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Abstract: 

 

RAS belongs to the super family of small G proteins and plays crucial roles in signal 

transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an 

accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic 

ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, 

mutations of the K-RAS oncogene are nearly systematic (>90 %). Moreover, K-RAS mutation 

is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this 

review, we discuss the central role of K-RAS mutations and their tremendous diversity of 

biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, 

PI3K, Ral...). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical 

animal models showed that K-RAS mutation alters biological behavior of PDAC cells 

(promoting proliferation, migration and invasion, evading growth suppressors, regulating 

mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and 

PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-

RAS that have been developed without significant clinical success so far. As K-RAS is 

considered as the undruggable target, targeting its multiple effectors and target genes should 

be considered as potential alternatives. 
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1. Introduction: RAS GTPase and mutations 

RAS super family belongs to the small G protein class that includes more than 150 

guanosine tri-phosphate hydrolases (GTPase) (1). This highly conserved protein family plays 

major roles in signal transduction from membrane receptors within the cell (2,3). The family is 

divided in 5 main sub-families: RAS, Rho, Rab, ARF and Ran (2). 

Among them, RAS proteins are mainly involved in the regulation of proliferation, 

differentiation, metabolism and survival genes. Among this family, the most characterized are 

H-RAS, N-RAS, and two isoforms K-RAS4A and K-RAS4B that originate from alternate 

splicing of the exon 4 of the K-RAS gene. Mostly, K-RAS designates K-RAS4B which 

expression is ubiquitous whereas K-RAS4A expression is more variable in the different 

tissues (4). 

The RAS-family proteins are small 188-189 aa-21kDa GTPases with a very similar three 

dimensional structure. These proteins harbor two domains and a central region (5): The N-

terminal G domain (aa 1-165) is highly conserved and includes a P-loop that binds 

phosphate, an effector binding domain (aa 32-40) and two switch regions (aa 32-38 and aa 

59-76) that are responsible for conformation changes (Figure 1A). The central region (aa 85-

165) displays 85-90 % homology across the RAS GTPase super family. The C-terminal 

hyper variable region (HVR) (aa 165-185) controls the membrane fixation and acts as auto-

inhibitory domain. The CAAX final sequence is farnesylated on the cysteine residue allowing 

membrane anchoring. In addition, K-RAS4B HVR domain also contains a lysine-rich 

sequence that stabilizes the protein at the membrane.  

In its inactivated state; K-RAS protein is located at the cell membrane internal surface and is 

bound to a guanosine-di-phosphate (GDP) (Figure 1B-C). Activation of a membrane 

receptor leads to the recruitment of the RAS Guanidine Exchange Factor (RASGEF) SOS1 

via SH2 and SH3 domains of adaptors. This allows SOS1 interaction with RAS and induces 

GDP dissociation. The free RAS protein then quickly binds to a guanosine-tri-phosphate 



4 
 

(GTP) molecule, propagating the signal in the cell activating K-RAS target genes (6). 

However, RAS activation is transient because its GTPase activity hydrolyses GTP to GDP 

and goes back to the inactivated state. The GTP hydrolysis is promoted by a GTPase 

activating protein (GAP) that allows normal K-RAS activation/inactivation cycle (1,6) (Figure 

1C). In the GDP-bound state, the catalytic domain of K-Ras4B interacts with HVR 

maintaining auto-inhibitory state that will be reverted upon activation (7). 

RAS is also regulated by its cellular distribution and notably by its clustering in lipid rafts 

called nanoclusters (8). This modulation of the local phospho-lipid content subsequently 

alters RAS/RAF/MAPK signaling. According to its activation state, RAS forms nanocluster 

and allows efficient recruitment of effectors. The number of nanoclusters is proportional to 

the activation signal intensity. RAS conformation changes during GDP/GTP cycling: GDP-

bound K-RAS is associated with the membrane via its HVR domain whereas GTP-bound is 

partially detached. Furthermore, GTP or GDP-bound RAS associates with different kind of 

phospholipids and therefore alter lipid content of the nanocluster (9,10). Interestingly, H- and 

N-RAS isoforms each form nanoclusters that do not non-overlap. This distribution could 

explain differential activation of signaling pathways despite their high homologies (11). While 

being mainly localized at the plasma membrane, K-RAS can also be phosphorylated on 

S181 by PKC leading to its delocalization on the mitochondrial membrane where it interacts 

with BclXL and induces apoptosis (12). This Ser181 phosphorylation is inhibited by calmodulin 

(13). 

 

2. K-RAS mutation and PDAC: So it begins. 

Mutations of K-RAS gene are detected in 27% of cancers (COSMICv78 database 

http://www.sanger.ac.uk/genetics/CGP/cosmic/). These mutations (97-99 %) affect glycine12 

(G12), glycine13 (G13) or glutamine61 (Q61) residues (Figure 1D). G12 residue mutation 

sterically blocks the orientation of the Q61 that is essential for RAS/GAP interaction, leading 
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to an accumulation of GTP-bound RAS unable to hydrolyze the GTP and hence maintaining 

the active conformation (14,15). G13 amino acid mutation enhances the flexibility of GTP 

binding area and leads to faster GTP/GDP cycle and impaired sustaining of activation (15). 

The Q61L mutation interferes with the nucleophilic attack on the γ-phosphate of GTP and 

impairs its hydrolysis (16). 

