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Abstract 

To sustain metabolism, intracellular ATP concentration must be regulated within an 

appropriate range. This coordination is achieved through the function of the AMP-activated 

protein kinase (AMPK), a cellular “fuel gauge” that is expressed in essentially all eukaryotic 

cells as heterotrimeric complexes containing catalytic α subunits and regulatory β and γ 

subunits. When cellular energy status has been compromised, AMPK is activated by increases 

in AMP:ATP or ADP:ATP ratios and acts to restore energy homeostasis by stimulating 

energy production via catabolic pathways while decreasing non-essential energy-consuming 

pathways. Although the primary function of AMPK is to regulate energy homeostasis at a 

cell-autonomous level, in multicellular organisms, the AMPK system has evolved to interact 

with hormones to regulate energy intake and expenditure at the whole body level. Thus, 

AMPK functions as a signaling hub, coordinating anabolic and catabolic pathways to balance 

nutrient supply with energy demand at both the cellular and whole-body levels. AMPK is 

activated by various metabolic stresses such as ischemia or hypoxia or glucose deprivation 

and has both acute and long-term effects on metabolic pathways and key cellular functions. In 

addition, AMPK appears to be a major sensor of energy demand in exercising muscle and acts 

both as a multitask gatekeeper and an energy regulator in skeletal muscle. Acute activation of 

AMPK has been shown to promote glucose transport and fatty acid oxidation while 

suppressing glycogen synthase activity and protein synthesis. Chronic activation of AMPK 

induces a shift in muscle fiber type composition, reduces markers of muscle degeneration and 

enhances muscle oxidative capacity potentially by stimulating mitochondrial biogenesis. 

Furthermore, recent evidence demonstrates that AMPK may not only regulate metabolism 

during exercise but also in the recovery phase. AMPK acts as a molecular transducer between 

exercise and insulin signaling and is necessary for the ability of prior contraction/exercise to 

increase muscle insulin sensitivity. Based on these observations, drugs that activate AMPK 

might be expected to be useful in the treatment of metabolic disorders and insulin resistance 

in various conditions. 
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Introduction 

 

One fundamental parameter that living cells need to sustain essential cellular functions is the 

maintenance of sufficiently high level of ATP. Thus, cell survival is dependent on a dynamic 

control of energy metabolism when ATP demand needs to remain in balance with ATP 

supply. If ATP consumption exceeds ATP production, the ADP:ATP ratio rises, but this is 

converted into an even larger rise in AMP:ATP ratio due to the reaction catalyzed by 

adenylate kinase (2ADP <-> ATP + AMP). If the reaction is at equilibrium, the AMP:ATP 

ratio will vary as the square of the ADP:ATP ratio, making increases in AMP a more sensitive 

indicator of energy stress than decreases in ATP or increases in ADP. On this basis, the cell 

requires an efficient energy sensory mechanism based on the detection of the ratios of 

ADP:ATP or AMP:ATP. Such a system has been identified as the AMP-activated protein 

kinase (AMPK), a heterotrimeric serine/threonine kinase conserved throughout eukaryote 

evolution (Hardie et al. 2012). The primary function of AMPK is to monitor changes in the 

intracellular level of ATP and maintain energy stores by reprogramming metabolism through 

an increase in the rate of catabolic ATP-producing pathways and a decrease in the rate of 

nonessential anabolic ATP-utilizing pathways. These regulatory features are initiated by the 

phosphorylation of key metabolic enzyme as well as transcription factors for both short-term 

effects and long-range regulatory actions for a better response to future challenges. Although 

the AMPK system originally evolved to regulate energy homeostasis in a cell-autonomous 

manner, in multicellular organisms, its role has adapted to integrate stress responses such as 

exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, 

and substrate utilization at the whole body level (Hardie 2014). Activation of AMPK is 

triggered by a diverse array of external (e.g., exercise, hormones, nutrients) and internal 

signals (e.g., AMP/ATP and ADP/ATP ratios) and has been implicated in the regulation of a 

wide range of biochemical pathways and physiological processes. As a consequence, AMPK 

has stimulated much interest due to its potential impact on metabolic disorders. The aim of 

this chapter is to discuss the possible role of AMPK in the adaptations to exercise, nutrient 

and hormonal signals and its potential as a therapeutic drug target, mimicking the beneficial 

effects of exercise. 

