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Review

Human Endogenous Retroviruses in
Neurological Diseases

Patrick Küry,1 Avindra Nath,2 Alain Créange,3 Antonina Dolei,4 Patrice Marche,5,6 Julian Gold,7,8

Gavin Giovannoni,7 Hans-Peter Hartung,1,* and Hervé Perron9,10

The causes of multiple sclerosis and amyotrophic lateral sclerosis have long
remained elusive. A new category of pathogenic components, normally dormant
within human genomes, has been identified: human endogenous retroviruses
(HERVs). These represent �8% of the human genome, and environmental factors
have reproducibly been shown to trigger their expression. The resulting production
of envelope (Env) proteins from HERV-W and HERV-K appears to engage patho-
physiological pathways leading to the pathognomonic features of MS and ALS,
respectively. Pathogenic HERV elements may thus provide a missing link in under-
standing these complex diseases. Moreover, their neutralization may represent a
promising strategy to establish novel and more powerful therapeutic approaches.

Keys to Understanding the Etiopathogenesis of Inflammatory and
Degenerative Neurological Diseases May Lie in the Hidden Half of the
Human Genome
A new comprehensive approach to the etiopathogenesis of some diseases is emerging from
studies on genomic remnants of mobile genetic elements (see Glossary) that are known for
their role in the molecular evolution of genomes [1–4], with a particular focus on human
endogenous retroviruses (HERVs). This domain cannot be appropriately understood
through classical virology or genetics because it deals with entities that are neither viruses
nor physiological genes [5].

In the present review we discuss recent scientific discoveries of these long-misunderstood
elements, previously considered to be junk DNA but which, in some instances, are now known
to contribute to physiological functions (‘domesticated copies’) [5–7] or to remain as dormant
functional copies encoding retroviral proteins [5,8,9]. We attempt to explain how these peculiar
genetic elements may provide missing keys to understanding complex multifactorial diseases.
The best-studied diseases where consistent scientific data support an involvement of HERV
genetic elements in their pathogenesis are MS (Box 1) and amyotrophic lateral sclerosis
(ALS), but we also introduce chronic inflammatory demyelinating polyradiculoneurop-
athy (CIDP). In addition, we discuss novel HERV-targeted therapeutic avenues that are starting
to be evaluated in MS and ALS. Moreover, HERVs have also been associated with other
diseases such as schizophrenia and bipolar disorder [10], as well as with type 1 diabetes [11],
but much less data are available for these disorders.

Endogenous Retroviruses Originate from Ancestral Germline Infections by
Exogenous Elements
The eukaryotic genome is composed of a large set of DNA sequences, many of which derive
from mobile genetic elements [1,12]. These were estimated to account for about 50% of the
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human genome [13–15] (Figure 1A), if not more [16]. Their detection is particularly complex,
which may explain why their proportion within the genome has been largely underestimated
and why data evolve with technological improvements [12], among which are those allowing
the sequencing of constitutive heterochromatin regions that long remained inaccessible [17].

Two types of transposable elements can be distinguished: (i) elements that can be transposed
via a DNA intermediate and a cut-and-paste mechanism (transposons) [18], and (ii) those using
a RNA and a copy-paste mechanism (retrotransposons) [16]. Retrotransposons comprise
endogenous retroviruses (ERVs), for which the current literature presents incomplete data as
well as several classifications and nomenclatures, leading to ambiguities [15]. The term ‘HERV’
refers to the sequences of human ERV families. HERVs retain structural features of retroviral
genomes (Figure 1B), and originally entered the genome of species through repeated infections
of germ cells over millions of years (Figure 2) [5,19].

Silent HERVs Can Be Activated by Environmental Triggers
The question of why and how HERV copies that have retained coding potential may become
expressed is now addressed. The ability of HERVs to become activated is linked to the
chromatin state where a given copy is located [20]. DNA methylation and histone modifications
are essential to the epigenetic control of human genes, including HERV elements. The
prerequisite for functional transcription is that HERV sequences must retain functional long
terminal repeats (LTRs), or become controlled by another promoter, without deletions or
nucleotide substitutions that disrupt their open reading frames (ORFs). Because the nuclear
microenvironment including the chromatin accessibility of coding regions differs between
tissues, the baseline predisposition of a HERV copy to be activated can be tissue-, cell-, or
maturation stage-specific.

