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Abbreviations	

Ab	 Antibody	
ADCC	 Antibody-Dependent	Cellular	Cytotoxicity	
APC	 Antigen	Presenting	Cells	
CAR	 Chimeric	Antigen	Receptor	
CDC	 Complement-Dependent	Cytotoxicity	
CEA	 CarcinoEmbryonic	Antigen	
CpG	 Cytosine-phosphate-Guanine	motif	
CR	 Complete	Response	
CRT	 Calreticulin	
CRu	 Unconfirmed	Complete	Response	
DAMP	 Damage-associated	molecular	pattern	molecules	
DC	 Dendritic	Cells	
Flt3-L	 Fms-related	tyrosine	kinase	3	-	Ligand	
G-CSF	 Granulocyte-Colony	Stimulating	Factor	
GM-CSF	 Granulocyte-Macrophage	Colony-Stimulating	Factor	
Gy	 Gray	
HMGB1	 High	Mobility	Group	Box	1	
ICAM-1	 InterCellular	Adhesion	Molecule	1	
IFN	 Interferon	
IgG	 Immunoglobulin	G	
IL	 Interleukin	
IU	 International	Unit	
LFA-3	 Lymphocyte	Function-	Associated	Antigen	3	
mAb	 monoclonal	Antibody	
MHC	 Major	Histocompatibility	Complex	
MIP1α	 Macrophage	Inflammatory	Protein	1α	
MM	 Multiple	Myeloma	
MTD	 Maximum	Tolerated	Dose	
NHL	 Non-Hodgkin	B-cell	Lymphoma	
NK	 Natural	Killer	
NKG2D	 Natural	Killer	Group	2D	receptor	
ORR	 Overall	Response	Rate	
PBMCs	 Peripheral	Blood	Mononuclear	Cells	
PR	 Partial	Response	
RAIT	 Radioimmunotherapy	
SD	 Stable	Disease	
TAA	 Tumor	Associated	Antigens	
TLR	 Toll	Like	Receptor	
TNFα	 Tumor	Necrosis	Factor	α	
VCAM-1	 Vascular	Cell	Adhesion	Molecule-1	
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Abstract	

Radiation	therapy	has	long	been	considered	as	immunosuppressive,	therefore	its	impact	on	

the	immune	system	and	other	aspects	which	could	be	involved	in	raising	efficient	anti-tumor	

immune	 responses	 have	 been	 neglected.	 However	 the	 recent	 demonstration	 of	 the	

immunogenic	 properties	 of	 ionizing	 radiation	 is	 rapidely	modifying	 the	 radiation	 oncology	

field	 and	 it	 also	 opens	 new	 and	 promising	 perspectives	 for	 the	 development	 and	

improvement	 of	 radioimmunotherapy.	 In	 this	 chapter,	 we	 first	 review	 the	 immunogenic	

properties	 of	 irradiation	 before	 discussing	 available	 evidence	 of	 the	 benefits	 of	 radiation	

therapy	and	immunotherapy	combinations	in	the	context	of	lymphoma.	
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Introduction	

	

The	use	of	ionizing	radiation	in	cancer	treatment	armamentarium	has	become	predominant	

as	over	half	of	the	patients	developing	a	tumor	are	now	treated	with	irradiation	during	the	

course	of	their	treatment	[1,2].	Radioimmunotherapy	(RAIT)	remains	a	small	fraction	of	such	

therapy	despite	the	demonstration	of	its	efficacy	and	safety	in	non-Hodgkin	B-cell	lymphoma	

(NHL)	[3]	and	the	promising	results	obtained	in	specific	clinical	settings	of	solid	tumors	[4,5].	

For	 decades,	 research	 into	 improving	 RAIT	 have	 focused	 almost	 entirely	 on	 the	 approach	

itself,	and	significant	progress	have	been	made	 in	humanization	of	monoclonal	antibodies,	

development	 of	 new	 vectors,	 new	 radionuclides,	 more	 stable	 chelates,	 new	 delivery	

systems,	 better	 dosimetric	 models	 and	 definition	 of	 new	 target	 antigens.	 In	 parallel,	

radiobiological	studies	have	addressed	the	direct	and	indirect	(bystander)	effects	of	ionizing	

radiation	on	the	tumor	cells	to	some	extent,	but	for	long,	the	complex	interactions	between	

the	tumor,	its	microenvironment,	inflammation	and	the	immune	system	have	been	ignored	

by	the	field.	

	

Among	 the	 established	 hallmarks	 of	 cancer	 are	 resistance	 to	 cell	 death,	 evading	 immune	

system,	 and	 creation	 of	 a	 tumor	 microenvironment	 [6].	 Multiple	 immunosuppressive	

mechanisms	 are	 implemented	 by	 tumors	 to	 escape	 immune	 recognition	 and	 destruction	

which	involve	the	tumor	itself	and	its	microenvironment	[7].	For	long,	ionizing	radiation	and	

RAIT,	 often	 used	 in	 combination	 with	 chemotherapy,	 were	 also	 considered	 as	

immunosuppressive	treatments.	As	a	result,	studies	largely	failed	to	appreciate	the	effects	of	

ionizing	radiation	on	immunity	despite	the	fact	that	clinical	cases	of	"abscopal	effect"	after	

radiotherapy	were	 reported	 and	 that	 some	 patients	 achieved	 long	 term	 CR	 after	 a	 single	

dose	 of	 RAIT.	 The	 elucidation	 of	 the	 mechanisms	 underlying	 the	 off-target	 effects	 after	

irradiation	 and	 the	 demonstration	 that	 immunogenic	 tumor	 cell	 death	 is	 inducible	 by	

ionizing	 radiation	have	 changed	 the	perception	of	 radiation	 therapy.	And	at	 a	 time	where	

numerous	 and	promising	 new	 immunotherapies	 are	 emerging,	 it	 also	 opens	 a	 new	era	 of	

combination	therapy	options	where	the	immunogenic	effects	of	radionuclides	could	be	a	key	

factor	for	the	success	of	treatment.	
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Ionizing	Radiation	and	anti-tumor	immunity	

	

Abscopal	 effect:	 an	 aftermath	 of	 ionizing	 radiation	 involving	 the	 immune	

system	

	

The	abscopal	effect,	originally	described	by	Dr.	RH.	Mole	 in	1953	[8],	comes	from	the	 latin	

"ab"	 meaning	 "far"	 and	 "scopos"	 which	 means	 «	target	».	 The	 abscopal	 effect	 refers	 to	

effects	outside	the	 irradiation	 field	of	 the	target,	which	can	result	 in	anti-tumor	responses	

and	the	elimination	of	non-irradiated	tumor	cells.	More	generally,	abscopal	effect	stands	for	

any	systemic	effect	that	is	observed	after	a	local	treatment.	A	growing	set	of	preclinical	and	

clinical	 data	point	 out	 that	 the	 therapeutic	 potential	 of	 ionizing	 radiation	does	not	 reflect	

only	 the	 antiproliferative	 and	 cytotoxic	 activities	 of	 X	 or	 γ	 radiation	 but	 also	 implies	

bystander	and	systemic	(distant)	effects	[9-11].	