 

 

AMPK: structure and regulation 

 

AMPK is a heterotrimeric complex composed of one catalytic -subunit comprising a typical 

Ser/Thr kinase domain, in combination with scaffolding -subunit containing a carbohydrate 

binding module (CBM) and -subunit containing four cystathionine--synthase (CBS) 

domains that serve to bind adenine nucleotides (Fig. 1). Each of these subunits has several 

isoforms encoded by different genes (1, 2, 1, 2, 1, 2 and 3) that can theoretically 

combine to form 12 possible heterotrimeric complexes (Hardie et al. 2012). Differential 

expression of the AMPK isoform in tissues and post-translational modifications that may 

locate AMPK in different cellular compartments also contribute to the specialized functions 

of AMPK heterotrimeric complexes. Of interest, in contrast to other AMPK isoforms, 

expression of the AMPK3 isoform is restricted to the fast-twitch glycolytic skeletal muscle, 

suggesting a particular role for AMPK3-containing complexes to handle metabolic 

challenges in skeletal muscle (Barnes et al. 2004). Mutation in the gene encoding for the 

AMPK3 subunit PRKAG3 has been reported in pigs and humans, causing increased 

deposition of glycogen in skeletal muscle (Milan et al. 2000; Costford et al. 2007). In human 
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skeletal muscle, only three heterotrimeric complexes have been detected, 221 (65% of the 

total pool), 223 (20%), and 121 (15%) (Birk and Wojtaszewski 2006; Fig. 1). The 

heterotrimer combination varies in mouse skeletal muscle, with the detection of five 

complexes, including 1 and 2-associated AMPK complexes with both 1 and 2 isoforms 

(Treebak et al. 2009). Interestingly, each heterotrimer combination displays a distinct 

activation profile in response to physical exercise, with 3-containing complexes being 

predominantly activated and 221 and 121 heterotrimers being unchanged or activated 

only after prolonged exercise (Birk and Wojtaszewski 2006).  
 

The mechanism of AMPK activation involves two steps, a reversible phosphorylation at a 

conserved residue (Thr174 in 1 and Thr172 in 2 catalytic subunit, hereafter referred to as 

Thr172 -subunit, and a stimulatory allosteric effect upon 

binding of AMP within the CBS domains of the -subunit (Hardie et al. 2012). Activity of the 

complex increases more than 100-fold
 
when AMPK is phosphorylated on Thr172 by 

identified upstream kinases. The combined effect of phosphorylation on Thr172 and allosteric 

regulation causes a >1,000-fold increase in kinase activity, allowing high sensitivity in 

responses to small changes in cellular energy status. In addition, AMP and ADP binding 

regulates AMPK activity by promoting Thr172 phosphorylation by the upstream kinases and 

by protecting Thr172 from dephosphorylation by phosphatases. All the binding effects of 

AMP and ADP are antagonized by binding of ATP, providing a very sensitive mechanism for 

the activation of AMPK in conditions of cellular energy stress. Recent crystallographic 

studies of full-length AMPK heterotrimeric complexes have provided insights into the domain 

structure and the regulation upon binding of adenosine nucleotides (Hardie et al. 2016). 

Because the activating ligand is bound on the  subunit and the kinase domain is in the  

subunit, intersubunit communication has to occur when switching to fully active states. 

Important regulatory features for this conformational switch are provided by  subunit 

flexible components (Fig. 1), the autoinhibitory domain (AID) and the -regulatory subunit 

interacting motif (-RIM)/-hook interacting with the exchangeable nucleotide-binding sites 

on the  subunit, offering a signaling mechanism for nucleotide allosteric regulation and 

protection against dephosphorylation of AMPK heterotrimeric complex.  

In mammals, the major upstream kinases are the the liver kinase B1 (LKB1) and 

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2; Hardie et al. 2012). 

Interestingly, CaMKK2 has been shown to phosphorylate and activate AMPK in response to 

an increase in intracellular Ca
2+

 concentration, independent of any change in cellular 

AMP:ATP or ADP:ATP ratios. In skeletal muscle, the major upstream kinase 

phosphorylating  subunit Thr172 is liver kinase B1 (LKB1), as exercise-induced AMPK 

phosphorylation is prevented in mouse models lacking LKB1 (Sakamoto et al. 2005; 

Thomson et al. 2007). However, CaMKK has been shown to activate AMPK during mild 

tetanic skeletal muscle contraction (Jensen et al. 2007) and to increase AMPK1 activity in 

response to skeletal muscle overload in LKB1-deficient mice (McGee et al. 2008). 

 

 

AMPK: regulation by hormones and nutrients 

 

Although AMPK was originally identified as a sensor of cellular energy status by 

coordinating anabolic and catabolic pathways to balance nutrient supply with energy demand, 

it is now clear that it also participates in controlling whole-body energy homeostasis by 

integrating hormonal and nutritional signals from the cellular environment and the whole 

organism. Hypothalamic AMPK has been suggested to be a key mediator in the regulation of 
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neuronal regulation of feeding behaviour and energy balance (Fig. 2). Inhibition of AMPK by 

expressing a dominant negative isoform in the arcuate nucleus (ARC) of the hypothalamus 

decreases mRNA expression of the orexigenic neuropeptides agouti-related peptide (AgRP) 

and neuropeptide Y (NPY ; Minokoshi et al. 2004). Conversely, activation of AMPK in the 

ARC by expressing a constitutively active AMPK form can further increase the fasting-

induced expression of AgRP and NPY and then elevated feeding (Minokoshi et al. 2004). 

