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ARTICLE

Defects in t6A tRNA modification due to GON7 and
YRDC mutations lead to Galloway-Mowat
syndrome
Christelle Arrondel et al.#

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal mod-

ification essential for translational accuracy and efficiency. The t6A pathway uses two

sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein

KEOPS complex. We recently identified mutations in genes encoding four out of the five

KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically hetero-

geneous autosomal recessive disease characterized by early-onset steroid-resistant

nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an

extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS

subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/

OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially

structured upon binding to LAGE3. The structure and cellular characterization of

GON7 suggest its involvement in the cellular stability and quaternary arrangement of the

KEOPS complex.
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Transfer RNAs (tRNA) are subject to multiple post-
transcriptional modifications that are important for the
stabilization of their ternary structure and the precision of

the decoding process1. The majority of the complex modifications
are concentrated in the anticodon region of the tRNAs and are
crucial for accuracy of protein synthesis. The threonylcarba-
moylation of the N6 nitrogen of the adenosine at position 37
(t6A) of most ANN-accepting tRNAs represents one of the very
few nucleotide modifications that exists in every domain of life2,3.
The t6A biosynthesis pathway consists of two steps: firstly, the
YRDC enzyme (Sua5 in yeast) synthesizes an unstable
threonylcarbamoyl-AMP intermediate (TC-AMP) and in a sec-
ond step, the KEOPS protein complex transfers the TC-moiety
from TC-AMP onto the tRNA substrate4. Enzymes that synthe-
size TC-AMP exist in two versions depending on the organism: a
short form which only has the YrdC domain (such as human
YRDC) and a long form which has an extra Sua5 domain (yeast
SUA5 for instance). The eukaryotic KEOPS complex contains five
subunits GON7/LAGE3/OSGEP/TP53RK/TPRKB that are
arranged linearly in that order5–8. OSGEP is the catalytic subunit
that carries out the TC-transfer reaction and its orthologs are
present in virtually all sequenced genomes9. The other subunits
are essential for the t6A modification of tRNA, but their precise
roles are as yet unknown, especially that of GON7, an intrinsically
disordered protein (IDP), which was only recently identified in
humans5,7. Fungal Gon7 was shown to be an IDP that adopts a
well-defined structure covering 50% of its sequence upon com-
plex formation with Pcc1 (LAGE3 homolog)8. In humans, GON7
was recently shown to be also structurally disordered in absence
of the other KEOPS complex subunits. GON7 was proposed to be
a very remote homolog of the yeast Gon7 protein although its
structure upon complex formation remains unknown5,7.

tRNA modifications have been demonstrated to play a role in
the development of the brain and nervous system, and an
increasing number of defects in these modifications are now being
linked to various human neurodevelopmental disorders10. We
recently identified autosomal recessive mutations in genes
encoding four of the five subunits of human KEOPS complex,
namely LAGE3, OSGEP, TP53RK, and TPRKB in patients with
Galloway-Mowat syndrome (GAMOS, OMIM#251300). GAMOS
is a rare neuro-renal disorder characterized by the co-occurrence
of steroid-resistant nephrotic syndrome (SRNS) with micro-
cephaly and neurological impairment11. GAMOS is clinically
heterogeneous, reflecting a genetic heterogeneity. Indeed, disease-
causing mutations have been identified in eight genes to date: four
in KEOPS genes and four in other unrelated genes, WDR73,
WDR4, NUP133, and NUP107 (refs. 12–17). SRNS is typically
detected in the first months of life and most often rapidly pro-
gresses to end-stage renal disease (ESRD) within a few months;
however, there are rarer cases with preserved renal function in
adulthood18. Kidney lesions range from minimal change disease,
to focal segmental glomerulosclerosis (FSGS) that might be of the
collapsing type, or diffuse mesangial sclerosis (DMS). Cerebral
imaging findings include cerebral and cerebellar atrophy, and
gyration and/or myelination defects. These anomalies are asso-
ciated with neurological deficits such as psychomotor impairment,
hypotonia, seizures, and more rarely sensorineural blindness and
deafness. Affected children may also present with facial and/or
skeletal dysmorphic features. The prognosis of GAMOS is poor,
and most affected children die before 6 years of age.

