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Abstract 

 

Epithelial cancer patients that are not considered eligible for surgical resection frequently 

benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination 

of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of 

cancer patients to receive treatment with significant results. Unfortunately, resistance to 

chemotherapeutic drug treatment is a major challenge for clinicians in the majority of 

epithelial cancers because it is responsible for the inefficiency of therapies.  

Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted 

or membrane-bound. Implications of mucins have been described in relation to cancer cell 

behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the 

frequent alteration of the pattern of mucin expression in cancers as well as their structural and 

functional characteristics, mucins are thought to also be involved in response to therapies. In 

this report, we review the roles of mucins in chemoresistance and the associated underlying 

molecular mechanisms (physical barrier, apoptosis resistance, drug catabolism or exclusion, 

cell stemness, epithelial mesenchymal transition) and discuss the therapeutic tools/strategies 

and/or prognosis biomarkers for personalized chemotherapy response that could be proposed 

from these studies.  

 

Keywords: mucin, cancer, resistance, chemotherapeutic drug, apoptosis, prognosis biomarker 
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Abbreviations 

 

PDAC: Pancreatic ductal adenocarcinoma 

CRC: Colorectal cancer 

EMT: Epithelial mesenchymal transition 

MUC1-CT: MUC1 cytoplasmic tail 

N-t : Amino-terminal 

C-t : Carboxy-terminal 

PTS: Proline Threonine Serine 
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1. Introduction 

Mucins belong to an heterogeneous group of large O-glycoproteins composed of a long 

peptidic chain (called apomucin) on which are linked hundreds of oligosaccharidic chains. 

Initially, the mucin word designated glycoproteins secreted by specialized epithelial cells, the 

goblet cells, as part of the mucus gel. Mucins were biochemically characterized as massive 

molecules with high molecular weight able to form viscoelastic gels and responsible for the 

rheological properties of mucus [1]. The molecular era that led to genome sequencing allowed 

the classification of two sub-groups of mucins: (i) secreted mucins that mostly complied with 

this definition and (ii) membrane-bound or transmembrane mucins that did not fit in. Despite 

this dichotomy, mucins were all included in the MUC family with the approval of Human 

Genome Organization Gene Nomenclature Committee (HUGO/GNC) [2]. 

Secreted mucins are the major components of viscoelastic mucus gels and form a 

tridimensional network that protects the epithelia against various agression (inflammation, 

bacteria, virus, pollutants, pH, etc). This subgroup mainly includes: MUC2, MUC5AC, 

MUC5B, MUC6 (clustered on the p15 arm of chromosome 11) and MUC19. MUC7 and 

MUC9 are smaller secreted mucins that do not oligomerize and are secreted by specialized 

cells as monomers [3-5]. Secreted mucins comprise amino (N-t) and carboxyl terminal (C-t) 

regions sharing structural domains with von Willebrand (vW) factor. The central part is 

enriched in Pro, Thr and Ser amino acid residues forming the variable PTS domain that is O-

glycosylated [4]. The O-glycosylation process is crucial for mucin secretion, stability, 

processing, and functions during both development and pathophysiological conditions [6-8]. 

The adjacent CYS domains are highly hydrophobic and are believed to cause the aggregation 

of mucins [9]. By forming disulfide bonds, the main intestinal mucin MUC2 dimerizes via its 

C-terminal cysteine-knot (CK) domain and also trimerizes via N-t vWD domains building a 
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complex molecular network [10, 11]. On the contrary MUC5AC and MUC5B are linear 

disulfide-linked polymers that polydisperse and that behave as random coils in solution [4] 

The membrane-bound mucins are type I membrane-anchored proteins including MUC1, 

MUC3, MUC4, MUC12, MUC13, MUC15, MUC16, MUC17, MUC20, MUC21 and MUC22 

[12-14]. Typically, membrane-bound mucins contain a long extracellular domain, a 

hydrophobic transmembrane domain, and a short cytoplasmic tail. Analysis of the peptidic 

sequences of mucins allowed description of their modular organization. The PTS domain, the 

only domain not conserved at the genomic level, is the common feature between mucins. 