In pancreatic adenocarcinomas (PDAC), one of the most deadly cancers in occidental 

countries (17), mutations of K-RAS gene are nearly systematic and are associated with a 

bad prognosis (18,19). Analysis of cBioPortal pancreatic adenocarcinoma samples confirmed 

the alteration of K-RAS in 89.8-94.9% of 740 cases out of 4 independent studies (ICGC, 

UTSW, TCGA and QCMG 2016). Recently, Bailey and colleagues confirmed that K-RAS 

activation occurs in more than 90% of PDAC in a wide transcriptional analysis clustering 96 

tumors with high epithelial content (20). Interestingly, genes defined as “upregulated in 

overexpressing oncogenic K-RAS cells” were enriched in the aberrantly differentiated 

endocrine/exocrine subtype (ADEX) cells whereas squamous cells, previously named quasi-

mesenchymal, harbor lesser enrichment of those genes (20,21). 

The mouse model developed by D. Tuveson using the Cre-Lox strategy using Pdx1 (key 

transcription factor in pancreatic fate) promoter-driven, displays the pancreatic tissue specific 

expression of a constitutively active mutant K-RasG12D (22-24). In this model that harbors 

Cre-recombination in all pancreatic cell lineages, expression of the K-RasG12D is sufficient to 

induce occurrence of Pancreatic Intraepithelial Neoplasia (PanINs) highlighting its major role 

in the initiation of pancreatic carcinogenesis. Ptf1/P48-Cre (exocrine Cre expression), 

LoxStopLox(LSL)-K-rasG12D mice develop a similar spectrum of ductal and PanIN lesions 

(22). These K-rasG12D mice are usually referred as KC mice. Using elastase promoter-driven 

recombinase Cre (acinar cells), Ji and colleagues showed that an increase above threshold 

of Ras activity intensity leads to senescence of acinar cells, promotes inflammation and 

induces fibrosis mimicking histologic features of human chronic pancreatitis (CP), acinar-

ductal metaplasia and PanIN lesions (25). Once these lesions appeared, K-RAS remains an 
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essential actor to their survival and progress although a slow evolution that requires 

additional genetic events such as Trp53, Ink4a/ARF, Smad4 tumor suppressor mutations to 

form invasive adenocarcinoma (25-29). Characterization of an inducible oncogenic K-Ras 

model (iK-ras p53L/+) showed that K-RasG12D is required for PDAC maintenance as K-Ras 

extinction (by doxycycline removal) led to rapid tumor regression and degeneration of 

stromal compartment (30). Other genetic events such as GNASR201H or loss of TIF1γ lead to 

distinct cancer phenotypes and notably promote the intraductal papillary mucinous neoplasm 

(IPMN)-to-PDAC progression (31,32). Once pancreatic adenocarcinoma is developed, K-

RAS still participates in the tumor cell-proliferation, -survival and -migration as well as in 

chemoresistance abilities (28,33-35). Signature of K-RAS dependency/addiction genes was 

determined and was shown to be associated with epithelial differentiation (e.g. integrin-β6) 

(35) and corresponds to classical subtype described by Collisson (21). On the contrary, K-

RAS independent phenotype, occurring in later stages of PDAC, is linked to a metabolic 

adaptation relying on increase mitochondrial adaptation (36). 

Recently, the use of PDAC organoids cultures expanded and allowed new avenues in 

fundamental and clinical research regarding pancreatic cancer (37). Expression of mutant K-

RAS protein in progenitor organoids induces morphological changes such as cystic 

organization with apically positioned nuclei that are consistent with early pancreatic tumor 

lesions (38). Therefore, these progenitor organoids are suggested as models to investigate 

early stages of cancer transformation. Organoids culture also allows study of normal 

pancreatic cells without immortalization and thus enables comparisons of normal and tumor 

cells retaining patient-specific traits. Organoids may be used to predict clinical responses and 

are essential for drug screening (38). 

 

3. K-RAS is central in cellular signaling network 
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Activated K-RAS mutants participate in a tremendous diversity of biological events by 

interconnecting regulation of several signaling pathways (39,40) (Figure 2). The best 

characterized direct effectors lead to the activation of the Mitogen-Activated Protein Kinase 

(MAPK), Phosphoinositide 3-Kinase (PI3K) and RalGEF (Ral Guanidine exchange factor) 

pathways (41-48). Stress response (p38 and c-Jun N-terminal Kinase (JNK)) and Nuclear 

Factor-kappa B (NF-κB) pathways are also induced by K-RAS activation, either by 

interconnection with other activated signaling pathways or by oncogenic stress signals such 

as production of reactive oxygen species (5,41,49) (Figure 2). 

In pancreatic cancer, activation of the MAPK pathway is associated with a bad prognosis 

(50). Recruitment of RAF effector and subsequent activation of the ERKs pathway by K-RAS 

promotes proliferation and independent anchorage-growth of pancreatic tumor cells (25,51). 

ERKs activation is also involved in the survival/apoptosis balance (52) and in migration and 

invasion properties of pancreatic tumors (53,54). Finally, the activation of ERK1/2 MAPK 

pathway contributes to tumor cell chemoresistance (55) and to inflammation (56). 

The implication of p38-MAPKs pathway is controversial in carcinogenesis. Although, this 

pathway promotes invasive abilities of pancreatic tumors (57), the detection of its activation 

is associated with a good prognosis (58). The effect of JNK activation is opposed to that of 

p38 MAPK pathway. The activation of JNK pathway by K-RAS promotes pancreatic tumor 

formation and cancer stem cell maintenance (59). The pathway is also involved in 

autophagic processes increasing survival of tumor cells (60). Finally, JNK pathway is 

involved in the occurrence of chemoresistance and invasion of pancreatic tumor cells 

(53,61). 

The NF-κB pathway, which is indirectly activated by K-RAS, is constitutively activated in 

pancreatic cancer (62). The canonical NF-κB signaling leads to activation of p65/p50 

complex and involves IKK complex (IκB kinase). This cytoplasmic complex consists in IKKα 

and IKKß kinases associated with the protein NEMO (=IKKε) (63,64). NF-κB is mainly 
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described as activated by stress and pro-inflammatory signals but also displays important 

interconnections with other pathways. The NF-κB pathway plays an essential role in 

carcinogenesis and inflammation through an amplification loop of K-RAS activity (65-67). The 

NF-κB is also involved in invasion and metastases properties of the pancreatic tumor cells 

(68). 