Here we present 14 GAMOS-affected individuals from seven
families, with mutations in GON7 (alias C14orf142) and YRDC,
both genes encoding proteins involved in the biosynthesis of the
t6A modification. These data, together with our previous work,
show that mutations in genes encoding all the proteins involved
in the two chemical steps of t6A lead to GAMOS. Furthermore,

we determine the crystal structure of the GON7/LAGE3/OSGEP
KEOPS subcomplex showing that GON7 becomes structured
upon binding to LAGE3. The structure also explains our obser-
vations that GON7 stabilizes the remainder of the KEOPS com-
plex and directs its quaternary organization.

Results
Identification of GON7 and YRDC mutations in GAMOS
patients. Through whole-exome sequencing in individuals with
GAMOS, we identified mutations in the GON7 gene in 11
affected individuals from 5 unrelated families and in the YRDC
gene in 3 affected individuals from 2 unrelated families (Fig. 1a–d
and Supplementary Table 1). Four of the families with GON7
mutations (Families A to D) carried the same homozygous
nonsense mutation (c.21 C>A, p.Tyr7*) which causes a stop
codon at position 7 of the protein. These families, all originating
from the same region of Algeria, shared a common haplotype at
the GON7 locus indicating a founder effect (Supplementary Table
2). The affected individual of the fifth family (Family E) carried a
different mutation involving the same residue at position 7 and
leading to a frameshift (c.19dup, p.Tyr7Leufs*16). Both GON7
mutations are predicted to lead to the absence of protein
expression and, as expected, no protein was detected in cells
available from the affected individuals from family A, B, and C
(Supplementary Fig. 1a, c). Two compound heterozygous YRDC
mutations were identified in Family F: a missense mutation (c.251
C>T, p.Ala84Val) and a 4-base pair deletion leading to a fra-
meshift (c.721_724del, p.Val241Ilefs*72). In Family G, we iden-
tified a homozygous in-frame deletion of Leucine 265 (c.794_796
del, p.Leu265del). For both families, western blot and qPCR
analysis on cell extracts from affected children showed the pre-
sence of YRDC transcripts and proteins (Supplementary Fig. 1b,
d). To make a prediction of the effect of the YRDC mutations on
the protein, we created a three-dimensional (3D) structural model
of human YRDC using the structure of the YRDC domain of the
archaeal Sua5 (PDB 4E1B, 20% sequence identity19) and mapped
these mutations onto this in silico model (Fig. 1e). Structures of
YRDC domains are very well conserved and sequence alignment
shows that the human YRDC only has minor insertions/deletions
compared to Sua5 (Supplementary Fig. 2). The replacement of
Ala84, located in a hydrophobic region between a β-sheet and a
connecting α-helix, by the larger amino acid valine might perturb
optimal packing and destabilize the structure of the protein. The
YRDC Leu265del mutation affects a highly conserved amino acid
and creates a deletion in a C-terminal peptide that hangs over the
active site and could have a role in enzyme activity.

Early-onset proteinuria was observed in all affected children,
with first detection ranging from between birth and 5 years. All
but three children reached ESRD between 1.5 months and 6 years
of age. All individuals carrying YRDC mutations presented with
congenital or infantile SRNS detected from between birth and
4 months of age and died early, whereas most of the individuals
carrying GON7 mutations were alive at last follow-up, with either
a functioning graft or with normal renal function despite a mild
to heavy proteinuria (Supplementary Table 1). Kidney biopsies,
when available, typically displayed FSGS (Families A, C, and E) or
DMS (Families B, F, and G) (Fig. 2a–d). In addition to
developmental delay, primary microcephaly was present in the
two affected children of one family with YRDC mutations,
whereas the affected child in the second YRDC family and all
GON7-mutated individuals presented with post-natal microce-
phaly. Brain magnetic resonance imaging revealed a spectrum of
cerebellar and cortical hypoplasia or atrophy with thin corpus
callosum and ventricular dilation, myelination delay, and in one
case a simplified gyral pattern (Individual G.II-2) (Fig. 2e–n,
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Supplementary Fig. 3). Extra-renal features included facial
dysmorphy, arachnodactyly, hiatal hernia with gastro-
esophageal reflux, congenital hypothyroidism (solely in the
YRDC cases), and myoclonia. This clinical picture is highly
reminiscent of that observed in GAMOS-affected individuals with