Inflammatory stimuli may activate HERVs via epigenetic dysregulation. For instance, transcrip-
tion of HERV-W sequences has been reported to be upregulated by proinflammatory cytokines
in cultured cells from MS patients [21], and this was shown to correlate with increased
differentiation of peripheral blood mononuclear cells from MS patients [22]. By contrast,
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Box 1. Viruses in MS

An infectious origin of MS was suggested for the first time by Pierre Marie in 1884, but was rejected by the contemporary
medical community. The evidence that viruses may contribute to MS comes from the accumulation of immune cells
within the brain and CSF, local immune reactivity to specific viruses, and the presence of oligoclonal bands. MS
epidemiology indicates some triggers during adolescence, an unusual geographic distribution (a gradient with latitude,
but with exceptions: e.g., contrasting patterns in Sardinia and Japan), and epidemic clusters in previously isolated
islands. Over time, several viruses have been proposed as causative agents of MS. From the 1940s onward they
included rabies virus, herpes simplex virus (HSV), scrapie prion, an unidentified MS-associated agent, parainfluenza
virus 1, measles virus, simian virus 5, chimpanzee cytomegalovirus, coronavirus, EBV, an unidentified SMON-like virus
(subacute myelo-opticoneuropathy virus), tick-borne encephalitis virus, HTLV-1, HSV-1, VZV, and HHV-6. The pro-
posed mechanisms were direct brain or peripheral infection, activation of autoreactive T cells against nerve myelin,
bystander activation, epitope spreading, molecular mimicry, and virus–virus interactions. However, the link to MS was
shown to be weak for the majority of the above viruses. The most consistent and independently confirmed studies for
viral involvement in MS are for EBV. They appear to be confirmed, but only with indirect links, by history of infectious
mononucleosis (IM; primary infection with EBV causes IM), and high anti-EBNA-1 (EBV nuclear antigen 1) IgG titers
before MS onset. However, a new concept arose with the discovery that HERVs express pathogenic proteins in
disease, and the best evidence of an association and pathogenic involvement is for HERV-W/MSRV (detected in MS
blood, spinal fluid, and brain, in parallel with MS stages, active/remission phases, and therapy outcome). EBV is known
to activate HERV-W/MSRV in vitro and in vivo (in IM patients and in healthy humans with high anti-EBNA1 IgG titers).
This suggests that EBV could be an initial trigger, and that HERV-W/MSRV is a direct neuropathogenic contributor,
before and during MS, in addition to its known contribution to promoting autoreactive T cells, immunoinflammation, and
remyelination blockade.
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Glossary
Amyotrophic lateral sclerosis
(ALS): a neurodegenerative disease
characterized by loss of both upper
and lower motor neurons. The
symptoms usually start in one
anatomical region and then spread,
causing motor paralysis, dysphagia,
and ultimately affecting respiratory
function. In some cases ALS can
also involve the prefrontal lobes,
leading to cognitive dysfunction. The
vast majority of the cases are
sporadic, but in 10–20% patients
genetic abnormalities are associated
with familial forms of ALS.
Chronic inflammatory
demyelinating polyneuropathy
(CIDP): a peripheral nervous system
disease and the commonest chronic
immune-mediated peripheral
neuropathy that takes either a
relapsing or progressive course.
Clinically it manifests by the
development of weakness and
sensory disturbance that lead to
marked disability. Multifocal
inflammation and stripping of myelin
sheaths by macrophages are
thought to result from aberrant
immune responses, mediated by T
and/or B lymphocytes, against
peripheral nerve antigens.
Human endogenous retroviruses
(HERVs): sequences belonging to
human ERV families retaining
structural features of retroviral
genomes that have become
integrated into the genome through
repeated infections during evolution.
Immune tolerance:
unresponsiveness of the immune
system to substances that normally
elicit an immune response.
Major histocompatibility complex
(MHC): cell-surface proteins crucial
for the recognition of foreign
molecules by the immune system.
They bind to antigens derived from
pathogens and display them for
recognition by appropriate T cells.
Mobile genetic elements: these
represent nearly 50% of the human
genome, and consist of
retrotransposons and DNA
transposons.
Myelin: a major component of white
matter that consists of a lipid-rich
structure organized into multilayered
sheaths around axons. It provides
axonal integrity, trophic and
metabolic support, and accelerated

reduction of anti-Env antibody reactivity for HERV-H and HERV-W [23] and MS-associated
retrovirus (MSRV) load [24] in the blood have been in seen in MS patients treated with IFN-b,
suggesting efficacy of the therapy or low disease activity.