PI3Ks are a family of heterodimeric kinases composed of p110 catalytic and regulatory 

subunits that lead to phosphatidylinositol triphosphate (PIP3) production and activation of 

downstream signals and biological processes (69). The key downstream effectors of PI3K 

signaling such as Akt or GSK3 are activated in KC mice (70). PI3K signaling enhances 

acinar-ductal metaplasia (ADM) that generate duct from acinar cells. These ADM lesions will 

evolve towards PanIN lesions (71). Pancreas-specific invalidation of p110α isoform (kinase 

dead) prevent occurrence of all type of lesions. Interestingly, pancreatic invalidation of the 

other p110β isoform did not affect PanIN formation in an activated K-RAS context (72). K-

RAS4B isoform can also interact with calcium modulator protein calmodulin via HVR and 

modulates preferentially PI3K/Akt rather than RAF/MEK/ERK pathway (73). 

The RalA/B pathway, initially described as a minor actor in transformation in rodents, is an 

essential component of RAS transformation in human cells (41,74,75). In pancreatic cancer, 

Ral GTPases are activated by K-RAS and are involved in anchorage-independent growth 

and survival (76,77). RalA promotes tumor initiation whereas RalB is essential for invasion 

and metastasis (76). Ral GTPase pathway is also involved in pancreatic tumor chemo- and 

radio-resistance (78,79). 

Overall, more than 100 proteins containing putative RAS-association (RA) or RAS binding 

domains (RBDs) were described (41,80) (Figure 2): T-lymphoma invasion and metastasis 

protein-1 (Tiam1) is a Rac-GEF harboring a RBD and activates JNK pathways. RAS 

association domain family (RASSF) contains a RAS domain lacking catalytic function. 

RASSFs act as tumor suppressors and are involved in apoptotic processes. Nore1 binds to 



9 
 

RAS-like GTPases and heterodimerizes with RASSFs (81). The RAS inhibition (RINs) GEF 

links RAS signaling and receptor-mediated endocytosis via the activation of Rab5 (82). RAS 

was also proposed to allow convergence of signals from PLC, AF6 and PKC(41). 

Among pathways undergoing genetic alterations in PDAC, K-RAS was also linked to Wnt 

and Hippo pathways. K-RAS is able to repress the Frizzled 8 (Frz8) and CaMKII-mediated 

non-canonical Wnt/Ca2+ signaling pathway via direct calmodulin binding (83) thereby 

relaxing the suppression of the canonical Wnt signaling, which occurs by blocking β-

catenin/TCF4 interaction (84,85). Indeed, enhanced Wnt/β-catenin signaling has been 

observed in human PDAC tissues. The Hippo/MST1/2 pathway includes the coactivator Yes-

associated protein (YAP) which is abundantly expressed in the PanIN lesions of p48-Cre; 

LSL-K-rasG12D mice. The Hippo/MST1/2 pathway plays a crucial role in regulating tissue 

homeostasis and organ size (86). The oncogenic K-Ras–MAPK pathway induces post-

transcriptional modification of YAP that inactivates YAP-mediated signaling (87). However, 

YAP is also associated with K-RasG12D-independent tumor maintenance (88). 

 

4. K-RAS regulates a great diversity of biological processes 

4.1. Understanding K-RAS and intrinsic biological properties of PDAC cells: the 

contribution of transcriptomes 

As K-RAS mutations control a wide array of cell signaling pathways (Figure 2), it was 

expected that these mutations might regulate a tremendous diversity of genes involved in 

every biological property that defines hallmarks of cancer (proliferative signaling, evading 

growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis, and activating invasion and metastasis) (89). As previously described, the K-

RasG12D mutant mouse model is associated with 100 % occurrence of PanINs highlighting the 

mandatory role of K-Ras in the initiation of pancreatic carcinogenesis (22). Characterization 
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of mice expressing reversible iKrasG12D indicates that K-Ras is also mandatory for tumor 

survival and maintenance (27). 

Moreover, K-Ras regulates the abilities of tumor cell chemoresistance (90). Indeed, K-Ras is 

described as central in the proliferation regulation circuit but is also connected with motility 

and viability regulatory circuits. At this stage, microarray-based transcriptome analysis 

allowed a global view of K-ras target genes in pancreatic cancer. These genes are involved 

in functions such as transcription, proteolysis, cell proliferation, cell death, adhesion, cell 

surface receptor or intracellular signaling (91). In Table 1, we present the gene ontology 

clustering obtained by analyzing three available PDAC expression data sets retrieved from 

Gene Omnibus Expression database and compared the mutated vs wild type K-ras 

transcriptomes. PDAC bearing Pdx1-Cre ; K-rasG12D mice show a strong enrichment in gene 

clusters involved in protein glycosylation, inflammatory response, extracellular matrix or 

protease activity, (GSE53695, (92)). Ablation of K-Ras in mouse pancreas, using a 

tetracycline-inducible K-Ras allele, leads to an important enrichment of intracellular organelle 

genes and a mild enrichment of genes involved in non-coding or ribosomal RNA processing 

and protein trafficking (GSE58307, (36)). The succession of K-ras activation-inactivation-

reactivation in pancreatic tumor spheres also revealed an enrichment of genes involved in 

metabolic pathways and notably highlighted an increased mitochondrial activity (36). The 

surviving cells following K-Ras-ablation harbor an increase oxidative phosphorylation 

(OXPHOS) similarly to what is observed in patients resistant to MEK or PI3K targeting 

highlighting the promise of combined K-Ras and mitochondrial respiration targeting (36). 