	

This	effect	is	rarely	observed	in	the	clinic,	however,	it	has	been	documented	in	patients	with	

hematological	malignancies	 like	 lymphoma	 [12,13],	 leukemia	 [14,15],	 and	 also	 in	 patients	

with	 a	 wide	 variety	 of	 solid	 tumors	 [16-21].	 Investigations	 of	 the	 possible	 mechanisms	

underlying	the	abscopal	effect	in	animal	models	have	demonstrated	that	it	might	be	possible	

to	favor	the	development	of	such	event	by	modulating	the	immune	system.	Chakravarty	et	

al.	 have	 shown	 in	 a	 syngeneic	 and	 immunocompetent	metastatic	 lung	 cancer	model	 that	

combining	 radiotherapy	 and	 injection	 of	 Flt3-Ligand	 (Flt3-L),	 a	 growth	 factor	 for	 immune	

cells	 and	 especially	 for	 dendritic	 cells	 (DC)	 [22],	 reduced	 lung	 metastases,	 significantly	

improved	survival	and	resulted	in	56%	of	disease	free	animals.	Notably,	the	abscopal	effect	

was	 abolished	 in	 nude	mice	 lacking	 T-lymphocytes	which	 demonstrates	 that	 this	 systemic	

anti-tumor	effect	 is	mediated	by	the	adaptive	 immune	system	[23].	 In	a	comparable	study	

using	 a	 syngeneic	 immunocompetent	 breast	 carcinoma	 mouse	 model,	 Demaria	 et	 al.	

demonstrated	 that	 irradiation	 of	 a	 tumor	 implanted	 on	 the	 right	 flank	 combined	 with	

systemic	injection	of	Flt3-L	induced	regression	of	a	second	tumor	engrafted	on	the	left	flank	

of	 the	 animals.	 The	 combined	 treatment	 was	 ineffective	 if	 the	 second	 tumor	 was	 from	

another	cell	type	than	the	irradiated	breast	carcinoma	one	or	if	the	mice	were	deficient	in	T-

cells	 [24].	 So,	 in	 those	 studies,	 the	 abscopal	 effect	 was	 promoted	 by	 a	 tumor	 specific	
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response	relying	upon	T-lymphocytes.	Another	study,	combining	radiotherapy	and	injection	

of	ECI301,	a	recombinant	MIP1α	 chemokine	showed	the	 involvement	of	CD4+	and	CD8+	T-

cells	or	natural	killer	cells	(NK)	depending	on	the	tumor	type	[25].	In	addition,	in	this	study,	

irradiation	 of	 healthy	 tissues	 did	 not	 promote	 any	 abscopal	 effect,	 which	 suggests	 that	

radiation-induced	tumor	cell	death	or	damages	are	mandatory	for	the	development	of	such	

anti-tumor	response.	

	

All	these	data	indicate	that	ionizing	radiation	can	initiate	immune	responses	involving	DC,	NK	

and	 T-cells	 with	 systemic	 effects	 on	 tumor	 growth,	 highlighting	 the	 importance	 of	 the	

interactions	between	 ionizing	radiation	and	the	 immune	system	to	 foster	an	efficient	anti-

tumor	response.	It	is	therefore	crucial	to	understand	how	irradiation	acts	on	the	tumor,	its	

microenvironment	and	on	the	immune	system.	

	

Immunological	effects	of	ionizing	radiation	

	

Cancer	development	 is	strongly	 influenced	by	 inflammation,	 innate	and	adaptive	 immunity	

and	 the	 very	 complex	 interrelationships	 and	 modulations	 between	 those	 different	

components	 can	 either	 lead	 to	 tumor	 growth	 or	 to	 tumor	 regression.	 Although	 ionizing	

radiation	has	been	mainly	used	to	treat	cancer	through	its	direct	cytotoxicity,	there	is	now	

evidence	that	 irradiation	also	modulates	 inflammation	and	the	 immune	system	at	multiple	

levels	 including	 production	 of	 reactive	 oxydative	 species,	 generation	 of	 danger	 signals,	

release	of	cytokines	and	other	soluble	 factors,	activation	of	 immune	cells	and	 induction	of	

various	type	of	cell	death.	Depending	on	the	low	or	high	dose	of	irradiation,	the	generation	

of	 acute	 or	 chronic	 inflammation,	 these	 underlying	 mechanisms	 can	 have	

immunosuppressive	 or	 immunostimulatory	 	 effects	 [26-30].	 It	 is	 therefore	 important	 to	

understand	the	links	between	ionizing	radiation	and	the	immune	response	to	cancer	to	try	

and	develop	 treatments	 that	 could	 limit	 the	 immunosuppressive	effects	of	 radiation	while	

boosting	anti-tumor	immunity.	In	the	present	chapter,	we	will	focus	on	the	studies	that	have	

shown	 the	 various	 mechanisms	 by	 which	 radiotherapy	 and	 chelated	 radionuclides	 might	

boost	the	immune	system.	
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Modulation	of	tumor	cell	immunogenicity	

	