After an initial study, which first presented evidence that herpesviruses might trigger HERVs in
patients with MS as part of the retrovirus hypothesis for MS etiology [25], several teams showed
that transcription of HERV genes and/or reverse transcriptase (RT) activity is increased in
various human cells in vitro by Herpesviridae with tropism for nervous cell. This includes herpes
simplex virus type 1 (HSV-1) in lymphocytes from MS patients [26] and in neuronal or in brain
endothelial cell lines [27]; varicella-zoster virus (VZV) in lymphocytes from MS patients [26];
cytomegalovirus (CMV) in kidney transplant recipients [28]; human herpes virus type 6 (HHV-6)
in lymphocytes from MS patients [26] and in T cell leukemic cell lines [29]; and Epstein–Barr
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Figure 1. Relative Proportions of Dif-
ferent Types of DNA Sequences
within the Human Genome, and
the Prototypic DNA Sequence of
Complete Human Endogenous Ret-
rovirus (HERV) Genomes. (A) DNA
sequences representing remnants of
mobile genetic machinery represent
nearly 50% of the human genome. These
are predominantly retrotransposons, that
use RNA intermediates and a ‘copy-
paste’ mechanism for retrointegration
into chromosomes, and DNA transpo-
sons that use a ‘cut and paste’ mechan-
ism; these represent 42% and 3% of the
human genome, respectively [3]. Among
retrotransposons, an important group is
represented by the endogenous retro-
viruses (ERVs; HERVs for human ERVs)
that entered the genome of species
through infections of germline cells during
evolution leading to subsequent endo-
genization – integration into the genome
and presence in the DNA of every cell of
the offspring [5]. About 8% of the human
genome is constituted by HERV
sequences; complete sequencing has
revealed that intact coding sequences
for functional HERV proteins represent
<3%, if not 1% [101,102]. The remaining
sequences comprise non-coding DNA,
often within introns of ‘classical’ genes,
with a potential role in generating non-
coding RNAs [103]. (B) Endogenous
HERV DNA sequences are often trun-
cated, and contain mutations, insertions,
or deletions, but complete copies are also
present. The gag (group-specific antigen),
pol (polymerase), and env (envelope)
genes encode structural proteins and
are flanked by two inverted repeats of
non-coding regions comprising many
regulatory functions (promoter, enhancer,
primer-binding site for reverse transcrip-
tion, and others). Abbreviation: LTR, long
terminal repeat.

Trends in Molecular Medicine, April 2018, Vol. 24, No. 4 381



virus (EBV) in T cell lines [30] and in peripheral blood mononuclear cells from MS patients as well
as in astrocyte cell lines [31]. Many of these viruses have been implicated in MS (reviewed in
[32]). Herpesviridae may invade brain parenchyma and induce local proinflammatory
responses, but these pathogens are normally intercepted by perivascular macrophages
(Figure 3). Macrophages are not permissive for their replication but may allow expression of
HERV-transactivating Herpesviridae immediate-early genes [33]. The EBV gp350 protein has
been shown to activate HERV-W in vitro in B cells and monocytes, but not in T cells, whereas
monocyte/macrophage cells appear to be most susceptible [31]. Because EBV has also been
shown to potently modify epigenetic traits of host cell DNA (reviewed in [34]), the reported
association with infectious mononucleosis, in addition to the elevated anti-EBV nuclear antigen-
1 IgG titers in patients with MS [35], might support the hypothesis that EBV acts as a priming
trigger. However, this has not been directly demonstrated. Nevertheless, Herpesviridae (or
other environmental activating factors) are now suggested to upregulate HERV-W expression,
with its Env protein acting as a pathogenic effector in MS [36].

Other viruses reported to transactivate HERVs are the exogenous retroviruses HTLV-1 and
HIV-1. Specifically, the HTLV-1 Tax transactivator potently increased the transcriptional activity
of HERV-W, HERV-H, HERV-K, and HERV-E families in T cells [37]. Moreover, effects of HIV on
HERV-K and on HERV-W in astrocyte cell lines and peripheral blood cells in vitro have been
reported to be mediated by the HIV Tat protein, which can indirectly activate HERV-W through
Toll-like receptor-4 (TLR4) along with TNF-a and NF-kB. Thus, by this pathway, HIV Tat could
influence non HIV-infected cells [22]. This indirect mechanism suggests that the HIV-driven
activation pathway requires persisting Tat stimulation for HERV activation. This differs from
Herpesviridae in that self-sustained HERV expression may be induced following specific
triggering events, which could explain the lifelong progression of MS and the multiple triggering
events that are required before a pathogenic threshold leading to disease onset can be passed.

Nonetheless, if HERV proteins are not expressed, HERV RNA expression (transcription alone)
does not seem to have biological effects per se in humans. Moreover, when produced, HERV
proteins are not implicitly pathogenic. An example is provided by the gag (group-specific
antigen)-encoded capsid protein of HERV-W which had no immunopathogenic effect on
peripheral blood lymphocyte cultures from healthy donors, whereas the Env protein of
HERV-W particles (previously termed MSRV) induced proinflammatory and superantigen
(SAg)-like effects [38].

Immune Cells Can Mediate Major Effects of Pathogenic HERV Expression
Abnormal activation of some HERVs is thought to have proinflammatory effects, leading to
dysregulation of the immune system, as we will now illustrate with relevant examples.