Membrane-bound mucins share conserved domains such as epidermal growth factor-like 

(EGF) or Sea urchin sperm protein Enterokinase and Agrin (SEA) domains [13, 15, 16]. 

Based on their structure and localization at the cell surface they were shown to act in cell-cell, 

cell-extracellular matrix interactions and in cell signaling. 

Mucins have a cell- and tissue-specific patterns of expression profoundly altered in epithelial 

cancers (loss of expression, over-expression, aberrant expression, neo-expression, 

glycosylation alterations) [17-21]. Because of their specific pattern of expression during the 

different steps of tumor progression toward adenocarcinoma, mucins stay under intense 

investigation as both potent new biomarkers and therapeutic targets in epithelial cancers.  

Numerous reviews in the literature describe the roles of mucins in relation to cancer cell 

behavior and cell signaling pathways associated with tumorigenesis. Among them, 

membrane-bound mucins MUC1 and MUC4 have been extensively studied [14, 22-25]. 

MUC1 and MUC4 govern both cellular differentiation and proliferation. They are also 

involved in metastasis and tumor proliferation. Secreted mucins MUC5B and MUC5AC and 

membrane bound mucins MUC13 and MUC16 have also been associated with aggressive 

behavior of cancer cells [26-31]. On the contrary, Muc2 is involved in the suppression of 
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colorectal cancer (CRC) since Muc2
KO

 mice develop adenoma progress with age to invasive 

adenocarcinoma in the small intestine [32].  

The dramatic outcome of epithelial cancers of the gastrointestinal tract is often related to a 

lack of efficient therapeutic tools and early diagnostic markers. Patients that are not 

considered eligible for surgical resection frequently benefit from chemotherapy. However, 

chemoresistance is a common feature of epithelial cancers. Lately, mucins have been 

proposed as actors of this phenomenon. In this review, we will discuss their role and the 

associated cellular mechanisms in chemoresistance in order to propose them as therapeutic 

tools and/or prognosis biomarkers of chemotherapy response. 

 

2. Mucins and chemoresistance in vitro 

In our laboratory and others, initial in vitro studies showing the relationship between mucin 

and chemoresistance came from colorectal carcinoma cells (HT29) stably resistant to 5-

fluorouracil or methotrexate [33-35]. These cells were characterized by the overexpression of 

secreted mucins when they became resistant cells. This observation pointed out to the 

potential of mucins as actors of chemoresistance (Table I).  

In breast cancer cells, the overexpression of MUC1 is involved in cell sensitivity to 

Herceptin® via the increase of the cleavage of this mucin. These cells are also resistant to 

paclitaxel (Taxol®), doxorubicin and cyclophosphamide, suggesting a broader involvement of 

membrane-bound mucins [36]. Similarly, silencing the MUC1 or MUC4 gene can reverse 

resistance to trastuzumab in HER2-positive gastric cancers [37, 38].  

Xenograft tumors of estrogen receptor positive (ER)/HER2-overexpressing breast cancer 

cells, that are developing resistance to lapatinib and trastuzumab, harbor an increase in mucin-

filled vacuoles and upregulation of several mucins including MUC4 [39] suggesting a role of 

MUC4 in acquired resistance to chemotherapy. MUC4 influence on chemosensitivity has 
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been studied in pancreatic cancer cells using gain or loss of function strategies. Several 

reports showed that MUC4 protects pancreatic cancer cells from gemcitabine-induced 

cytotoxicity [40-43]. Similar observation was made regarding another cytidine analog, the 

cytarabine/aracytin ARA-C [42] or 5-fluoro-uracile (unpublished data). Overexpression of rat 

orthologue MUC4/SMC in melanoma cells also reverts antiproliferative effect of taxol, 

doxorubicin, vinblastine, rhodamine-123 or 2-deoxyglucose and cell death induced by 

doxorubicin [44]. Finally MUC4 expression was also shown to reduce the mitochondrial 

damage in pancreatic cancer cells induced by the inhibition of the proteasome when treated by 

the boronic acid derivative bortezomib [43]. 