Although	 radiation	 therapy	 has	 been	 used	 traditionally	 to	 destroy	 tumor	 cells,	 the	 dose	

received	 by	 a	 number	 of	 cells	 within	 a	 given	 tumor	 mass,	 is	 too	 low	 to	 cause	 their	

destruction	(event	which	is	further	emphasized	in	hypoxic	areas).	Several	preclinical	studies	

have	 shown	 however	 that	 such	 low	 radiation	 doses	 are	 capable	 of	 inducing	 phenotypic	

changes	 in	 neoplastic	 cells,	 which	 help	 their	 recognition	 and	 their	 destruction	 by	 the	

immune	system.	The	molecules	described	to	be	up-regulated	at	the	surface	of	tumor	cells	by	

such	 ionizing	 radiation	 doses	 are	 Tumor-associated	 antigen	 (TAA),	MHC-Class	 I	molecules,	

the	death	receptor	Fas	(CD95),	NKG2D	ligands,	the	costimulatory	molecule	B7-1	(CD80)	and	

adhesion	molecules	including	LFA-3	(CD58	or	lymphocyte	function-associated	antigen	3)	and	

ICAM-1	(Intercellular	adhesion	molecule	1)	[31-37],	Fas,	MHC-Class	I	molecules,	ICAM-1	and	

TAA	 such	 as	 CEA	 (Carcinoembryonic	 antigen)	 and	 the	mucin	 glycosylated	 phosphoprotein	

Muc-1	 have	 also	 been	 shown	 to	 be	 upregulated	 on	 tumor	 cells	 after	 irradiation	 with	 β-

particle	 emitters	 153Sm	 [38]	 and	 90Y	 [39].	 Interestingly,	 the	B7-1	 costimulatory	molecule	 is	

also	 up-regulated	 in	 B-cell	 lymphoma	 following	 irradiation	 [40].	 All	 these	 molecules	 are	

known	to	play	a	role	in	tumor	destruction	by	cytotoxic	CD8+	T-cells	and	the	development	of	

an	anti-tumor	immune	response.	

	

One	 of	 the	 major	 consequences	 induced	 by	 tumor	 destruction	 after	 irradiation	 is	 the	

exposure	of	a	large	amount	of	TAA	to	the	immune	system.	The	delivery	of	tumor	antigens	is	

done	 because	 of	 tumor	 cell	 necrosis,	 apoptosis	 or	 the	 release	 cell	 fragments	 [41,42].	 The	

increased	availability	of	those	TAA	allows	circulating	DC	to	capture,	present	and	then	induce	

a	specific	T-cell	response	against	the	tumor.	One	study	demonstrated	that	irradiated	tumors	

expressing	 low	 levels	of	 antigen,	 as	MHC-peptide	 complex,	provide	a	 sufficient	 amount	of	

TAA	to	allow	the	destruction	of	tumor	cells	by	cytotoxic	CD8+	T	cells	[43].	

	

Additionally,	cell	death	induced	by	irradiation	may	allow	the	release	of	new	TAA	that	will	be	

captured	 by	 the	 DC	 in	 the	 tumor	 microenvironment	 and	 lymph	 nodes.	 Reits	 et	 al.	 have	

demonstrated	 that	 radiotherapy	 increases,	 within	 tumor	 cells,	 the	 repertoire	 of	 peptides	

available	 for	 MHC-Class	 I	 molecule	 presentation	 to	 cytotoxic	 CD8+	 T-cells.	 This	 broader	

repertoire	does	not	only	result	from	an	increased	degradation	of	the	existing	proteins,	but	
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also	 in	 activation	 of	 the	mTOR	pathway,	which	 leads	 to	 increased	 protein	 translation	 and	

thus	the	creation	of	a	new	peptide	repertoire	[36].	

	

Immunogenic	cell	death	
	
All	 cell	 deaths	 do	 not	 promote	 an	 immune	 response.	 The	 immune	 system	 is	 able	 to	

distinguish	 between	 an	 immunogenic	 death	 and	 a	 non-immunogenic	 death	 which	 results	

either	in	the	activation	of	adaptive	immunity	or	in	the	persistence	of	tolerance.	Tumor	cell	

death	 induced	 by	 ionizing	 radiation	 can	 be	 quite	 immunogenic	 and	 potentiates	 the	

presentation	 of	 TAA	 by	 DC	 to	 activate	 T-cells	 and	 the	 development	 an	 immune	 response	

[44,45].	Several	molecular	danger	signals,	DAMP	(Danger	associated	molecular	pattern)	have	

been	identified	among	the	main	features	of	an	immunogenic	cell	death.	

	

1)	 The	 translocation	of	 calreticulin	 (CRT),	 an	endoplasmic	 reticulum	chaperone	protein,	 to	

the	outer	 face	of	 the	plasma	membrane	of	 the	cells	undergoing	apoptosis	 is	an	 important	

"eat-me"	signal	for	the	professional	antigen-presenting	cells	(APC)	such	as	DC	[46-49].	

	

2)	 The	 release	of	HMGB1	 (high	mobility	 group	box	 1,	 a	 non-histone	protein	 associated	 to	

chromatin	and	in	the	cell	nucleus)	by	dying	cells	will	transmit	proinflammatory	signals	after	

binding	to	TLR4	(Toll-like	receptor	4)	[50-52].	Those	DAMPs,	CRT	and/or	HMGB1	are	induced	

following	 exposure	 of	 tumors	 cells	 to	 external	 irradiation	 [46,53]	 but	 also	 to	 α-particle	

emitter	like	213Bi	[54].	

	

3)	The	third	signal	is	the	release	of	ATP	from	the	cells	undergoing	apoptosis.	ATP	functions	

both	 as	 a	 "find-me"	 signal	 to	 professional	 APC	 and	 as	 a	 potent	 pro-inflammatory	 signal	

through	binding	to	the	P2X7	purinergic	receptor	thereby	triggering	inflammasome	activation		

[55-60].	 Its	 release	 has	 not	 been	 demonstrated	 following	 irradiation	 yet.	 But,	 since	

autophagy	 is	 necessary	 for	 the	 release	 of	 ATP	 [61],	 and	 that	 ionizing	 radiation	 promotes	

autophagy	[62-64],	the	third	signal	may	be	generated	by	ionizing	radiation	when	autophagy	

precedes	cell	death.	
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4)	Heat-shock	proteins,	especially	HSP70,	are	expressed	at	the	cell	surface	but	also	released	

during	tumor	cell	stress	or	cell	death	after	exposure	to	ionizing	radiation	like	X-rays	[65,66]	

or	α-particles	[54],	and	stimulates	innate	and	adaptive	immune	responses	mediated	by	NK,	

DC	cells	and	T-cells	through	antigen	cross-presentation	[67].	