Analysis of deregulated genes in K-Ras addicted pancreatic cancer cell lines revealed 

enrichment of gene expression signature involved in various biological processes such as 

metal and ion bindings, apical and basal plasma membrane cytoskeletal protein binding, fatty 

acid metabolic process and vesicular cell systems (GSE15126, (35)). K-Ras dependency 

signature genes such as SYK, integrin-β6 (ITGB6) and MST1R are related with both 

epithelial differentiation state and well- to moderately-differentiated tumor phenotype (35). 
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Altogether this highlights the intrinsic pivotal role of K-Ras activation in pancreatic cancer 

cells and how it is linked to tumor growth and metastasis (Figure 3).  

 

4.2. Cell metabolism reprogramming 

A common feature of cancer cells is described as the Warburg effect which is an increase in 

glucose uptake and a shift from mitochondrial oxidative phosphorylation to aerobic glycolysis 

(93). This metabolic shift allows generating energy and nutrients in order to survive in a 

generally hypoxic and energetic inhospitable environment. Indeed, K‐RAS-transformed 

human cells show glucose and glutamine metabolism alteration (94-96). K-RasG12D extinction 

alters multiple metabolic pathways. Notably, K-RasG12D promotes the glycolytic flux by 

increasing glucose uptake and lactate production through increase of glucose transporters 

(glut1/Slc2a1), crucial glycolytic enzymes (Hk1, Hk2, PfkI, Ldha), enzyme of the hexosamine 

pathway (Gfpt1) and non-oxidative pentose phosphate pathway (PPP) enzymes (Rpia and 

Rpe). These genes are regulated at the transcriptional level via MAPK and Myc signaling 

pathways, both affected by K-Ras activation. Moreover, K-rasG12D activates the hexosamine 

biosynthesis pathway (HBP) affecting protein O-glycosylation and non-oxydative PPP 

generation for ribose production (30). Interestingly, lactate that is produced by glycolytic cells 

in hypoxic area is used for normoxic cells growth in a paracrine manner (97). PDAC cells 

harbor an increased expression of lactate transporter MCT4 that reflects glycolytic activity 

and promotes cell survival and tumorigenic growth (98). K-Ras activation also contributes to 

stimulating glutamine (Gln) metabolism by transcriptional repression of glutamate 

dehydrogenase (GLUD1) and induction of aspartate aminotransferase (GOT1) expression 

and thus coordinates the switch to Gln metabolism that is critical to maintain tumor growth 

and survival probably via the redox balance (99). The oncogenic Reactive Oxygen Species 

(ROS) levels are tightly regulated by Nrf2 transcription factor (100). K-rasG12D drives the 

increase of Nrf2 transcription via RAF/MEK/ERK/Jun pathway. This Nrf2 increase promotes 
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the antioxidant program (Hmox1, Nqo1, Gclc, Gclm, Ggt1) and decreases the intracellular 

ROS, thus favors a reduced intracellular redox microenvironment. The characterization of 

Nrf2KO mice showed that activation of ROS by K-Ras/Nrf2 axis contributes to pancreatic 

carcinogenesis initiation (101). K-Ras-activated organoids also exhibit an increased 

activation of translation machinery. Combined K-Ras activation and loss of Nrf2 led to 

oxidation of factors involved in eIF4F complex (involved in cap-dependent mRNA 

translation), altered EGF and Akt signaling pathways and consequently impaired protein 

synthesis and maintenance of pancreatic tumors (102). This work highlights the promise of 

synthetic lethality of combined AKT inhibitors with oxidizing agents in PDAC. 

K-Ras also stimulates recycling process such as macrospinocytosis or autophagy. 

Macrospinocytosis is the uptake of nutrients via endocytosis leading to accumulation of 

catabolic intermediates that stimulates carbon metabolism and sustains cell proliferation 

(103). Autophagy is a process addressing cytoplasmic constituents to lysosomes for 

degradation and is critical for the maintenance of late stages of PDAC. K-rasG12D mice 

develop PanIN lesions harboring markers of autophagosomes (LC3 puncta) in an Atg5/Atg7 

dependent manner (104). Therapeutic targeting of autophagy by chloroquinine could be 

promising. It was initially debated because homozygous Trp53 deletion led to paradoxical 

pro-carcinogenic effect following autophagy inhibition suggesting p53 status dependency 

(104-106). However, autophagy inhibition is in fact not affected when using the more 

clinically relevant model harboring Trp53 loss of heterozygosity as usually observed in 

patients (107). 

 

4.3. Tumor microenvironment and immune system 

Oncogenic RAS alters the tumor microenvironment by promoting angiogenesis and by 

modulating immune responses. Immune cell infiltration is classically observed in the tumor 

stroma of PDAC patients. LSL-K-RasG12D immune compartment was characterized and a 
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high fibro-inflammatory reaction containing both stromal and immune cells was thus shown to 

emerge within the tumor. Regulatory T cells infiltrate early in disease progression of 

pancreatic cancer, notably before invasive stage. Disease progression was also 

accompanied by infiltration of macrophages (early) and Myeloid-derived Suppressor Cells 

(MDSC) (late) (108). K-Ras activation was previously shown to foster inflammation through 

chemokine production (CXCL1/KC, CXCL2/MIP2, CXCL5/LIX and CXCL8/IL8) in lung or 

breast cancer cells (109,110). IL6 secretion is the most characterized cytokine in PDAC as it 

is induced both by the tumor cells and the myeloid cells from the surrounding stroma and is 

associated with tumor survival (111-114). Different fibroblastic and epithelial cell types 

transfected with oncogenic K-RASG12D had an increased secretion of IL6 which is required for 

human tumor cell growth in vivo (115). However, among the different cell types, the 

macrophages were the principal source of IL-6 in PDAC. Paracrine IL6 induces strong 

phosphorylation of signal transducer and activator of transcription 3 (STAT3) that promotes 