HERV-K and HERV-W families share an interesting common feature in that the protein encoded
by their env gene has been shown to trigger responses in T lymphocyte cells expressing a
specific variable region of the T cell receptor (TCR) b chain in vitro [30,38]. Usually, T
lymphocytes recognize their target antigen through a combination of variable domains in
TCR chains that define the antigen-binding site of specific T cell clones. The interaction of
these HERV Env proteins with another TCR region, which is known to be independent of the
antigen-binding site and present on numerous T cells, is known to activate multiple clones
irrespective of their antigen specificity. Molecules inducing such polyclonal activation are SAgs.
An inflammatory loop also likely contributes to HERV pathogenicity: following initial priming and
induction of specific HERV copies, macrophages and/or B cells produce HERV Env proteins
that might fuel local innate inflammation and upregulate major histocompatibility complex

nerve conduction. Its structural
integrity is of vital importance for
CNS function.
Neuroregeneration: there are
substantial differences in the extent
and cellular origin of
neuroregenerative responses
between the CNS and the peripheral
nervous system (PNS). Whereas
injured axons and lost myelin sheaths
can be restored in injured peripheral
nerves, repair processes in the CNS
are scarce and are limited to partial
remyelination. Demyelinated CNS
axons are functionally impaired,
highly vulnerable, and degenerate
over time. In contrast to peripheral
neurons, such injured central
neurons lack the capacity to regrow
axons, and this further contributes to
irreversible functional deficits.
Nonetheless, in chronic PNS
diseases such as CIDP the extent of
repair and functional recovery is also
largely impaired.
Oligoclonal bands (OCBs): bands
of specific immunoglobulins that can
be detected in patient blood serum
or cerebrospinal fluid. They have
diagnostic value in MS.
Superantigens (SAgs): molecules
inducing antigen-independent and
hence polyclonal activation of
lymphocytes.
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(MHC) expression, causing further polyclonal activation of tissue-attracted T cells and therefore
of B cells. This potential inflammatory loop could result in the development of devastating local
lesions, while antigen-presenting cells stimulated via TLR and polyclonal activation of lympho-
cytes might promote breaks in immune tolerance that lead to autoimmunity, as was observed
in a mouse model of experimental autoimmune encephalomyelitis (EAE) treated with HERV-W
Env protein [39].

HERV-W and MS
MS is an inflammatory disease of the central nervous system (CNS) and a major cause of
neurological impairment in young adults. There is no available cure for MS, and current
therapies can only limit the number of relapses and slow disease progression. The most
common symptoms include chronic fatigue, paresthesia with acute and chronic pain, optic
neuritis, paresis, gait disturbance, incoordination, sphincter problems, and cognitive
impairment, altogether leading to progressive disability. Histopathologically, MS is character-
ized by demyelinating lesions that predominantly expand in the white matter, causing destruc-
tion of myelin and oligodendrocytes and leading to axonal disruption in the brain and spinal
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Figure 2. Successive Steps Leading to Endogenization of Retroviruses and to Multicopy Endogenous Retroviral (ERV) Families in Descendants. This
illustration depicts the successive steps of retroviral endogenization, starting from infection of gametes, integration of a DNA retroviral copy (provirus) into a
chromosome, giving birth to a viable individual inheriting and retaining this copy in the DNA of all cells and transmitting this to its offspring. Throughout successive
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been evidenced in humans [91]. Abbreviations: env, envelope; gag, group-specific antigen; LTR, long terminal repeat; pol, polymerase.
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Figure 3. Hypothesized Human Endogenous Retrovirus (HERV)-Mediated Activation Cascades Leading to the Pathogenesis of Multiple Sclerosis
(MS). This illustration depicts a hypothetical pathogenic pathway for MS involving HERV-W activation and envelope (Env) protein expression triggered by an
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cord. Lesions spread to cortical regions, affecting grey matter and neurons. Active lesions also
show blood–brain barrier (BBB) breakdown, with infiltration of macrophages and lymphocytes,
whereas activated microglia represent the hallmark of regions within active and chronic lesions,
where ongoing demyelination and axonal loss are now understood to cause functional
impairment (reviewed in [40]).

Immunological dysfunctions in MS are characterized by multifocal CNS hyperinflammatory
reactions, and systemic autoimmune reactivity of B and/or T cells towards myelin autoantigens,
with evidence of intrathecal chronic IgG production as revealed by the presence of oligoclonal
bands in the cerebrospinal fluid (CSF) [41]. Whereas initial disease stages may present reversible
phases with remission following relapse, evolution towards progressive forms generally follows
[42]. The relapsing forms are dominated by aberrant inflammatory responses, whereas in pro-
gressive stages neurodegenerative features take precedence. This may be paralleled by repeated
abnormal lymphocyte stimulation that is known to lead to T cell exhaustion, anergy, or depletion
[43], and which implicitly downregulates T cell-driven activation of B cells [44].