	

All	these	experimental	data	support	that	tumor	cell	stress	and	death	resulting	from	ionizing	

radiation,	are	sensed	by	the	immune	system	as	"danger"	signals	which	in	turn	can	stimulate	

an	immune	response.	

	

Secretion	of	cytokines	

	

Radiotherapy	 also	 modifies	 tumor	 microenvironment	 by	 generating	 a	 proinflammatory	

environment	 [29,68].	 For	 example,	 CXCL9,	 CXCL10	 and	 CXCL16	 chemokines	 promote	 the	

recruitment	of	CD8+	effector	T-cells,	and	Th1	helper	CD4+	T-cells	and	are	induced	following	

ionizing	 radiation	 in	 various	 types	 of	 tumors	 [69-71].	 Irradiation	 also	 promotes	 the	

production	of	proinflammatory	cytokines	such	as	IL-1β,	type	I	and	type	II	 IFN	(IFN-α,	-β,	-ω	

and	 IFN-γ)	 and	 TNFα,	 involved	 in	 the	 cytotoxic	 and	 cytostatic	 effects	 on	 cancer	 cells	 after	

irradiation,	 including	 tumor	 regression,	 inhibition	 of	 proliferation,	 tumor	 cell	 death	 and	

immune	 cell	 recruitment	 [68,69,72-75].	 Such	 an	 inflammatory	 context	 after	 radiotherapy	

may	facilitate	the	initiation	and	amplification	of	an	anti-tumor	immune	response.	

	

Blood	vessels	

	

After	antigen	activation,	T-lymphocytes	must	reach	and	infiltrate	tumors.	Ionizing	radiation	

can	promote	this	process	 in	many	ways.	For	example,	the	radiation-induced	remodeling	of	

abnormal	 tumor	 vessels	 results	 in	 an	 effective	 tumor	 infiltration	 by	 anti-tumor	 T-cells	

following	 adoptive	 transfer	 in	 a	 transgenic	 mouse	 model	 of	 insulinoma	 [76].	 In	 an	

experimental	 model	 of	 melanoma,	 increased	 expression	 of	 VCAM-1	 adhesion	 molecule	

(Vascular	cell	adhesion	molecule-1)	induced	by	ionizing	radiation	boosts	T-cell	infiltration	of	

the	tumor	[77].	
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Overall,	 these	 data	 demonstrate	 that	 ionizing	 radiation	 can	 drive	 an	 immune	 response	 to	

cancer	 in	 a	 number	 of	ways,	 it	 is	 therefore	 important	 to	 consider	 these	 beneficial	 effects	

while	 designing	 cancer	 treatments.	 This	 also	 constitutes	 a	 strong	 rationale	 for	 combining	

radiation	therapy	with	immunotherapy	in	order	to	improve	current	therapies.	
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Combining	Ionizing	Radiation	and	Immunotherapy	

	

Preclinical	evidence	in	hematopoietic	cancer	models	

	

Radiotherapy	and	immunotherapy	

	

By	 taking	 advantage	 of	 the	 immunogenic	 properties	 of	 ionizing	 radiation	 described	 in	 the	

previous	 sections,	 numerous	 preclinical	 studies	 have	 successfully	 combined	 radiotherapy	

with	 immunotherapies	 in	 solid	 tumors	 to	 obtain	 impressive	 responses	 (reviewed	 in	

[68],[78]).	 Here,	we	will	 focus	 on	 the	 available	 data	 for	 radiotherapy	 and	 immunotherapy	

combinations	in	preclinical	models	of	lymphoma.	

	

In	 1997,	 the	 group	 of	 Batterman	 in	 Utrecht	 assessed	 the	 efficacy	 of	 supplementing	 local	

radiotherapy	with	 locoregional	 low-dose	 injection	of	 interleukin-2	 (IL-2)	 in	a	 subcutaneous	

model	 using	 the	 spontaneously	 arisen	 SL2	 T-lymphoma	 [79,80].	 IL-2	 is	 a	 potent	 T	 cell	

activator,	which	has	proved	its	efficacy	and	safety	in	the	SL2	preclinical	model	[81,82]	as	well	

as	 in	 human	 patients	 with	 Hodgkin's	 and	 non-Hodgkin's	 lymphoma	 [83-85].	 In	 their	 SL2	

model,	they	demonstrated	that	the	combination	of	 local	radiation	therapy	(20Gy)	followed	

by	2	cycles	of	4-day	 injection	of	 IL-2	 (7000	 IU/day)	peri-tumorally	 led	 to	93%	of	 long-term	

disease-free	 survival	 compared	 to	 17%	with	 radiation	 alone	 (p<0.0001).	 Additionally,	 in	 a	

setting	where	they	 inoculated	mice	with	2	subcutaneous	tumors	(one	on	each	thigh),	 they	

showed	 that	 treatment	of	one	 tumor	with	 irradiation	and	 IL-2	 led	 to	anti-tumor	effects	 in	

the	 second,	 untreated	 tumor	 in	 80%	 of	mice	 and	 local	 response	 was	 increased	 to	 100%.	

When	 the	second,	non-irradiated	 tumor	was	also	 treated	with	peritumoral	 IL-2,	both	 local	

and	 distant	 responses	 increased	 to	 100%	 and	 disease	 free	 survival	 reached	 70%.	

Interestingly,	in	an	attempt	to	reproduce	more	closely	the	radiotherapy	scheduled	applied	in	

clinic,	 they	 reproduced	 the	 experiments	 with	 a	 fractionated	 regimen	 of	 radiotherapy	

(2.5Gy/day	for	10	days).	Fractionated	therapy	was	far	less	efficient	than	single	dose	regimen	

and	 led	 to	 only	 12%	 local	 response	 and	 no	 disease-free	 survival.	 However,	 even	 in	 these	

settings,	 combination	 with	 IL-2	 therapy	 improved	 treatment	 outcome	 up	 to	 90%	 local	

response	 and	 10%	 disease-free	 survival.	 The	 authors	 postulated	 that	 the	 selected	
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fractionation	 schedule	was	 not	 optimal	 for	 the	 SL2	model,	 possibly	 because	 it	 is	 a	 highly	

aggressive	 tumor	 that	 metastasizes	 quickly	 and	 therefore	 needs	 a	 rapid	 rather	 than	

prolonged	treatment.	They	did	not	observe	any	toxicity	related	to	IL-2	and	therefore	showed	

that	IL-2	therapy	was	both	safe	and	efficient	in	improving	both	local	and	systemic	response	

to	 radiotherapy.	 This	 study	was	 the	 first	 to	demonstrate	 the	potential	of	 radiotherapeutic	

association	with	immunotherapy	in	a	lymphoma	model.	