 

3. Mucins and clinical response to chemotherapy 

3.1 Mucinous tumors 

Retrospective clinical studies indicate that mucinous carcinoma or adenocarcinoma (uterine, 

colorectal or breast cancer), characterized by an abundant mucus gel covering the tumor, are 

less sensitive to neoadjuvant chemotherapies and radiotherapies. These data support that a 

link exist between the mucus and chemotherapeutic efficiency in the tumor context [45-48]. 

In advanced gastric cancer, the signet ring cell (SRC) histologic subtype, characterized by 

cells containing a large mucus vacuole, is an independent predictor of poor prognosis. 

Moreover, perioperative chemotherapy provides no benefit on survival [49]. However, the 

direct involvements of secreted mucins in these clinical observations, as well as the associated 

underlying cellular mechanisms, remain to be determined. 

 

3.2 Non-mucinous tumors 

On the contrary, a fair number of studies have shown that tumors expressing MUC1 exhibit 

an increased capacity to resist the effects of chemotherapeutic drugs in breast and ovarian 
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cancers. Frequency analysis of MUC1 expression in an important cohort of 691 breast cancer 

biopsies showed that both MUC1 mRNA and protein high expression was associated with 

lower probability of complete response to neoadjuvant chemotherapy [50]. MUC1 regulates 

cholesterol and fatty acid metabolism in human breast cancer. Activation of these pathways in 

ER(+) breast cancers predicts failure to tamoxifen treatment with higher risk for death and 

recurrence/distant metastasis [51]. 

MUC1 protein level is significantly increased in platinum resistant ovarian tumors compared 

to those in sensitive-group because of chromosomal amplifications of 1q21-q22 [52]. A 

follow-up analysis of 92 ovarian cancer patient cohort also showed that the increase of MUC1 

expression is a significant risk factor for chemoresistance to taxane combined platinum-based 

drugs in patients with ovarian epithelial cancer [53]. 

 

4. Mucins form a physical barrier 

The outstanding web formed by the secreted mucus as well as the extraordinary size of 

heavily glycosylated membrane-bound mucins such as MUC1, MUC4 or MUC16 (>10
6
 Da) 

suggest that mucins are capable to limit (i) drug intracellular entrance and/or (ii) the 

accessibility of the plasma membrane and its tumor cell epitopes for immune recognition or 

antibody-based therapy (Figure 1A). 

Because of the viscosity/rheology of the mucus, secreted mucins may stop poorly soluble 

drugs diffusion through the cell membrane. In diseases characterized by dense mucus such as 

chronic inflammatory cystic fibrosis, the mucus permeability is also decreased making the 

diffusion more difficult for therapeutics molecules [54]. Two functions are hypothesized: 

Either mucins act as size filters and allow the entrance of drugs smaller than mucus network 

holes, or they act as interaction filters via electrostatic or hydrophobic forces accordingly to 

their surface properties and independently of drug molecular size [55] as ionisation of the 
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drug was shown to influence its diffusion through mucus [56]. The size, the electric charge 

and the hydrophilic property of mucins molecules composing the mucus is critical for the 

permeability. The electronegative potential of mucins, mostly carried by sialic acids on O-

glycosidic chains, could affect the interaction affinity of mucus [20] and can create 

electrostatic interactions with positively charged molecules (as amikacin or gemcitabine) 

decreasing their diffusion [57]. 

The steric hindrance of membrane-bound mucins is closely linked to the number and length of 

O-glycosidic chains worn by mucins. The benzyl-2-acetamido-2-deoxy-α-d-

galactopyranoside (benzyl-α-GalNAc) is a reagent used to inhibit the synthesis of mucin O-

glycosylation in cellular models. The inhibition of O-glycosylation in MUC1 expressing 

CAPAN-1 and HPAF-II pancreatic tumor cells resulted in significant 5-fluorouracile (5-FU) 

antiproliferative activity [58]. Benzyl-α-GalNAc that leads to a storage phenotype and 

abnormal intracellular localization of apical glycoproteins, does not alter directly mucin 

expression in CAPAN-1 cells since it was previously shown that MUC1 kept its normal 

localization [59]. Therefore, Kalra and Campbell speculated that the inhibition of mucin 

glycosylation may reduce the formidable mucin O-glycosylation mesh and facilitate the 

entrance of chemotherapeutic drug [58]. In this model, the mucin network is thought to limit 

the intracellular uptake of 5-FU and to attenuate its chemotherapeutic effect independently of 

sialic acid [60]. The mucus layer on the surface of normal epithelial cells was also shown to 

limit the diffusion of nutrients and small molecules depending on their size and 

physicochemical properties [61].  