PanIN-PDAC progression in K-RasG12D mice (111). In acute pancreatitis, treatment with a 

RAS inhibitor (farnesylthiosalicylic acid) decreases levels of CXCL1, CXCL2 and IL6 and 

regulates neutrophil recruitment (116). Zhang and colleagues showed that the K-Ras 

secretome (CTGF, Cyr61, Cox2, mmp7, IL1A and IL6) of pancreatic cancer cells is regulated 

by YAP mediated transcriptional activity (87). Its invalidation in Yapflox/flox mice leads to a lack 

of CD45 lymphocyte infiltration, compromises the activation of stromal fibroblasts and their 

collagen secretion. 

PanINs also produce granulocyte-macrophage colony-stimulating factor (GM-CSF) which 

subsequently leads to recruitment of Gr1(+)CD11b(+) myeloid cells suppressing anti-tumor 

CD8+ T-cell immunity (117,118). These mice also harbor a high expression of receptor-

interacting-1 (RIP1) and RIP3 kinases that are the main components of a macromolecular 

signaling complex called the necrosomes mediating the programmed necrose (necroptosis). 

Necroptotic tumor cells release soluble factors that induce peri-tumoral immune suppression. 

This immune-suppressive microenvironment relies on the RIP1/3 signaling via CXCL1 and 
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the C-type lectin receptor Mincle signaling (activating NF-κB) to favor tumor progression 

(119). 

Angiogenesis occurs in response to tumor hypoxia and lack of nutrients and is essential for 

tumor growth. Angiogenesis is defined as the formation of new blood vessel and involves an 

equilibrium of angiogenic and anti-angiogenic factors (120). VEGF which appears to be 

critical in pancreatic angiogenesis (121) is correlated with detection of K-RAS mutation and is 

associated with a poorer prognosis (122). The oncogenic K-RASG12V induces VEGF, CXC 

chemokines and COX2 promoting human umbilical vein endothelial cells (HUVEC) invasion 

and tumor formation via MEK/c-jun pathway (123). Similarly, in colorectal cancer cells, 

disruption of mutant K-RAS led to a reduced VEGF production (124). In addition, chemokine 

CXCL8/IL8 was also shown to drive the RAS-induced tumor angiogenesis (110).  

Oncogenic K-RAS is crucial in the crosstalk with stroma and notably pancreatic stellate cells 

(PSC). Additionally to K-RAS cell autonomous effect, both cell types set up a reciprocal 

signaling involving Sonic hedgehog (SHH) mediated activation of PSC and reciprocal signals 

via IGFR1/AXL and Akt activity that leads to increased mitochondrial performance, 

proliferation and resistance to apoptosis (125). 

 

4.4. Mucins 

Mucins belong to a heterogeneous group of large O-glycoproteins (secreted or membrane 

bound) that are expressed by epithelial cells. The extended structure of mucins extracellular 

domains confer them a role of molecular sensors and in cell–cell, cell–extracellular matrix 

interactions and in cell signaling. MUC1 and MUC4 were extensively described as key 

promoters of pancreatic carcinogenesis (126-129). Mucus-producing cells normally restricted 

to respiratory and intestinal epithelia are observed in PanINs of the K-RasG12D mouse model 

(22). Indeed, membrane-bound Muc1 and Muc4 and secreted Muc5ac are aberrantly 

expressed during pancreatic cancer progression (PanINs, primary tumors and metastases) 
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(130). Interestingly, mucin expression is correlated with an increase of inflammatory 

cytokines IFN-γ, CXCL1 and CXCL2. Recently, we also showed that MUC4 is a target of K-

RasG12D mutation via both transcriptional (p42/44 MAPK and p65 NF-κB) and post-

transcriptional (RalB) mechanisms (131). Therefore, we hypothesize that mucins, as K-RAS 

target genes, could be promising therapeutic tools for gene therapy and immunotherapeutic 

approaches in pancreatic cancer (126). 

 

4.5. miRNA-mediated gene regulation 

MicroRNAs (miRNA) are 22-24 nucleotides-long non coding RNAs that regulate expression 

of mRNA mostly by binding their 3’-untranslated region (UTR) and emerge as major post-

transcriptional regulatory mechanisms with potential therapeutic interest. MiRNA expression 

pattern is profoundly altered in carcinogenesis where they can act as tumor suppressor or 

oncomiR depending on the panel of their targets (132-135). Laser capture microdissection of 

PanIN tissues of K-RasG12D mice led to the identification of miR-21, miR-205 and miR-200 as 

all induced by K-Ras (136). In addition, miR-155, that is also induced by K-Ras, mediates cell 

proliferation through ROS accumulation (49). On the contrary, the tumor-suppressors miR-

29a, miR-330-5p and miR-219-1-3p are decreased in PanIN lesions (137,138). Finally, some 

miRNA, such as miR-96, miR-217 and Let7 were shown to directly regulate K-Ras 

expression or alter its associated signaling pathways and could be considered as potential 

therapeutic strategies (139-141). 

 

5. K-RAS as a therapeutic target 

As a central point of pancreatic carcinogenesis, K-RAS is an obvious and bona fide 

therapeutic target. In the next section, we describe strategies that were designed at various 

levels: (i) direct targeting of the K-RAS protein, (ii) indirect K-RAS targeting of the protein 
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location and (iii) targeting K-RAS oncogenic activity by interfering with its downstream 

effectors (142) (Figure 4). 