	

In	2003,	the	group	of	Illidge	in	Manchester	tested	the	combination	of	total	body	irradiation	

with	an	agonistic	anti-CD40	antibody	on	the	murine	A31	and	BCL1	B-lymphoma	models	[86].	

CD40	 is	 a	 co-stimulatory	 protein	 expressed	 on	 APC	 such	 as	 DC,	 B-cells,	 monocytes	 and	

macrophages,	 and	participates	 to	 their	 activation.	 Interestingly,	CD40	 is	 also	expressed	on	

various	 tumors,	 in	particular	B-cell	 lymphomas.	Therapeutic	 treatment	of	 lymphoma	using	

agonistic	antibodies	targeted	to	CD40	can	have	multiple	complementary	anti-tumor	effects.	

Indeed,	 activated	 APC	 are	 able	 to	 generate	 antigen-specific	 T-cell	 responses	 while	 the	

targeting	 of	 CD40+	 tumor	 cells	 can	 have	 a	 direct	 tumoricidal	 effect	 by	 inducing	 apoptosis	

[87].	 Interestingly,	 it	 has	 also	 been	 shown	 that	 anti-CD40	 agonists	 can	 sensitize	 multiple	

myeloma	(MM)	and	B-lymphoma	cell	lines	to	γ-radiation	 in	vitro	[88].	Anti-CD40	antibodies	

are	 the	object	of	 several	ongoing	clinical	 trials	 in	 leukemia,	MM	and	NHL	 [89].	Recently,	a	

phase	 II	 trial	 using	 an	 agonistic	 anti-CD40	 as	 a	 monotherapy	 on	 patients	 with	 relapsed	

diffuse	 large	 B-cell	 lymphoma	 demonstrated	 low	 toxicity	 but	 only	 modest	 efficacy	 [90],	

suggesting	that	these	therapies	need	combination	with	other	cancer	treatment	modalities	to	

reach	their	full	potential.	 In	this	study,	Honeychurch	et	al.	showed	that	radiotherapy	(5Gy)	

with	anti-CD40	(1mg)	led	to	an	impressive	long-term	disease	free	survival	of	100%	of	treated	

mice	as	opposed	to	0%	for	single-agent	treatments	in	both	orthotropic	models	of	lymphoma	

(A31	and	BCL1).	Mice	treated	with	a	single	treatment	survived	slightly	longer	than	untreated	

controls	 but	 eventually	 all	 succumbed	 to	 their	 lymphoma.	 The	 effect	 of	 the	 combination	

treatment	was	not	due	 to	combined	cytotoxicities	as	 the	anti-CD40	Ab	did	not	 induce	cell	

death	of	 lymphoma	cell	 lines,	nor	did	 it	 sensitize	 the	 tumor	 cells	 to	 radiation.	 Instead	 the	

effect	 was	mediated	 by	 a	 strong	 specific	 CD8+	 T-cell	 response	 which	 was	 long-lasting,	 as	

demonstrated	by	protection	against	later	tumor	challenge	(therefore	suggesting	the	onset	of	

immune	memory),	and	transferable	to	naive	recipients.	Interestingly,	they	observed	that	the	

combined	 therapy	 was	 less	 efficient	 on	 smaller	 tumor	 loads,	 indicating	 that	 radiation	
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cytotoxicity	needs	to	liberate	a	critical	amount	of	TAA	to	allow	anti-CD40	activated	APCs	to	

mount	an	efficient	immune	response.	This	study	therefore	brought	to	light	mechanisms	by	

which	 radiation	 therapy	 can	 synergize	 with	 immunotherapy	 by	 simultaneously	 reducing	

tumor	load	and	providing	antigens	for	an	optimal	immune	response	against	lymphoma.	

	

More	 recently,	 the	 same	 group	 published	 a	 study	 testing	 the	 association	 of	 local	

radiotherapy	with	the	TLR7	agonist	R848	in	subcutaneous	B-cell	(A20)	and	T-cell	(EL4,	EG7)	

lymphoma	 models	 [91].	 TLR7	 is	 a	 pattern	 recognition	 receptor	 that	 is	 expressed	 on	 the	

endosomal	membranes	of	DC	(mainly	plasmacytoid	DC)	and	B-cells	[92].	It	has	been	shown	

to	induce	DC,	B-cell	and	T-cell	activation	in	vivo	and	lead	to	an	effective	anti-tumor	cytotoxic	

T-cell	 response	 when	 combined	 with	 doxorubicin	 in	 a	 murine	 T-lymphoma	 model	 [93].	

Studies	also	demonstrated	that	ex	vivo	stimulation	of	cutaneous	T-cell	 lymphoma	patients’	

PBMCs	with	TLR7	agonists	induced	the	secretion	of	IFN-α,	IFN-γ	and	led	to	NK	cell	and	T-cell	

activation	in	vitro	[94,95].	A	phase	II	clinical	trial	also	showed	that	treatment	with	the	TLR7	

agonist	825A	was	well	tolerated	in	patients	with	refractory	hematological	malignancies	and	

associated	with	evidence	of	 immune	activation	 [96].	 Finally,	 treatment	with	TLR7	agonists	

has	also	been	shown	to	potentiate	the	efficacy	of	radiotherapy	in	preclinical	models	of	solid	

tumors	 [97,98].	 In	 their	 study,	 Dovedi	 et	 al.	 first	 demonstrated	 that	 systemic	 injection	 of	