The overexpression of the high-molecular weight glycoprotein membrane-bound mucins on 

the target tumor cell surface can mask the surface antigens, and thereby decrease their 

accessibility and the cytotoxic response induced by antibody-based therapy as well as the 

tumor cell killing mediated by immune cells. It has been shown that overexpression of rMuc4, 
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MUC1 or MUC16 can create an immunosuppressive barrier by decreasing the accessibility of 

immune cells (as lymphokine-activated killer cell) to antigenic epitope dependent on O-

glycosylation length [62-64]. The overexpression membrane-bound mucins block drug 

accessibility to therapeutic targets such as oncogenic receptors EGFR, ErbB2, VEGFR 

targeted by Erbitux/Cetuximab, Herceptin/trastuzumab, Avastin/Bevacizumab, respectively. 

The overexpression of rMuc4 in pancreatic cancer cell has been shown to decrease the 

recognition and thus the efficiency of the monoclonal antibody trastuzumab (Herceptin) 

which targets the oncogenic receptor ErbB2 [65]. A converse correlation has been established 

between the expression of MUC4 and Herceptin sensitivity in mammary cancer cells. The 

JIMT-1 cell line expressing the highest level of MUC4 is highly resistant to this monoclonal 

antibody [66].  

 

5. Resistance to apoptosis 

The induction of apoptosis is the main goal of all cytotoxic therapy. Programmed cell death 

resistance is a major cause of chemoresistance in which expression of mucins can reduce the 

sensitivity of cancer cells to genotoxic drugs by decreasing the apoptotic effect following 

DNA damages or physiologic stress (Figure 1B). 

 

5.1. MUC1 

MUC1 role as an apoptotic inhibitor in cancer cells is well-documented (Figure 2). Indeed, 

MUC1 decreases apoptotic mitochondrial factors release, caspase-3 activation, and 

subsequent apoptosis induction in CRC cells treated with the genotoxic agent cisplatine [67]. 

MUC1 cytoplasmic tail (MUC1-CT) inhibits the activation of a large array of intrinsic 

apoptotic pathways by regulating different signaling pathways such as p53, FOXO3a, c-Abl, 

IB complex, FADD or Bax. MUC1-CT interacts with p53 tumor suppressor on its 
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responsive elements to coactivate p21 at the transcriptional level. On the contrary, MUC1 

attenuates Bax transcription [68]. MUC1-CT also associates with Bax in the cytoplasm and 

the mitochondria via their CQC motif and BH3 domains, respectively, and blocks Bax 

dimerisation and subsequent cytochrome c release that normally activate the mitochondrial 

death pathway [69]. MUC1-CT anti-apoptotic function is also mediated via c-Abl 

sequestration within the cytoplasm and blocking of c-Abl and cytosolic 14-3-3 interaction 

[70]. Mutation of MUC1-CT at Tyr 60 (Y60F) disrupts the MUC1-Abl interaction inducing 

ARF expression and inhibiting MDM2-p53 pathway [71]. MUC1 is important for 

physiological activation of IB kinase- (IKK) complex and sustained activation of NF-B 

pathway in response to TNF- activation [72]. In response to TNF-, MUC1-CT also 

interacts with caspase-8 and Fas-associated death domain following death receptor 

stimulation and block the activation of apoptosis process [73]. In clear renal cell carcinoma 

(cRCC), overexpression of MUC1 prevents anoïkis through anti-apoptotic NF-B nuclear 

localization, caspase-9 expression and the increase of BclXL/Bax ratio [74].  

Normal cellular metabolism is associated with the production of reactive oxygen species 

(ROS) including superoxide ion (O2
-
), hydrogen peroxide (H2O2), hydroxyl radicals, and 

nitric oxide. Increase in ROS levels can cause damage to DNA, proteins, and lipids [75, 76]. 