 

5.1. Direct targeting of K-RAS activity 

The first strategy to inhibit K-RAS expression was the development of small antisense 

nucleotides sequences directly targeting K-RAS mRNA. The ISI6957 oligonucleotide showed 

efficient inhibition of K-RAS expression in vitro (143). However, its stability and the strong 

toxicity did not allow a clinical use. 

Despite of this failure, the strategy was optimized and Khvalevsky and colleagues developed 

a local prolonged siRNA delivery system (Local Drug EluteR, LODER) (144). Use of a 

biodegradable polymer, allowing RNA protection from degradation, reduces the toxicity. 

Although encouraging, this strategy needs to be further improved and therefore is still not 

clinically usable (145). 

A specific and irreversible inhibitor of the K-RASG12C mutant induces an internal steric bulk 

blocking the conformational change necessary for activation (146,147). However, the G12C 

mutation remains rare in pancreatic cancer (3 % of K-RAS mutations) and other compounds 

targeting the G12D and G12V main mutants remain to be developed. The compound ARS-

853 reacts with GDP-bound K-RASG12C isoform, and alters downstream signaling, and cell 

survival in K-RASG12C cell lines (148). ARS-853 is thought to impair normal SOS recruitment 

and strengthens the SOS targeting strategy that was previously developed thanks to the 

knowledge of well-defined binding pockets (149,150).  

Targeting K-RAS-GTP interaction is considered as not feasible because of the high affinity of 

K-RAS for the GTP (pico molar range) and the strong intracellular concentration of GTP (milli 

molar range). An alternative strategy was to modify the GTP in order to make it hydrolysable 

by the mutant. The GTP analog DABP-GTP (Diamino-benzophenone-phosphoroamidate-
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GTP) can be hydrolyzed by G12 mutants more effectively than by wild type K-RAS (151). 

However, no compound derived from this strategy has passed beyond the in vitro studies.  

 

5.2. Indirect targeting of K-RAS oncogene by altering its localization 

5.2.1. Prenylation inhibitor 

Other therapeutic strategies target post-translational modifications of the K-RAS protein, 

necessary for its membrane location. The first post-translational modification of K-RAS 

proteins is a modification of its HVR region. The farnesyl transferase enzyme (FTase) 

mediate farnesylation/prenylation on the cysteine of the terminal CAAX sequence adding a 

hydrophobic chain allowing membrane stabilization (152). Numerous inhibitors of FTase 

were developed to target this modification and inhibit K-RAS addressing to the membrane 

(153,154). The non-peptidomimetic competitive FTI, Tipifarnib (R115777), was tested in 

phase III trials in pancreatic cancer (155,156) but was ineffective because of an unexpected 

alternative prenylation mechanism (geranylgeranylation) involving geranylgeranyl transferase 

(GGTase) (157). GGT-I can recognize the CAAL motif and geranylates K-RAS4B. Combined 

therapies using inhibitors of FTase and GGT-I display high toxicity precluding their use in 

clinic (158).  

 

5.2.2. Icmt1 inhibitors 

The K-RAS protein undergoes a cleavage of the AAX terminal sequence followed by a 

methylation of the formed isoprenylcysteine. These two stages are successively catalysed by 

two enzymes: The endoprotease RAS converting enzyme 1 (Rce1) and Isoprenylcysteine 

carboxymethyl transferase 1 (Icmt1), respectively. The targeting of these two key enzymes 

was investigated. Since Rce1 inhibition induces severe cardiomyopathies, the efforts focused 

on Icmt1 inhibition (159,160). Icmt1 targeting was developed in cancers and in particular in 
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pancreatic cancer. However, Icmt1 inhibition dramatically accelerated the development of K-

Ras-driven pancreatic neoplasia because of its requirement for Notch1 signaling (161). 

 

5.2.3. Deltarasin, the PDEδ inhibitor 

K-RAS addressing to the plasma membrane involves the hydrophobic prenylation trafficking 

process by the prenyl-binding chaperon protein: the phospho diesterase 6δ (PDE6δ/ PDEδ). 

Deltarasin, an inhibitor of the PDEδ, showed promising results. Indeed, Deltarasin blocks 

PDEδ-K-RAS interaction preventing membrane localization in human K-RAS mutated 

pancreatic tumor cells, hence inducing a fast decrease of proliferation and increased 

apoptosis. In vivo, pancreatic tumor cells xenografts showed a dose dependent reduction of 

tumor growth following Deltarasin regimen (162,163). Clinical use of this recent strategy 

remains to be proven. 

 

5.3. K-RAS downstream pathway targeting 

A large number of inhibitors targeting components of K-RAS oncogene downstream signaling 

pathways were developed (164-166). Targeted therapies were focused on the MAPK 

pathway and led to the development of RAF and MEK inhibitors (167,168). In the context of 

pancreatic cancer, RAF inhibitors were ineffective. This may be related to the paradoxical 

induction of increased MAPK activity via a decreased feedback regulation as it was 

demonstrated with PLX4032 in melanoma (169). RAF inhibitors lack of effectiveness could 

be related to the binary recruitment of RAF by activated K-RAS in nanoclusters (10). MEK 

kinases were also targeted by compounds such as CI-1040 but induced only partial response 

in pancreatic cancers independently of the K-ras mutation status (170). Another MEK 

inhibitor, Selumetinib (AZD6244), led to promising results on preclinical models but 

eventually failed in the clinical trial as it showed not significant benefit as second line 
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treatment (171-173). Pimasertib is associated with sensitivity to gemcitabine and is currently 

under clinical evaluation (174). These failures are probably due to strong interconnections 

between signaling pathways (166,167). As MAPK and PI3K seem to be the major 

deregulated signaling pathways, combined MEK-PI3K inhibition is under evaluation in a 

cellular and mouse models of pancreatic cancer (173,175). PI3K targeting alone by using 