The underlying etiology of MS is still not fully understood, but multiple disease-associated loci
confer genetic predisposition to develop MS [45], and numerous environmental factors (e.g.,
infectious mononucleosis and smoking) [46,47] appear to contribute to disease onset and
progression. This led to the formulation of a pathogenic concept based on gene–environment
interactions [48] with a partial, but elusive, role of viral infections [49].

In the search for etiological factors in MS, HERVs have been detected within the human
genome, thus opening a new avenue of research because of their potential interactions with
environmental factors. Diverse scientific and technical approaches have indicated that three
human endogenous retroviruses, HERV-H, HERV-K, and HERV-W, may be abnormally rep-
resented or expressed in MS.

A genetic polymorphism in a single copy of HERV-Fc1 (a HERV-H-related element) and its
relative distribution in MS patients, with the exception of primary progressive forms (PPMS),
was reported [50,51]. HERV-K mRNA expression was found to be upregulated in postmortem
brain tissue from MS patients [52], but no evidence of protein expression was provided.
Retroviral sequences from RT-PCR with selected primers on particles produced by MS
derived EBV-B lymphoblastoid cell lines identified sequence variants homologous to HERV-
H elements (formerly named RTVL-H or RGH) [53]. Another study showed that B cells and
monocytes from patients with active MS showed detectable surface expression of both HERV-
H Env and HERV-W Env [54]. Taken together, this evidence suggests that activation of multiple
HERV families might be linked to MS [55].

The most compelling evidence for an association between HERV expression and MS is for
HERV-W and comes from a recent meta-analysis [56]. This line of research was prompted by
the isolation of retroviral particles from MS patients in the early 1990s [57,58]. Subsequent
studies over the following 25 years revealed that these particles originated from HERV
elements, first termed MS-associated retrovirus (MSRV), whose sequences were determined
from purified retrovirus-like particles isolated from MS cell culture supernatants [59,60]. The
initial sequence identified from several MS isolates was obtained using a PCR protocol
designed to detect unknown retroviral sequences flanked by conserved domains in most
retroviral pol (polymerase) genes [61]. This prototype MSRV sequence identified a previously
unknown HERV family, now named HERV-W because it uses a tryptophan (W) tRNA as a
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primer for reverse transcription, and that comprises multiple copies homologous to MSRV
prototypic sequences [59,62].

Independent groups subsequently reported that HERV-W env and pol expression could be
detected in serum, peripheral blood mononuclear cells (PBMCs), and CSF from MS patients
but not from healthy controls [60,63–66]. HERV-W association with MS was further evidenced
by studies showing that expression levels not only correlated with MS but also increased with
disease activity and progression [24,64,65,67]. Further investigations indicated that HERV
protein expression is mainly restricted to macrophages and microglia, a minor proportion of
lymphocytes, and to a few endothelial and astrocyte cells in active lesion areas [31,63,68,69].
HERV-W Env protein was similarly detected in MS lesions by using different monoclonal
antibodies (mAbs) directed against different epitopes [64]. Its association with areas of active
demyelination from active to chronic brain lesions, with fairly intense expression until the death
of the patient, as seen post-mortem, suggests an involvement in the long-term pathogenic
progression of the disease [69].

HERV-W was further revealed to play functional roles in inflammatory processes. Proinflam-
matory cytokine expression was shown to be induced in both human and murine monocytes
upon in vitro stimulation with HERV-W recombinant Env protein, a process that required TLR4
receptor activation [39,70,71], while MSRV Env-treated human dendritic cells were elicited to
promote type 1 T helper cell (Th1)-like lymphocyte differentiation [71]. MSRV particles (HERV-
W) were previously shown to induce superantigen-like T cell responses that were reproduced
by the Env protein but not by the gag-encoded capsid protein [38]. A hypothetical scenario
illustrating all these effects is presented in Figure 3. HERV-W envelope also promoted EAE in
mouse and induced elevated autoimmune T cell reactivity [39].