MUC1 reduces apoptosis following oxidative stress by regulating endogenous and H2O2-

induced intracellular levels of ROS. Reciprocally, MUC1 expression is up-regulated by 

oxidative stress at the transcriptional level [77]. MUC1-CT also induces FOXO3a activation 

and attenuates the oxidative stress in colon and breast cancer cells [78]. Chronic ROS 

exposure leads to HIF-1 stabilization and up-regulation of downstream target genes [79]. 

Among them, MUC1 is directly regulated by HIF-1 in kidney cancer cells [80]. 

 

5.2. MUC4 
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An anti-apoptotic role has been described for MUC4 in serum-free conditions [81, 82] as well 

as following drug treatment with thymoquinone, an antioxidant and anti-tumoral compound 

found in plants [83], or with gemcitabine [40, 42]. MUC4 expression induces apoptosis via 

multiple intracellular mechanisms (Figure 3). It reduces mitochondrial cytochrome c release 

and activation of caspase-9 through phosphorylation of its partner HER2 and sequestration of 

pro-apoptotic Bad in the cytosol [40, 41]. Loss of MUC4 oncoprotein is accompanied by a 

blockage in the G1-early S phases [41, 84], an increased expression of the proapoptotic 

marker Bax and apoptotic mediator p53 as well as a decreased expression of the antiapoptotic 

BclXL suggesting a higher susceptibility to apoptosis [42]. The overexpression of rMuc4 

induces chemoresistance to paclitaxel, doxorubicin and cisplatin. In this case, rMuc4 

expression decreases PARP and caspase-9 cleavage and modulates apoptosis [44, 85]. rMuc4 

may also repress apoptosis via an ErbB2-dependent mechanism, in which rMuc4 potentiates 

the activation of ErbB2 by phosphorylation of the Y1248 leading to activation of the 

PI3K/Akt pathway, and via an ErbB2-independent mechanism that remains to be determined 

[86, 87]. MUC4 overexpression in ovarian cancer cells also leads to increased CD133
+
 cell 

population. CD133 is a pentaspan transmembrane glycoprotein associated with chemo-

resistance, radio-resistance and poor prognosis and is commonly used as stem cell marker (see 

§7). Additionally, CD133
+
 cell population demonstrates significant resistance to drug-, TGF-

β- and TNF-related apoptosis-inducing ligand (TRAIL)- induced apoptosis compared with 

CD133
-
 cells [88, 89] suggesting that CD133 triggers resistance to apoptosis in MUC4-

expressing cells via similar mechanisms. 

 

6. Mucins and alteration of drug metabolism 

In pancreatic cancer, chemoresistance has been attributed partly to the enhanced expression of 

multidrug resistance (MDR) genes (Figure 1C) including ATP-binding cassette transporter 
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genes (ABCC)1, ABCC3, ABCC5 and ABCB1 that encode MDR related proteins (MRP)-1, 

MRP3, MRP5 and MDR1 proteins, respectively [90]. The proteins encoded by this gene 

family are ATP-dependent drug efflux pumps for xenobiotic compounds with broad substrate 

specificity [91]. Notably, cleaved MUC1-CT directly associates and activates the ABCC1 

promoter and increases (i) ABCC1 protein level in MUC1-high pancreatic cancer cells and 

(ii) resistance to gemcitabine and etoposide chemotherapeutic drugs [90] (Figure 2). 

One way to explain modifications of cell sensitivity to nucleoside analog such as gemcitabine 

or 5-FU is an alteration of the actors responsible for their metabolism and more particularly 

nucleoside transporters. We and others have described a major role for MUC4 in resistance to 

gemcitabine chemotherapy [40-42] involving alteration of nucleotide metabolism. In that 

case, MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-B 

pathway, pointing out to MUC4 and hCNT1 as potential new targets to ameliorate the 

response of pancreatic tumors to gemcitabine treatment [42]. 

 

7. Cancer stem cells 

The ability to relapse after therapy is frequently dependent on a small subset of the cell 

population within the tumor, called cancer stem cells (CSC) or side population (SP) (Figure 

1D), characterized by an extensive self-renewing capacity [92]. Some therapies including 

chemotherapy may provide strong selection for CSC survival and proliferation [93].  