R848	appeared	well	tolerated	and	led	to	increased	levels	of	IL-6,	IFN-γ,	TNF-α	and	IL-5	and	

activation	of	B	and	T-lymphocytes	 in	EG7	 tumor-bearing	mice.	They	 then	showed	that	 the	

combination	of	local	radiotherapy	(10Gy)	and	intravenous	injection	of	R848	(3mg/kg)	could	

lead	up	to	75%	of	long	term	survival	as	compared	to	only	25%	with	either	monotherapy.	This	

improved	 outcome	was	 not	 due	 to	 combined	 cytotoxicities	 as	 R848	 did	 not	 sensitize	 EG7	

tumor	cells	to	radiation.	Instead	the	effect	was	mediated	by	a	specific	CD8+	T-cell	response	

and	 led	 to	 the	 generation	 of	 long-lived	 specific	memory	 T-cells.	 Depletion	 of	 B-cells	 with	

anti-CD20	Ab	 also	 showed	 that	 the	 efficacy	 of	 treatment	 combination	 in	 the	 T-lymphoma	

model	 was	 independent	 on	 B-lymphocytes.	 Interestingly,	 they	 showed	 that	 although	

radiotherapy	 alone	 induced	 the	 release	 of	 HMGB1	 by	 tumor	 cells	 and	 led	 to	 their	

phagocytosis	 by	 DC,	 it	 was	 not	 sufficient	 to	 trigger	 DC	 activation.	 Addition	 of	 R848	 was	

required	 to	 induce	 up	 regulation	 of	 CD80	 and	 CD86	 after	 irradiation	 of	 tumor	 cells,	

suggesting	that	both	radiation	and	TLR7	stimulation	were	required	to	mount	an	efficient	T-

cell	response.	Finally	they	showed	that	using	fractionated	radiation	regimen	(5x2Gy)	 led	to	



Combining	RAIT	and	immune-based	therapies	to	overcome	resistance	in	cancer?	

	 14	

better	responses	in	both	EL4	T-lymphoma	and	A20	B-lymphoma	models,	leading	to	100%	of	

long-term	survival.	 Interestingly,	weekly	 injections	of	R848	 for	5	weeks	was	more	efficient	

than	a	single-dose,	suggesting	that	repeated	irradiation	and	immune	stimulation	could	act	as	

immune	 boosters	 for	 anti-tumor	 immunity	 and	 prevent	 the	 re-establishment	 of	 a	

suppressive	tumor	environment.	

	

Although	 one	 could	 question	 the	 use	 of	 immune	 adjuvants	 in	 diseases	 originating	 from	

immune	cells	and	hypothesize	that	stimulation	with	IL-2	in	a	T-cell	malignancy	could	sustain	

tumor	growth,	or	that	CD40	and	TLR	agonists	could	promote	B-lymphoma	cell	survival,	those	

3	 studies	 demonstrate	 no	 such	 effect.	 On	 the	 contrary,	 the	 immunostimulants	 tested	 in	

these	 hematological	malignancies	 all	 improve	 survival	 outcome	with	 no	 apparent	 induced	

toxicity.	These	studies	also	clearly	demonstrate	that	combining	the	immunogenic	properties	

of	ionizing	radiation	associated	to	tumor	antigen	release	with	immune	stimulation	can	lead	

to	 efficient	 anti-tumor	 immunity.	 This	 immunity	 seems	mainly	 driven	 by	 DC	 activation	 of	

specific	 cytotoxic	 CD8+	 response,	 leading	 to	 the	 establishment	 of	 long-lasting	 immune	

memory.	B	cells	do	not	seem	to	participate	in	the	observed	anti-tumor	responses	but	other	

immune	populations	could	potentially	be	involved	and	further	investigations	should	address	

this	 possibility.	 Altogether,	 those	 findings	 warrant	 further	 trials	 of	 various	 immune-

modulatory	molecules	and	radiotherapy	schedules	in	order	to	find	the	best	combinations	for	

the	treatment	of	lymphomas.	

	

Radioimmunotherapy	and	immunotherapy	

	

To	 date,	 very	 few	 studies	 have	 investigated	 combination	 therapy	 of	 RAIT	 and	

immunotherapy	 in	 preclinical	 tumor	 models.	 To	 our	 knowledge,	 Chakraborty	 et	 al.	 have	

been	the	first	to	report	such	combination,	in	a	study	where	RAIT	was	combined	with	cancer	

vaccination	 to	 treat	human	CEA	expressing	murine	carcinoma	 in	CEA	transgenic	mice	 [39].	

This	 group	 had	 previously	 demonstrated	 that	 tumor	 cells	were	more	 susceptible	 to	 T-cell	

killing	 after	 exposure	 to	 non-lytic	 doses	 of	 external	 radiation	 therapy	 [34].	 They	 thus	

hypothesized	that	delivering	RAIT	to	a	tumor	mass	might	have	the	same	effect.	To	this	end,	

they	used	an	90Y-labeled	anti-CEA	mAb	and	a	recombinant	vaccine	containing	the	CEA,	B7-1,	

ICAM-1	 and	 LFA-3	 genes.	 They	 observed	 that	 survival	 of	 tumor	 engrafted	 mice	 was	
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significantly	increased	after	a	single	dose	of	RAIT	in	combination	with	vaccine	compared	to	

vaccine	or	 radiolabeled	mAb	alone.	Analysis	of	 the	 immune	response	showed	that	 in	mice	

receiving	 the	combination	 therapy,	 the	amount	of	CEA-specific	CD8+	T-cells	 infiltrating	 the	

tumor	was	significantly	 increased	over	vaccine	alone.	 Interestingly,	the	animals	cured	after	

treatment	 with	 the	 combination	 therapy	 demonstrated	 a	 broadening	 in	 the	 anti-tumor	

immune	 response,	 since	 in	 addition	 to	 CD4+	 and	CD8+	 T-cell	 responses	 against	 CEA	which	

was	 encoded	 by	 the	 vaccine,	 they	 also	 observed	 T-cell	 responses	 against	 other	 TAA	 [39].	