Similarly, starvation induces AMPK activation and food intake. In contrast, refeeding and 

glucose administration promote AMPK inactivation, accompanied by increased levels of 

anorexigenic neuropeptides proopiomelanocortin (POMC) and reduced levels of orexigenic 

neuropeptides AgRP mRNA in the ARC, highlighting the sensing levels of nutrients in the 

hypothalamus (Andersson et al. 2004; Minokoshi et al. 2004). There are also a number of 

hormones involved in the regulation of appetite that alter AMPK activaty in the 

hypothalamus. For example, the orexigenic hormones, such as ghrelin and adiponectin, 

activate AMPK in the ARC and promote food intake (Andersson et al. 2004; Kubota et al. 

2007); in contrast, anorectic hormones, such as leptin and oestradiol, inhibit AMPK in the 

ARC and inhibit food intake (Yang et al. 2011; Martinez de Morentin et al. 2014). Another 

layer of signal integration for the regulation of whole-body energy balance happens at the 

level of the ventromedial nucleus (VMH) of the hypothalamus, where AMPK regulates 

energy expenditure by contolling brown adipose tissue (BAT) thermogenesis (Lopez et al. 

2010; Whittle et al. 2012; Beiroa et al. 2014; Martinez de Morentin et al. 2014). Importantly, 

expression of a constitutively active AMPK form in the VMH is associated with a specific 

reduction in the expression of BAT thermogenic markers. In contrast, inhibition of AMPK by 

administration of thyroid hormone T3 to the VMH promotes whole body energy expenditure 

by triggering BAT thermogenesis via activation of the sympathetic nervous system (Lopez et 

al. 2010). More recently, it was found that injection of glucagon-like peptide-1 (GLP-1) 

receptor agonist liraglutide into VMH decreased AMPK activity, stimulated expression of 

thermogenic markers in BAT, and promoted weight loss without affecting food intake (Beiroa 

et al. 2014). Overall these findings demonstrate a key role for central AMPK in the regulation 

of energy balance by influencing food intake and energy expenditure in response to peripheral 

signals, such as hormones and nutrients. 

 

 

AMPK: regulation by exercise 

 

Lifestyle intervention such as regular physical exercise is widely recognized to improve 

whole-body performance and metabolism in health and disease. An increase in daily physical 

activity is an effective approach to combat many disease symptoms associated with metabolic 

syndrome. Endurance exercise can improve insulin sensitivity and metabolic homeostasis. 

However, our understanding of how exercise exerts these beneficial effects is incomplete. In 

response to exercise, ATP turnover is increased by more than 100-fold (Gaitanos et al. 1993), 

resulting in increased ATP consumption and a rise in intracellular AMP levels due to the 

adenylate kinase reaction. These changes in the adenylate energy charge lead to the activation 

of AMPK in an intensity- and time-dependent manner, as shown in rodents (Winder and 

Hardie 1996) and in human muscle (Wojtaszewski et al. 2000). Once activated, AMPK 

regulates multiple signaling pathways whose overall effects are to increase ATP production, 

including fatty acid oxidation and glucose uptake. Given that AMPK is at the nexus of 

metabolic signaling pathways, a great deal of interest has focused on the role of AMPK in the 

adaptation of skeletal muscle to exercise as well as its use as a possible therapeutic target for 

the treatment of type 2 diabetes.  
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Control of exercise-induced glucose transport 

During exercise, contracting skeletal muscle rapidly increases glucose uptake in an intensity-

dependent manner to sustain the energy demand caused by increased ATP turnover. The first 

compelling evidence for a role for AMPK in regulating glucose uptake in skeletal muscle has 

been obtained with pharmacological activation of AMPK by AICAR (Merrill et al. 1997). 

This finding was further supported by the observation of impaired response to AICAR 

stimulation in mice expressing a dominant negative AMPK form in skeletal muscle (Mu et al. 

2001). However, the role for AMPK in regulating glucose uptake during muscle contractile 

activity remains controversial and no solid genetic evidence has been put forward. Exercise-

induced muscle glucose uptake is impaired in AMPK 12M-KO mice but remains intact in 

AMPKα mdKO (O'Neill et al. 2011; Lantier et al. 2014). The reason for the difference 

between studies is not clear and future studies using inducible mouse models to study the role 

of AMPK in developed adult skeletal muscle are warranted. 

