red ribbons are the corresponding 95% 460 
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confidence intervals. The dashed black lines are predicted percentiles. Black points are the individual 461 

observations. 462 

 463 

Figure 4. Estimated impact of moxifloxacin on intestinal microbiome in the 14 subjects treated with 464 

moxifloxacin. The impact was measured as the area under the curve (AUC) of the change of the Shannon 465 

index (panel A) or number of OTUs (panel B) from baseline over time, between day 0 and day 42. The 466 

AUC is a metric which allows a global view of antitiobics impact on the microbiota as it takes into account 467 

both the extent and the duration of dysbiosis. 468 
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