Evolorimus (mTOR inhibitor) has been evaluated in phase 2 clinical trial but only showed 

minimal clinical benefit (176). Very recently, Rigosertib, a RAS mimetic that is evaluated in 

clinical trials for myelodisplastic syndrome associated with acute myeloid leukemia, has been 

proposed for PDAC treatment. Rigosertib binds to RBD and thus inhibits the interaction of 

RAS-RAF, Ral and PI3K, blocks the activation of the RAS-RAF-MEK pathway and impairs 

tumor growth in K-RasG12D mice (177). PKC inhibitor bryostatin-1 blocks K-RAS-S181 

phosphorylation by PKC and induces apoptosis by inducing the K-RAS delocalization onto 

the mitochondrial membrane (178). Inhibition of other pathways, such as JNK and NF-κB 

was also investigated. However, most of these treatments are still either in experimental 

stages and are not yet used routinely in clinics (59,164,168,179-183). 

 

5.4 Synthetic lethal interaction with K-RAS 

An alternative strategy that has been developed is to identify new therapeutic target linked to 

K-RAS status: RNAi screening were performed in cell lines from different organs that were 

either K-RAS wild-type or K-RAS mutated in order to select genes that specifically impair 

viability of K-RAS mutated cells (153). Hit-genes involved in different biological processes 

were identified such as genes involved in survival signals (TAK1, TBK1), transcriptional 

program (GATA2, SNAIL2), chromosomal stability (Survivin, TPX2, PLK1, APC/C, 

proteasome) and apoptosis/senescence (WT1, BclXL). Future research will be necessary to 

validate those targets in PDAC. Following the initial screening, the top candidates including 

GATA2 and PLK1 were further evaluated as new therapeutic targets (184,185). Very few 
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analyses were focused on pancreatic cancer. 187 genes were identified and were enriched 

with the immune system, the ETS and the LAIR pathways (186). 

 

6. Conclusions 

More than 50 years after the inception of RAS research in 1964 showing that a retroviral 

isolate induced sarcoma; and the beginning of RAS characterization in the early 80s; the 

scientific community has produced huge efforts in deciphering RAS structure, biological 

functions, cell-signaling mechanisms and identifying target genes in patho-physiological 

conditions (187). K-RAS oncogene has been proven to be a central driver in cancers. K-RAS 

mutation, as the earliest event in pancreatic cancer, could be seen as the “starting pistol” of 

carcinogenesis sequence. Targeting K-RAS is an obvious goal but it has been an 

unfortunate clinic failure despite many different strategies (153) highlighting the urgent need 

for new approaches. Targeting cell adaptative metabolic mechanisms occurring after K-RAS 

activation via KPM2 or the non-specific OXPHOS inhibitor Metformin is promising (188). 

Recently, checkpoint inhibitors/immune modulators such as antibodies targeting the 

programmed cell death protein 1 (PD-1) are promising targets in gastrointestinal cancer, 

including pancreatic cancer, and are a hot topic in the field (189). Based on this literature 

review, one can suggest that targeting K-RAS effectors (cell signaling or miRNA) or some 

crucial target genes may be a potential alternative strategy. Lately, FOLFIRINOX and Nab-

Paclitaxel emerge as new standard of care but the overall survival still does not exceed one 

year (190,191) and pancreatic cancer remains one of the deadliest cancers; Therefore, no 

option should be excluded. 
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Figure legends 

 

Figure 1: Schematic representation of K-RAS GDP/GTP cycling and its mutations (A) 

Schematic K-RAS4B protein. β: β-strand, α: helix-α. HVR: hypervariable region, KKKK: lysine 

rich region. * indicates the cysteine residue that is farnesylated. CAAX represents a 

sequence in which C= cysteine, A= aliphatic amino acid (Leu, Ileu or Val), X= Met, Ser, Leu 

or Gln. (B) 3D structure of GDP-bound Human K-RAS (4OBE) from protein data bank 

(http://www.rcsb.org/pdb) (C) K-RAS GTPase cycle. K-RASG12 mutation induces an 

accumulation of GTP-bound proteins unable to hydrolyze GTP and maintains the active 

conformation. (D) Frequency of K-RAS G12, G13, Q61 and other mutations in pancreatic 

cancer. 

 

Figure 2: K-RAS effectors and signaling pathways 

 

Figure 3: K-RAS mutation and biological alterations of PDAC cells and tumor 

microenvironment 

 

Figure 4: Therapeutic strategy targeting K-RAS and its post-transcriptional 

modifications. FTase: Farnesyltransferase, FTI: FFTase inhibitors, GGTase: 

Geranylgeranyltransferase, GGTI: GGTase inhibitors, Me: methyl, DABP-GTP (Diamino-

benzophenone-phosphoamidate-GTP), Rce1: RAS converting enzyme 1, Icmt1: 

Isoprenylcysteine carboxymethyl transferase 1, PDE6δ: phospho diesterase 6δ. 

 

Table1: Available PDAC data set retrieved from Gene Omnibus Expression comparing 

mutated K-RAS vs wild type K-RAS. GSE15126, GSE53659, GSE58307 transcriptome 

were analysed with with GEO2R. Gene ontology clustering was subsequently performed 

using David Functional Annotation Tool (https://david.ncifcrf.gov/). 

http://www.rcsb.org/pdb
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Cluster Gene ontology Enrichment 
score 

K-RAS dependant vs K-RAS independant PDAC cell lines, GSE15126 

Cluster 1 metal-binding, metal ion binding, cation binding, ion binding, zinc, 
transition metal ion binding, zinc ion binding, zinc-finger 

2.11 

Cluster 2 basolateral plasma membrane, apical part of cell, apical plasma 
membrane 