Very recently, MUC1-CT was shown to upregulate expression of breast CSC marker 

Aldehyde dehydrogenase 1A1 (ALDH1A1) via Erk1 and C/EBP by forming a 

transcriptional activating complex on the ALDH1A1 gene promoter [94]. MUC1 was also 

shown to be expressed by CD34
+ 

CD38
−
 acute myeloid leukemia (AML) cells which have 

been associated with leukemia stem cells (LSC) suggesting that MUC1 represents a potential 

target on the AML stem cell population [95]. 
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In ovarian cancer, MUC4 overexpression leads to increased CD133-positive CSC [96] (Figure 

3). Stem cell-like marker CD133 is also observed in a small subpopulation of pancreatic 

epithelial cells in the basal compartment in non-malignant pancreatic tissue specimens. This 

subpopulation also expresses MUC4 membrane-bound mucin [41]. MUC4 oncoprotein which 

is normally not expressed in the normal pancreas, is expressed at a high level in both the small 

CD133
+
cell progenitor subpopulation as well as their differentiated CD133

−
 progenies. 

Mimeault et al have suggested that MUC4 down-regulation can partially reverse the 

resistance of CD133+ initiating cells to the gemcitabine treatment [41]. This is notably 

important since gemcitabine treatment of pancreatic tumor xenografts leads to enrichment of 

cell subpopulations expressing stem cell markers such as ALDH and CD24 as well as efflux 

pumps such as ABCB1 and ABCG2 [97, 98]. MUC4 oncoprotein may thus represent a 

promising therapeutic strategy in that matter.  

 

8. Epithelial-mesenchymal transition (EMT) 

EMT is a physiological and pathological reversible biological process associated with loss of 

cellular polarity, decreased surface expression of epithelial markers (E-cadherin, cytokeratin-

18, ZO-1) and increase mesenchymal markers expression (vimentin, N-cadherin, MMP-9, 

ZEB-1) (Figure 1E) [99, 100]. EMT inducers include notably transcription factors, such as 

Snail, Slug, twist1/2, transforming growth factor (TGFß) pathway or miRNA [101, 102]. 

Many reports show that EMT is a major step toward metastatic tumor progression and 

contributes to drug resistance and acquisition or selection of stem/progenitor-like features and 

ultimately recurrence [103-106]. 

MUC1 MUC4 and MUC16 are able to trigger the molecular process of EMT [107-110]. The 

mucin-induced EMT implies interaction with -catenin that leads to cell-cell junction 

disruption and invasiveness. Interestingly, MUC1-CT interacts with -catenin and 
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translocates to the nucleus in order to upregulate EMT initiating genes. Moreover, MUC1-CT 

occupies and induces the ZEB1 promoter by a NF-B p65-dependent mechanism. In turn 

ZEB1 associates with MUC1-CT and contributes to suppress miR200c expression that 

promotes EMT [111]. In cRCC, MUC1-CT also occupies the Snail promoter, modulates the 

binding of β-catenin and trigger EMT [112]. The cellular mechanisms underlying EMT 

related to MUC4 or MUC16 are not fully understood but might involve signaling pathway 

deregulation. 

The relation between MUC4 and EMT is controversial since MUC4 was shown to suppress 

EMT in lung adenocarcinoma [113, 114] whereas MUC4 overexpression in ovarian cancer 

led to decreased expression of epithelial markers and occurrence of mesenchymal markers via 

an upregulation of Twist1, Twist2 and Snail transcription factors and FAK signaling pathway 

[110]. Collectively, these results suggest that MUC4 may regulate EMT in both ways 

depending on the cellular context. Complementary studies need to be carried out in order to 

elucidate these discrepancies regarding MUC4. 

One may hypothesize that targeting EMT using MUC1 or MUC16 mucin as a therapeutic 

approach may be effective since mucins are involved in both chemoresistance and EMT that 

often lead to tumor recurrence. Recently, MUC1 siRNA was shown to inhibit both cell 

proliferation and EMT in urinary bladder cancer [115]. 