In addition to pathogenic effects targeting immune functions, HERV-W Env protein was also
found to mediate TLR4-dependent effects on non-immune cells. Treatment of cultured primary
oligodendroglial precursor cells (OPCs) with HERV-W Env was shown to result in an overall
reduction of oligodendroglial differentiation via activation of TLR4 [68]. OPCs contribute to
neuroregeneration and myelin repair processes in the adult CNS, and blocking their differ-
entiation by HERV-W Env protein may therefore result in remyelination failure (Figure 4). The
negative impact on myelin synthesis in primary oligodendroglial cells could be rescued using a
specific Env-neutralizing humanized immunoglobulin termed GNbAC1 [72]. Different mAb
versions of GNbAC1 have been assessed on a small scale in MSRV Env-induced experimental
allergic encephalitis (EAE), an animal model of MS, and these appeared to inhibit and somehow
reverse EAE clinical evolution [73]. In addition, exposure of the HCMEC/D3 brain endothelial cell
line to HERV-W Env was shown to impair endothelial cell physiology by boosting ICAM-1
expression (allowing T cell homing into tissues) and proinflammatory cytokine release via TLR4
activation, thereby suggesting that Env might affect BBB integrity (Figure 3) [74].

Together, these data argue that pathogenic HERV-W Env protein (formerly MSRV-Env) is a
potential therapeutic target in MS, and that the neutralizing humanized antibody GNbAC1
therefore warrants development; indeed, several early-phase trials have now been completed
[73,75–77]. A Phase IIb multicenter clinical trial including 260 relapsing-remitting MS (RRMS)
patients in 12 European countries is ongoing with this humanized IgG4 antibody. This trial is a
1 year study with a placebo arm and three treated groups receiving intravenous infusions every
4 weeks (6, 12, and 15 mg/kg) (ClinicalTrials.gov identifier: NCT02782858) [78].
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Another approach, based on the hypothesis that antiretroviral drugs that are effective against
exogenous HIV infections might also block HERV expression in MS [79], has led to a dedicated
evaluation (ClinicalTrials.gov identifier: NCT01767701), but gave negative results for its primary
endpoint (http://onlinelibrary.ectrims-congress.eu/ectrims/2016/32nd/146288/julian.gold.
phase.2.baseline.versus.treatment.clinical.trial.of.the.hiv.drug.html?f=m3). This trial was a base-
line-versus-treatment study with 20 patients with active RRMS defined as gadolinium-enhancing
lesions on magnetic resonance imaging (MRI) at baseline. They were monitored for 3 months with
monthly MRI and then treated with the integrase inhibitor raltegravir for 3 months. This trial did not
reach its primary endpoint goal of significantly reducing either lesion count or lesion development
during the treatment period versus baseline. Nonetheless, the tested drug is a known and effective
inhibitor of HIV integrase which plays a role in chromosomal retrointegration of newly generated
HIV DNA copies. Because this may not be a major aspect of HERV expression, and is unlikely to be
a key issue for HERV Env production, the mode of action of this anti-HIV drug may not have had
relevant effects on HERVs, thus explaining the negative results of the study.

Finally, following a study in which HERV-W Env protein was detected in sera and lymphoid cells
of MS patients, but not in healthy controls nor in other neurological diseases, except for a few
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Figure 4. Normal Differentiation of Oligodendrocyte Precursor Cells (OPCs) versus Inhibition of Oligodendroglial Maturation by Human Endogenous
Retrovirus HERV-W Envelope (Env) Protein. Activation of Toll-like Receptor 4 (TLR4) on OPCs by the pathogenic HERV-W Env protein blocks the differentiation of
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CIDP cases [64], a recent study confirmed upregulated HERV-W expression in blood cells and
peripheral nerve lesions of patients suffering from CIDP [80]. This investigation also showed
TLR4-mediated effects of HERV-W Env protein on primary human Schwann cells. Such direct
effects on Schwann cells, and the ability of HERV-W Env protein to cause tissue inflammation
and systemic autoimmunity, make it an interesting potential new target for the treatment of
patients with CIDP and HERV-W upregulation. This evidence suggests that HERV-W is not
specific for MS, but may be involved in different diseases through the pathogenic properties of
its Env protein upon activation by variable factors in different conditions, tissues, and organs.

HERV-K and ALS
The first evidence that retroviral elements might be activated in ALS came from a study in which
brain tissue extracts from two ALS patients in Guam were found to have RNA-directed DNA
polymerase activity. This polymerase activity was RNase-sensitive [81], suggesting RT activity.
However, no virus or transmissible agent was identified.

Subsequent studies in patients with ALS confirmed the presence of RT in serum and, although
with limited numbers, showed that nearly 50% of the patients have detectable RT activity,
whereas activity was only detected in a smaller number of first-degree relatives and an even
smaller number of unrelated controls [82–84]. However, several attempts to find an exogenous
retrovirus in patients with ALS were unsuccessful [83,85].