1.8 

Cluster 3 actin binding, cytoskeletal protein binding, cytoskeleton 1.55 

Cluster 4 icosanoid metabolic process, unsaturated fatty acid metabolic process, 
fatty acid metabolic process 

1.53 

Cluster 5 cell fraction, membrane fraction, insoluble fraction, vesicular fraction, 
microsome, endoplasmic reticulum, endoplasmic reticulum 

1.5 

K-Ras ablated cells vs 24h K-Ras expressing cells (mus musculus) GSE58307 

Cluster 1 Nucleolus, nuclear lumen, ribosome biogenesis, intracellular organelle 
lumen, organelle lumen, ribonucleoprotein complex biogenesis, 
membrane-enclosed lumen, non-membrane-bounded organelle, 
intracellular non-membrane-bounded organelle 

8.6 

Cluster 2 ribosome biogenesis, ribonucleoprotein complex biogenesis, ncRNA 
processing, rRNA processing, rRNA metabolic process, ribosome 
biogenesis, ncRNA metabolic process, RNA processing, RNA binding 

3.95 

Cluster 3 ncRNA processing, ncRNA metabolic process, trna processing, tRNA 
processing, tRNA metabolic process 

2.68 

Cluster 4 nucleocytoplasmic transport, nuclear transport, protein import, protein 
targeting, protein import into nucleus, protein localization in organelle, 
nuclear import, protein localization in nucleus, cellular protein complex 
assembly, pore complex, protein import into nucleus, docking, Importin-
beta, N-terminal, domain: Importin N-terminal, nuclear pore, intracellular 
transport, protein complex assembly, protein complex biogenesis, 
Armadillo-like helical, intracellular protein transport, cellular 
macromolecular complex assembly, protein polymerization, cellular 
protein localization, cellular macromolecule localization, cellular 
macromolecular complex subunit organization, macromolecular complex 
assembly, macromolecular complex subunit organization, protein 
transporter activity, protein transport, establishment of protein 
localization, nuclear envelope, protein localization, protein transport, 
endomembrane system, organelle envelope, envelope 

1.71 

Cluster 5 Methyltransferase, RNA methyltransferase activity, binding site:S-
adenosyl-L-methionine, s-adenosyl-l-methionine 

1.41 

WT vs bitransgenic Pdx1-cre/K-Ras
G12D

 mice bearing Pancreatic Ductal Adenocarcinoma, GSE53659 

Cluster 1 signal peptide, disulfide bond, glycoprotein, glycosylation site : N-linked 
(GlcNAc...), disulfide bond, secreted, extracellular region 

12.43 

Cluster 2 defense response, response to wounding, inflammatory response 4.41 

Cluster 3 regulation of cell-substrate adhesion, proteinaceous extracellular matrix, 
extracellular matrix, regulation of cell adhesion, positive regulation of cell-
substrate adhesion, extracellular matrix, positive regulation of cell 
adhesion, extracellular matrix organization, extracellular structure 
organization 

2.91 

Cluster 4 pattern binding, polysaccharide binding, glycosaminoglycan binding, 
carbohydrate binding, heparin binding, heparin-binding 

2.8 

Cluster 5 domain: Peptidase S1, Peptidase S1A, chymotrypsin, Peptidase S1/S6, 
chymotrypsin/Hap, active site, propeptide: Activation peptide, Peptidase 
S1 and S6, chymotrypsin/Hap, active site: Charge relay system, 
Tryp_SPc, serine proteinase, serine-type endopeptidase activity, 
zymogen, serine-type peptidase activity, serine hydrolase activity, 
PIRSF001135:trypsin, endopeptidase activity, Serine protease, 
hydrolase, peptidase activity, acting on L-amino acid peptides, peptidase 
activity, Protease, proteolysis 

2.53 

Cluster 6 Fibronectin, type III-like fold, Fibronectin, type III, FN3, short sequence 
motif:Box 1 motif, short sequence motif:WSXWS motif, cytokine binding, 
domain:Fibronectin type-III 2, cytokine receptor activity, 
domain:Fibronectin type-III 1, Short hematopoietin receptor, family 1, 
conserved site, Cytokine-cytokine receptor interaction, 
domain:Fibronectin type-III 4, domain:Fibronectin type-III 6, 
domain:Fibronectin type-III 3, Jak-STAT signaling pathway, 
domain:Fibronectin type-III 5 

2.5 

Cluster 7 Tumour necrosis factor-like, Complement C1q protein, domain:C1q, 2.15 

Table



hydroxylation, C1Q, Collagen triple helix repeat, collagen, domain: 
Collagen-like 

Cluster 8 positive regulation of immune system process, negative regulation of 
lymphocyte activation, immune response, negative regulation of cell 
activation, negative regulation of leukocyte activation, immunoglobulin 
mediated immune response, B cell mediated immunity, lymphocyte 
mediated immunity, negative regulation of immune system process, 
immune effector process, adaptive immune response, adaptive immune 
response based on somatic recombination of immune receptors built 
from immunoglobulin superfamily domains, immune response, leukocyte 
mediated immunity, Systemic lupus erythematosus 

2 

 

Table1: Available PDAC data set retrieved from Gene Omnibus Expression comparing 

mutated K-RAS vs wild type K-RAS. GSE15126, GSE53659, GSE58307 transcriptome 

were analyzed with GEO2R. Gene ontology clustering was subsequently performed using 

David Functional Annotation Tool (https://david.ncifcrf.gov/). 
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Highlights 

 

 The early K-RAS mutation contributes to pancreatic carcinogenesis initiation 

 K-RAS is central in cellular signaling network of pancreatic cancer cells 

 Oncogenic RAS alters the tumor microenvironment and modulates immune 

responses 

 K-RAS regulates genes that alter multiple metabolic pathways and generate energy 

 So far, clinic failure of K-RAS targeting highlights the need of new approaches 
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