More	 recently,	 our	 group	 investigated	 the	 possibilities	 to	 promote	 an	 efficient	 and	 long-

lasting	anti-tumor	response	by	combining	α-RAIT	and	adoptive	transfer	of	tumor	specific	T-

lymphocytes	 in	 a	 multiple	 myeloma	 murine	 model	 expressing	 the	 TAA	 CD138	 and	

ovalbumine	 (OVA)	 [99].	 The	 therapeutic	 efficacy	was	 evaluated	by	 treatment	with	 a	 213Bi-

labeled	 anti-CD138,	 followed	by	 an	 adoptive	 transfer	of	OT-I	 cells,	which	 are	OVA-specific	

CD8+	T-cells.	We	observed	a	 significant	 tumor	growth	 control	 and	an	 improved	 survival	 in	

the	 animals	 treated	 with	 the	 combined	 treatment	 over	 radiolabeled	 mAb	 or	 OT-I	 cell	

transfer	 alone.	 Both	 studies	 demonstrate	 that	 not	 only	 radiotherapy	 by	 also	 RAIT	 in	

combination	with	immunotherapy	promotes	effective	antitumor	response,	which	may	have	

implications	in	the	design	of	future	clinical	trials.	

	

Clinical	Evidence	

	

Radiotherapy	and	immunotherapy	

	

The	 occurrence	 of	 abscopal	 effects	 after	 radiotherapy	 without	 concurrent	 immune	

stimulation	is	a	rare	event	in	the	clinic.	Although	this	may	be	due	in	part	to	underreporting,	

it	 is	 likely	 a	 consequence	 of	 tumor-derived	 immunosuppression	 and	 suggests	 that	 the	

threshold	for	anti-tumor	immune	activation	is	high	in	clinical	settings.	Notably,	most	of	the	

reported	 cases	 of	 abscopal	 effect	 occurred	 in	 renal	 cell	 carcinoma,	 melanoma	 and	

lymphoma	 [100],	 indicating	 that	 these	 cancers	 are	 the	 most	 likely	 to	 benefit	 from	

combination	 with	 immunotherapy.	 Clinical	 trials	 have	 assessed	 the	 efficacy	 of	 various	

immunotherapies	 in	combination	with	 radiotherapy	 [101]	and	many	trials	are	still	ongoing	

[102]	but	most	of	 the	work	has	been	performed	on	patients	with	solid	non	hematopoietic	

tumors,	in	particular	melanoma	[103].	
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The	Stanford	group	is	currently	investigating	the	potency	of	combined	treatments	in	patients	

with	lymphoma	in	three	trials	testing	the	efficacy	of	radiotherapy	associated	with	the	TLR9	

agonist	 SD-101	 (NCT02266147,	 NCT01745354)	 and	 the	 anti-CTLA4	 mAb	 Ipilimumab	

(NCT02254772).	They	also	already	published	one	study	on	the	subject	[104].	In	this	study,	15	

patients	with	 recurrent	 stage	 III	 or	 IV	 low	 grade	B-cell	 lymphoma	were	 treated	with	 local	

radiotherapy	combined	with	 intra-tumoral	TLR9	agonist	 (CpG	PF-3512676)	 injection	at	one	

site	 only	while	 distant	 tumor	 sites	were	 evaluated	 for	 response.	 There	was	 no	 treatment	

limiting	adverse	event	and	all	patients	completed	the	full	course	of	therapy.	They	obtained	

27%	of	 overall	 objective	 response	 rate	 at	 the	 distant	 untreated	 sites	with	 1	 CR	 lasting	 61	

weeks,	3	PR	lasting	20,	64	and	over	111	weeks	and	8	SD.	Tumor	reactive	CD8+	T-cells	were	

detected	 in	 peripheral	 blood	 of	 several	 responding	 patients	 but	 no	 significant	 correlation	

between	 T-cell	 immunity	 and	 clinical	 response	 was	 found.	 Interestingly,	 some	 patients’	

tumor	were	able	to	induce	a	T-reg	phenotype	in	autologous	CD4+	T-cells	 in	vitro	and	those	

patients	had	significantly	shorter	progression	free	survival.	This	suggests	that	tumor-derived	

immunosuppression	 may	 be	 the	 main	 obstacle	 to	 treatment	 efficacy.	 These	 preliminary	

results	 warrant	 confirmation,	 nevertheless,	 this	 is	 the	 first	 study	 to	 demonstrate	 that	

association	of	radiotherapy	with	intratumoral	 injection	of	an	immunostimulant	can	be	safe	

and	trigger	efficient	systemic	responses	in	patients	with	lymphoma.	

	

Radioimmunotherapy	and	immunotherapy	

	

Only	one	trial	tested	the	combination	of	RAIT	with	an	immune	stimulant	so	far	[105]	and	the	

same	 team	 also	 recently	 completed	 a	 trial	 in	 which	 they	 tested	 the	 association	 of	 90Y-

ibritumomab	tiuxetan	with	rituximab,	G-CSF	and	IL-11	(NCT00012298)	but	the	results	have	

not	 been	 published	 at	 the	 time	 this	 manuscript	 was	 produced.	 In	 the	 former	 study,	 30	

patients	 with	 relapsed	 or	 refractory	 CD20+	 B-cell	 NHL	 have	 been	 treated	 with	 90Y-

ibritumomab	tiuxetan	(0.4	mCi/kg)	in	association	with	rituximab	(250	mg/kg)	and	CpG	7909,	

a	TLR9	agonist.	Four	doses	of	CpG	7909	have	been	tested	(0.08,	0.16,	0.32	and	0.48	mg/kg)	

without	 reaching	 the	 MTD,	 demonstrating	 the	 safety	 of	 treatment.	 They	 obtained	 an	

impressive	ORR	of	93%,	with	63%	CR/CRu	and	30%	PR,	and	responses	were	durable	with	a	

median	time	to	progression	of	42.7	months.	T-cell	responses	have	not	been	evaluated	in	this	
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study	but	analysis	of	serum	cytokines	showed	a	statistically	significant	decrease	in	IL-10	and	

TNFα	and	 increase	 in	 IL-1ß,	consistent	with	the	development	of	an	 immune	response.	 It	 is	

important	to	note	that	IgG	themselves	can	trigger	immune	responses.	In	particular,	chimeric	

IgG	 such	 as	 rituximab	 have	 been	 shown	 to	 trigger	 CDC	 and	 ADCC	 in	 vitro.	 However	 the	

extent	 to	 which	 these	 phenomena	 participate	 in	 rituximab	 efficacy	 in	 vivo	 is	 still	 unclear	

[106].	 In	this	trial,	measurement	of	ADCC	 induced	by	rituximab	was	very	variable	between	

subjects	and	did	not	show	any	statistically	significant	difference	between	groups.	Although	

they	warrant	confirmation,	 these	phase	 I	 results	are	extremely	encouraging.	Nevertheless,	

further	 studies	 should	assess	 the	mechanisms	and	 importance	of	 the	 immune	 response	 in	

the	efficacy	of	this	treatment	combination.	