In 2011, the detection of RT encoded by the pol gene of HERV-K was reported in the brain of
patients with sporadic ALS [86]; expression was specific for ALS because a protein resulting
from HERV-K pol activation could not be detected in the brains of patients with Parkinson’s
disease or in normal brains, despite occasional detection in patients with cancers. Sequencing
of pol gene RNA transcripts suggested activation of multiple loci, with predominant homology
to a copy in chromosome 7 [86]. A subsequent study showed expression of HERV-K pol, env,
and gag genes in the brains of patients with sporadic ALS [87]. Expression levels of each gene
correlated with each other, suggesting that an entire HERV-K genome is activated. HERV-K
Env protein expression was also detected in cortical and spinal neurons of ALS patients,
whereas no immunostaining was found in brains from healthy individuals or in patients with
Alzheimer’s disease [87].

HERV-K virus is so-named because it uses lysine (K) tRNA as a primer. HERV-K represents
thousands of insertions in the human genome, and 11 largely complete proviral sequences
have been identified to date [88,89]. The number of insertions can vary between human
populations, and copies are not necessarily found at a fixed chromosomal site in all carrier
individuals [90,91], while new insertions are thought to have occurred within the past 2 million
years after the appearance of modern human [89]. Some of the recently endogenized HERV-K
elements have complete ORFs and can form complete viral particles [92]. These are probably
recent insertions into the human genome because evolution has not yet introduced major
deletions or mutations, and epigenetic mechanisms are likely to be responsible for HERV-K
gene silencing, which may be overcome by environmental triggers. Given this genetic com-
plexity, it remains unknown whether the expression of HERV-K in patients with ALS derives
from a single copy with a complete retroviral sequence or might represent trans-complemen-
tation between partially defective but complementary copies. Such a scenario may also be
relevant for the activation of HERV-W in MS because it could also result in the expression of
HERV pathogenic protein(s).
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HERV-K also plays a role in early human embryonic development. It is expressed in the morula
and blastocyst stage of the preimplantation embryo, but expression is silenced later in fetal
development [93]. However, if HERV-K expression is forced in neurons, it causes cellular
degeneration mediated by its Env protein [87]. Transgenic mice expressing HERV-K Env in
neurons developed a clinical and pathological phenotype that resembles ALS, with upper and
lower motor neuron degeneration [87].

What triggers the expression of HERV-K in adult neurons of patients with ALS remains
unknown. In vitro studies showed that neuronal injury due to oxidative stress or excitotoxicity
is insufficient to cause activation of HERV-K genes. Nonetheless, endogenous expression is
modulated by transcription factor TDP-43, which has five binding sites on HERV-K LTR [87].
TDP-43 is known to be dysregulated in ALS and has been proposed as a biomarker of ALS
lesions [94].

The possibility that HERV-K plays a crucial role in the pathophysiology of ALS, as represented in
Figure 5, is attractive for several reasons. It would explain why several researchers have
detected RT in ALS brain and blood samples, but have not been able to demonstrate
human-to-animal or human-to-human transmission of the disease, because HERVs arise from
the genome and not from the environment. Further, it may also explain the anatomical spread of
the illness through paracrine activation of permissive autologous cells, which generally starts in
one region of the body and then spreads along an anatomical pathway.

In addition, this potential mechanism leads to new therapeutic perspectives for these patients.
Because HERV-K, although endogenous, retains retroviral properties that underlie its patho-
genic expression, an approach to drug development similar to that taken for HIV could be
considered. A panel of antiretroviral drugs approved for treating HIV infection was screened,
but elevated concentrations were found to be necessary to control HERV-K replication in HeLa
cells in vitro [95]. A previous pilot clinical trial with indinavir, a protease inhibitor used for HIV
antiretroviral therapy, failed to show any efficacy in ALS [96]. Notably, some patients with HIV
infection can develop an ALS-like syndrome, which may show symptom regression and halted
evolution under treatment with anti-HIV drugs [97]. These patients also showed expression of
HERV-K in blood, the levels of which fell in all patients after the initiation of antiretroviral drugs
[98]. As previously discussed in the context of HERV-W, it is possible that HIV proteins such as
Tat may regulate the expression of HERV-K [99], and this could explain why the triggering
pathways and expression feedback loops may differ in sporadic ALS that is not associated with
HIV. It remains possible that anti-HIV drugs might indeed inhibit HERV-K, but that their efficacy
is not as good as for HIV [95]. To further investigate the possibility that antiretroviral therapies
might be of benefit in ALS, an open-label pilot study has been initiated in Australia and the UK.
The trial is enrolling 40 patients with ALS, and will follow them for 3 months without treatment;
then treat them for 6 months with triumeq – which includes two reverse transcriptase inhibitors
(abacavir and amivudine) that have been shown to effectively inhibit HERV-K reverse tran-
scriptase activity in vitro, and an integrase inhibitor dolutegravir (Clinicaltrials.gov identifier:
NCT02868580).