 

9. Mucins and polymorphisms associated with chemosensitivity? 

As genomic sequencing cost declines rapidly, the availability of pangenomic information 

promotes the era of pharmacogenomics and therefore personalized medicine. The genetic 

diversity between different population and ethnic backgrounds might explain a high degree of 

variability of drug response and adverse drug reactions [116]. Frequency differences of 
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polymorphisms exist across different geographic regions for drug transporters or genes 

involved in drug metabolisms [117, 118].  

Mucin single nucleotide polymorphisms (SNP), associated with various diseases including 

cancer, have been described [119, 120]. Moreover, the SNP distributions differ between 

subjects from different origins (Caucasian or Asian) [121]. Mucin genes also exhibit a high 

degree of polymorphisms in the VNTR domain [122]. The variation of VNTR length leads to 

quantitative differences of the O-glycan content and alters biophysical properties of the 

glycoprotein. Among MUC associated with disease, gastric cancer patients harbor a higher 

proportion of short MUC1 allele compared to a control population [123]. Despite these data, 

no direct association between mucin polymorphism (SNP or VNTR) and sensitivity to 

chemotherapeutic drugs has been described so far. 

 

10. Outlook to the future: Using mucins as a therapeutic target to sensitize cancer cells 

to chemotherapeutic drugs or as biomarkers of chemoresistance? 

Since oncomucin expression in cancer cells is linked to a higher susceptibility to apoptosis, an 

increased expression of multidrug resistance markers, and stem cell characteristics, this could 

represent a valuable therapeutic strategy to decrease tumor resistance. Because of their high 

molecular weight and their high sugar content, extraction and purification of native mucins 

for therapy is notoriously difficult [124]. Therefore, native mucins were never used 

concomitantly with chemotherapeutic drugs. However, mucins expression or functionality 

was targeted in order to sensitize cancer cells to chemotherapeutic drugs. 

Peptide inhibitors targeting MUC1-CT were shown to block its interaction with NF-B and to 

activate the induction of late apoptosis/necrosis in myeloma cells [125]. 
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Silencing of MUC1 C-terminal subunit in HER2-overexpressing breast cancer cells or 

treatment with the penetrating peptide inhibitor, G0-203, reverses chemoresistance to 

trastuzumab, tamoxifen, taxol and doxorubicin (Figure 2) [126-128]. 

  Silencing MUC1-CT is associated with (i) downregulation of HER2 phosphorylation and (ii) 

sensitivity to tamoxifen-induced growth inhibition and loss of clonogenic survival. HER2-

positive cancer cells that are intrinsically resistant to trastuzumab became sensitive when 

treated with an antagonist of the cleaved form of the MUC1 protein [36]. In bladder cancer, 

MUC1 silencing also leads to reduction of tumor volume in vivo and suppresses EMT. 

However, the impact on chemosensitivity remains to be proven in this case [115].  

Currently, phase 1 multi-center clinical trial testing G0-203 dose-escalation, safety, 

pharmacodynamic and pharmacokinetic in solid tumors and lymphomas is in progress 

(ClinicalTrials.gov identifier: NCT01279603). G0-203 also resulted in tumor regression 

independently of chemotherapy, in non-small cell lung cancer cells and acute myeloid 

leukemia [95, 129]. 

Numerous studies are already targeting MUC1 as an immunotherapeutic approach [130-133]. 

Mucins could also be used in modified vectors sensitizing the tumor to targeted 

chemotherapy. In OVCAR-3 ovarian cancer cells, a MUC1/let-7i chimera, combines MUC1 

aptamer and let-7i miRNA, can specifically reverse chemoresistance to paclitaxel [134]. 

Similarly a MUC1/miR-29b chimera also reverses chemoresistance to paclitaxel [135]. 

However, these effects on chemoresistance are independent of MUC1 structure since the 

MUC1 aptamer alone does not influence the induced apoptosis. 

Therapy-predictive markers are factors that prospectively identify response or resistance to a 

specific treatment. They allow distinguishing patients with the same histological type of 

malignancy that respond very differently to a specific drug [136]. In CRC, the presence of 

acellular mucin pools in the resected specimens of patients with a complete response to 
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preoperative chemoradiation is frequently reported as a marker of treatment effect. However, 

several reports ruled out its prognostic significance [137-139]. 