	

Based	 in	 part	 on	 the	 observations	 that	 Ab	 treatments	 could	 induce	 anti-tumor	 responses	

through	 the	 induction	 of	 CDC,	 ADCC	 but	 also	 through	 Ab-targeted	 tumor	 antigen	 cross-

presentation	[107],	it	has	been	postulated	that	RAIT	combined	with	maintenance	anti-CD20	

Ab	treatment	may	trigger	protective	T-cell	responses	in	lymphoma	patients	[108].	There	has	

been	 several	 studies	 testing	 the	efficacy	of	 90Y-ibritumomab	 tiuxetan	after	 treatment	with	

rituximab	and	chemotherapy	[109-111]	and	all	obtained	very	good	response	rate.	However,	

only	Jacobs	et	al.	used	rituximab	as	a	maintenance	treatment	after	RAIT	and	none	of	these	

trials	 assessed	 the	 presence	 of	 an	 anti-tumor	 immune	 response.	 Besides,	 chemotherapies	

used	 in	 those	 studies,	 such	 as	 fludarabine,	 cyclophosphamide	and	prednisone,	 can	 induce	

important	immunosuppression	and	lymphopenia	and	may	therefore	limit	the	induction	of	an	

effective	immune	response	against	lymphoma.	

	

Overall,	 results	 obtained	 from	 combination	 of	 RAIT	 and	 immune-related	 treatments	 in	

patients	 with	 lymphoma	 are	 very	 encouraging.	 However,	 there	 are	 still	 very	 little	 data	

available	on	the	implication	of	the	immune	system	in	patient	responses	to	these	treatments.	

Notably,	 it	will	be	of	prime	 importance	 in	the	future	to	assess	the	effect	of	vectors	on	the	

immune	response	to	tumors	in	RAIT.	
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Conclusions	and	perspectives	

	

Within	the	past	two	decades,	important	advances	have	been	done	in	our	knowledge	of	the	

complex	 interplay	 between	 ionizing	 radiation,	 inflammation	 and	 the	 immune	 system.	 The	

immunogenic	properties	of	irradiation	are	now	clearly	demonstrated	and,	even	though	most	

of	the	data	comes	from	external	radation	therapy,	the	few	reports	using	radionuclides	and	

RAIT	strongly	support	that	α-	and	β-particle	emitters	can	also	drive	an	anti-tumor	 immune	

response.	More	importantly,	these	immunogenic	aspects	have	opened	a	new	era	of	research	

in	 radiation	 oncology	 by	 the	 initiation	 of	 clinical	 trials	 combining	 ionizing	 radiation	 and	

immune-based	 therapy.	 Notably,	 preliminary	 results	 in	 patients	 with	 lymphoma	 are	 very	

encouraging.	 Combination	 therapies	 appeared	 safe	 and,	 to	 date,	 neither	 limiting	 adverse	

effects	nor	cumulative	or	overlapping	toxicity	were	observed	in	any	of	the	trials.	These	trials	

are	 initial	 investigations	 and	 there	 are	 still	 a	 lot	 of	 parameters	 to	 optimize	 in	 order	 to	

overcome	 tolerance	 and	maximize	 the	 synergy	 of	 combined	 therapies	 towards	 tumor	 cell	

destruction.	 In	that	aspect	RAIT	may	be	of	great	 interest	 in	the	treatment	of	disseminated	

and	 poor	 prognostic	 metastatic	 solid	 cancer	 as	 this	 approach	 will	 generate	 locally	 but	 at	

hundreds	tumor	sites:	high	dose	to	the	tumor	and	cell	death,	production	of	ROS,	release	of	

TAA,	 acute	 inflammation	 and	 other	 immunogenic	 effects	which	 should	 represent	 an	 ideal	

springboard	for	the	combined	immune-based	therapy.	 In	order	to	develop	a	systemic	anti-

tumor	 response,	and	 to	ultimately	achieve	an	 immune	memory	and	 long	 term	protection,	

future	 directions	 will	 have	 to	 address	 which	 radionuclide,	 treatment	 schedule	 (single	 vs	

fractionation)	and	dose	to	use	for	different	pathologies	and	different	patients.		Some	clinical	

studies	have	already	been	completed	but	several	more	are	about	to	start	exploring	radiation	

therapy	in	combination	with	 immunotherapies	using	growth	factors	 like	Flt3-ligand	or	GM-

CSF	 [112]	or	checkpoint	 inhibitors	such	as	anti-CTLA4	(Ipilumumab),	anti-PD-1	 (Nivolumab)	

[102]	 or	 anti-PD-L1	 (Atezolizumab)	 mAbs.	 On	 july	 2016,	 searching	 the	 clinicaltrials.gov	

website	for	checkpoint	inhibitor	mAb	+	radiation	gives		41	results:	2	trials	for	Ipilumumab,	35	

trials	for	Nivolumab	,	4	trials	for	Atezolizumab.	Among	these	41	clinical	trials,	all	but	one	use	

external	 radiation	 therapy,	 the	 remaining	 one	 will	 use	 90Y	 glass	 microspheres	 in	

hepatocellular	 carcinoma	 (NCT02837029).	 Despite	 the	 limited	 use	 of	 radionuclides	 so	 far,	

RAIT	in	combination	with	cytokines	or	immune	checkpoints	blocker	do	represent	an	exciting	
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option.	 Several	 other	 attractive	 combination	 opportunities	 come	 from	 the	 development	

adoptive	T-cell	therapies	and	Chimeric	Antigen	Receptors	(CAR)	(for	review		

[113,114])	and	other	class	of	small	molecules	designed	for	immuno-oncology	treatment	(for	

review	 [115]).	 This	multitude	 of	 options	 implies	 to	 define	 biomarkers	 to	 identify	 patients	

who	are	the	most	 likely	 to	benefit	 from	such	combined	treatment	and	especially	 from	the	

immune-based	therapy.	
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