Conclusion and Perspectives
The present review discusses the largely disregarded aspects of HERV multicopy elements
which may be dysregulated by epigenetic changes, transactivated by environmental triggers,
and contribute to the development of neurological diseases such as MS, ALS, and CIDP. Data
accumulated over recent decades provide rationales to identify particular HERV families and
their toxic proteins as potential therapeutic targets in these diseases. This has already

Outstanding Questions
HERVs are evolutionarily acquired,
mostly defective and inactive, and
comprise epigenetically silenced
genetic elements without assigned
physiological functions. However, for
what reasons are they are maintained
and represent 8% of the human
genome?

How are HERV dynamics in health and
disease related to the transcriptional
activity or protein expression, compo-
sition, or mutation of ancestral copies,
as well as of unfixed non-ubiquitous
copies?

How can we best neutralize endoge-
nous proteins such as those encoded
by HERVs? Potential approaches
include vaccination, antibody-medi-
ated neutralization of pathogenic com-
ponents, and antiretroviral
compounds.

What are the appropriate windows of
opportunity for anti-HERV treatment?
Can biomarkers be identified in periph-
eral blood that would permit routine
assessment of HERV reactivation in
CNS disease?
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prompted different groups to evaluate novel therapeutic approaches in patients with MS or
ALS.

One potential strategy relies upon the analogy between endogenous HERVs and their ancestral
exogenous retroviral origins, and proposes to test antiretroviral drugs that are effective in HIV-
infected, but not in HTLV-infected patients with, for example, associated myelopathy.

Another strategy may be to use a humanized neutralizing antibody (GNbAC1) targeting the
toxic Env protein that mediates HERV-W pathogenicity (illustrated in Figure 6).

The perspectives offered by the emergence of this new category of ‘pathogens from within’,
given consistent findings of their interplay with epidemiologically associated environmental
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Figure 5. Hypothetical Scenario Involving Human Endogenous Retrovirus HERV-K Activation Leading to Amyotrophic Lateral Sclerosis (ALS). This
scenario depicts the hypothesized origin of retroviral endogenizations during the evolution of species millions of years ago, and the transmission of HERV copies to
humans in which HERV-K copies may remain dormant (latent) or activated by still unknown mechanisms. This figure relates to the most recent HERV-K insertions (and
not to previous HERV-K/HML-2 insertions at �30 million years ago), which are thought to be the most active copies because they are normally less mutated than earlier
insertions. When activated in specific areas of the central nervous system, the resulting pathogenic pathway involves HERV-K expression and release of its envelope
(Env) protein that causes neurotoxicity in targeted motor neurons.

390 Trends in Molecular Medicine, April 2018, Vol. 24, No. 4



factors [100] and their relevant pathogenic effects, are unlikely to be limited to the examples
discussed in the present review. Although many issues remain unresolved (see Outstanding
Questions), this scientific domain represents a rapidly evolving area of cutting-edge research
(Box 2), and further studies may reveal that HERVs contribute to other complex and multifac-
torial human diseases. Therapeutic approaches targeting toxic HERV proteins or, more directly,
HERV gene expression may thus create a change of paradigm with completely novel treatment
perspectives. Finally, but not of the least interest, treatments targeting non-physiological HERV
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Figure 6. Proposed Global Model: From Gene–Environment Interactions to a Targeted Therapy in Multiple Sclerosis (MS). The proposed model
presents how, after being activated by variable and multiple environmental factors, HERV-W (formerly named MSRV) expresses a pathogenic envelope (Env) protein that
appears to represent an unique agonist in the pathway. (i) Downstream HERV-W DNA expression and (ii) upstream pathogenic pathways that are activated in multiple
direct and indirect target cells. An antibody neutralizing this pathogenic protein might block the pathogenic pathway at this level, independently of multiple environmental
triggers and pathogenic downstream cascades, without interfering with host physiological functions. Abbreviations: EBV, Epstein–Barr virus; HHV-6, human herpes
virus 6; HSV-1, herpes simplex virus 1; OPC, oligodendroglial precursor cell; VZV, varicella-zoster virus.

Box 2. Clinician’s Corner

The involvement of HERV expression in MS and ALS provides a shift in paradigm not only for understanding their
complex pathogenesis but also as for the development of therapeutic strategies to prevent or treat such diseases.

Although positive results in the first therapeutic attempts to target these HERV elements or their pathogenic proteins
would create an immediate breakthrough, the emerging domain of HERVs and human disease is likely to remain cutting-
edge science for many years.

The perspectives of future research in this domain at the frontiers of science are expected to unravel etiopathogenic
cascades leading to many of the chronic, complex, and multifactorial diseases for which present knowledge remains
obscure or partial, and where appropriate therapeutic approaches are not yet available.
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components would not dysregulate physiological functions and thus should have favorable
safety profiles.
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