An ideal marker implicates non-invasive and rapid procedures of detection. Therefore, 

clinicians routinely use robust circulating markers in the blood or markers such as tumor-

associated antigens. MUC1 (CA15-3) and MUC16 (CA125) tumor-associated antigens are 

commonly detected in patients’ sera by standardized tests such as ELISA or 

immunohistochemistry [136, 140]. MUC1 and MUC16 are overexpressed in ovarian cancer 

[17, 141]. Budiu et al., showed that increased serum MUC1 level has a prognostic value for 

poor clinical response and reduced overall survival in platinum-resistant or platinum-

refractory ovarian cancer whereas MUC16 was not associated with clinical response [140]. 

In a multivariable analysis, MUC1 protein and mRNA expression were independently 

predictive in a breast cancer cohort [50]. CA15.3 level is also correlated with treatment 

response in patients undergoing chemotherapy for metastatic breast cancer [142]. Detection of 

(MUC1)-positive circulating tumor cells and MUC1 protein in the peripheral blood of patients 

with metastatic breast cancer is thus associated with higher progression-free survival (PFS) 

[143].  
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11. Conclusion 

Over the past two decades, spectacular advances in targeted therapy led to improvement of 

treatment of a great numbers of cancer patients. These outstanding results are counterbalanced 

by the increased occurrence of acquired or intrinsic events of chemoresistance that limits long 

term success. Many evidence support the involvement of both membrane-bound and secreted 

mucins in diverse biological mechanims of resistance (physical barrier, apoptosis resistance, 

drug catabolism or exclusion, cell stemness, EMT). Understanding mechanisms of resistance 

involving mucins shall contribute to the development of next generation targeted therapy 

molecules. Alternatively, mucins will help in the prevention because of their potential as 

tumor biomarkers and orientate the therapeutic choice tree toward the potentially more 

successful therapy and more importantly avoid a more aggressive alternate therapy that is 

promised to failure. 
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Figure legends 

 

Figure 1: Mucins and chemoresistance in epithelial cells. (A) Secreted and membrane-

bound mucins form a physical barrier blocking the accessibility of the cell to therapeutic 

drugs. Mucin overexpression is associated with (B) apoptosis resistance, (C) drug exclusion 

or reduction of drug intake, (D) cell stemness and (E) epithelial-mesenchymal transition. 

Cancer stem cells (CSC) belong to the small subset of cells (side population) commonly 

expressing CSC markers such as CD133 visualized here by flow cytometry. EMT is 

associated by the loss of cell polarity, decreased expression of epithelial markers and 

increased expression of mesenchymal markers (e.g. vimentin). 

 

Figure 2: MUC1 overexpression and associated cellular mechanisms of chemoresistance 

in epithelial cancer cells. 

 

Figure 3: MUC4 overexpression and associated cellular mechanisms of chemoresistance 

in epithelial cancer cells. 
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Table 1: Mucins and drug chemoresistance in epithelial cancer cells 

Mucin Drug Tumor type Refs 

Membrane-bound mucins 

MUC1 5-FU/Methotrexate CRC [34, 35] 

5-FU PDAC [58, 60] 

Cisplatin Ovarian [52] 

Cisplatin CRC [67] 

Taxane/Platinum 
compound 

Ovarian [53] 

Trastuzumab/ 
Paclitaxel/Doxorubicin/ 
Cyclophosphamide 

Breast Cancer [36] 

Gemcitabine/Etoposide PDAC [90] 

MUC3 Methotrexate CRC [34] 

MUC4 5-FU CRC [34] 

Lapatinib/Trastuzumab Breast Cancer [39] 

Trastuzumab Melanoma/Breast 
Cancer 

[65] 

Cytarabine/Aracytin PDAC [42] 

Paclitaxel/Doxorubicin/ 
Vinblastine/Rhodamine-
123/2-deoxyglucose 

Melanoma [44] 

Bortezomib PDAC [43] 

Gemcitabine PDAC [40-42] 

 Secreted mucins 

MUC5AC 5-FU/Methotrexate CRC [34, 35] 

MUC5B 5-FU/Methotrexate CRC [34, 35] 

MUC2 5-FU CRC [34] 
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