It has been suggested that AMPK enhances glucose uptake by increasing the translocation of 

glucose transporter type 4 (GLUT4) to the plasma membrane (Fig. 3). Recent findings using 

AMPK-deficient mouse models have shown a convergence to the phosphorylation of the 

downstream target of TBC1D1, Rab-GTPase activating protein, which is emerging as an 

essential player in contraction-stimulated GLUT4 translocation (Stockli et al. 2015). In 

support of this finding, mice expressing TBC1D1 that mutated at predicted AMPK 

phosphorylation sites showed reduced contraction-stimulated glucose uptake (Vichaiwong et 

al. 2010). Interestingly, in exercised human skeletal muscle, TBC1D1 phosphorylation was 

significantly correlated with the activity of the 223 heterotrimer, supporting the idea that 

AMPK is a direct upstream TBC1D1 kinase (Treebak et al., 2014).  
 
Recent studies using compound 991, a cyclic benzimidazole derivative and potent direct 

AMPK activator, have shown that pharmacological activation of AMPK is sufficient to elicit 

metabolic effects in muscle appropriate for treating type 2 diabetes (Lai et al. 2014). It is also 

important to note that AMPK-mediated glucose uptake is not impaired in type 2 diabetes 

during exercise (Musi et al. 2001); therefore, activation of AMPK represents an attractive 

target for intervention.  

 

 

Control of training-induced muscle adaptations 

In response to repeated metabolic stress, AMPK orchestrates a coordinated response to 

enhance mitochondrial biogenesis to match substrate utilization to demand (Fig. 3 ; Zong et 

al., 2002). This response is mediated through the regulation of peroxisome proliferator-

activated receptor  co-activator-1 (PGC-1), a transcriptional co-activator that promotes 

the expression of mitochondrial genes encoded in both nuclear and mitochondrial DNA. 

AMPK activation causes the stimulation of PGC-1 expression by direct phosphorylation, 

which drives expression from its own promoter but also involves deacetylation of PGC-1 via 

the silent mating-type information regulator 2 homolog 1 (SIRT1; McGee and Hargreaves 

2010). This finding was further supported by the increase seen in PGC-1 and mitochondrial 

function in mice expressing a constitutively active AMPK form in skeletal muscle (Garcia-

Roves et al. 2008). Moreover, deletion of AMPK greatly reduced exercise-induced SIRT1-

dependent activation of PGC-1 signaling in skeletal muscle (Canto et al. 2010). Consistent 

with these findings, reduced muscle AMPK activity has been associated with decreased 

mitochondrial content during aging (Reznick et al. 2007) and in skeletal muscle from 

AMPK12- and LKB1-deficient mice (O'Neill et al. 2011; Tanner et al. 2013). 
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Control of muscle insulin sensitivity 

Skeletal muscle demonstrates increased insulin-stimulated glucose uptake in the period after 

exercise (Richter et al. 1982). It may involve an increased translocation of GLUT4 at the 

plasma membrane in response to insulin. The underlying mechanism appears to involve 

AMPK-dependent phosphorylation of the Rab-GTPase TBC1D4 regulating GLUT4 

translocation (Kjobsted et al. 2016). These results are fully in line with previous findings 

showing that prior pharmacological AMPK activation by AICAR enhances insulin sensitivity 

in rat skeletal muscle with increased phosphorylation of TBC1D4 (Kjobsted et al. 2015). 

Thus, activation of AMPK in the recovery after exercise may be important for exercise-

induced adaptations and may serve to enhance muscle insulin sensitivity (Fig. 3). These 

findings may be highly relevant for pharmacological interventions in the treatment of muscle 

insulin resistance.  

 

 

Conclusions and therapeutic perspectives 

 

In mammals, AMPK has emerged as a major energy sensor that integrates multiple 

extracellular and intracellular input signals to coordinate cellular energy balance. Targeted by 

nutritional and hormone signals, AMPK has a crucial role in the hypothalamus to regulate 

energy intake and energy expenditure. In skeletal muscle, AMPK has been identified as an 

important integrator of the metabolic changes that occur during physical exercise. Given these 

roles, AMPK is an obvious target for treatment of metabolic disorders such as obesity and 

diabetes. However, although pharmacological activation in peripheral organs is expected to 

provide therapeutic benefits, activating central AMPK could cause deleterious consequences, 

specifically on body weight control. Recent studies have highlighted the adverse metabolic 

consequence of AMPK activation throughout all tissues (Yavari et al. 2016). Thus, a better 

understanding of the precise role of AMPK in the cell and its effects at the whole-body level 

will be essential for delineating therapeutic strategies aimed at targetting AMPK. 
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Figure legends: 

 

Fig. 1. Schematic representation of AMPK subunit. (A) AMPK domain structure. (B) AMPK 

heterotrimer composition in human skeletal muscle.  

 

 

Fig. 2. Hypothalamic AMPK in the regulation of energy balance. 

  

 

Fig. 3. AMPK-mediated regulation of skeletal muscle adaptation to exercise 
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