mutations in LAGE3, OSGEP, TP53RK, and TPRKB13. However,
individuals with GON7 mutations presented with milder
neurological and renal manifestations, always with post-natal
microcephaly and no gyration defects, later onset of proteinuria
(median age 18 months vs. 1) and slower progression to ESRD
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Fig. 1 Identification of mutations in GON7 and YRDC in patients with Galloway-Mowat syndrome. a, c Pedigrees of families with mutations in GON7 (a) and
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(median age 49 months in 8/11 children vs. 5 months in 3/3
children), and a longer survival compared to the YRDC cases.

Impact of YRDC and GON7 mutations on t6A biosynthesis. To
assess the pathogenicity of YRDC mutations, we first used a yeast
heterologous expression and complementation assay as pre-
viously performed for OSGEP mutations identified in GAMOS
individuals13. Indeed, the deletion of SUA5, the YRDC ortholog in
S. cerevisiae leads to a very severe growth defect, similarly to the
deletion of each of the genes encoding the five KEOPS sub-
units3,6,20,21. We therefore heterologously expressed the human
YRDC cDNAs encoding wild-type (WT) and mutant proteins
in the Δsua5 strain to evaluate their ability to rescue the slow
growth phenotype. Since the catalytic activity of YRDC does not
require protein partners, the WT YRDC protein efficiently
complemented the Δsua5 growth defect (Fig. 3a). Although a

somewhat similar complementation was observed for the p.
Ala84Val and p.Leu265del mutants, the p.Val241Ilefs*72 mutant
was notably unable to improve the poor growth of the Δsua5
strain (Fig. 3a). All YRDC proteins were efficiently expressed in
Δsua5 strain, except the p.Val241Ilefs*72 mutant that was barely
detectable by western blot, suggesting that it is likely being
degraded by an intracellular proteolytic machinery (Fig. 3b).
Using mass spectrometry, we then analyzed the t6A content of
these transformed Δsua5 yeast strains. As expected, since Sua5 is
the only enzyme in yeast that generates TC-AMP, the Δsua5
mutant was unable to synthetize t6A, whereas the WT YRDC
expressing strain exhibited t6A levels comparable with those
measured for WT Sua5 (Fig. 3c). The p.Ala84Val and p.Leu265del
mutants showed a slight, but significant decrease in t6A levels. In
contrast, like in the Δsua5 strain, no trace of t6A modification
could be detected in the p.Val241Ilefs*72 mutant (Fig. 3c). In line
with the results of the growth complementation assay, there was a
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YRDC mutations (c, d). a Individual A.II-3 displays a retracted glomerulus with a focal segmental glomerulosclerosis lesion at the vascular pole (black
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(PAS stain; ×400 magnification, scale bar, 10 µm). d TEM of individual G.II-1 shows diffuse foot process effacement (FPE; black arrow), a classical hallmark
of nephrotic syndrome, along a glomerular basement membrane (GBM) with abnormal folded and laminated segments (yellow stars), alternating with
others with normal appearance. P podocyte, RBC red blood cell. Scale bar, 2 µm. Brain MRI of patients with GON7 (e, f) and YRDCmutations (i–n). e, f Brain
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MRI of a 5-year old control showing sagittal T1 (g) and axial T2 (h) weighted images. i–l Brain MRI abnormalities in individual F.II-1 at 5 months (i, j) and
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atrophy with a very thin corpus callosum (arrow) at 11 months (k). The axial T2-weighted image is normal at 5 months (j) but shows a very marked
abnormality of myelination and cortical atrophy (red arrow) at 11 months (l). m, n Brain MRI abnormalities in individual G.II-2 at 1 month. Sagittal T2
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direct correlation between cell fitness and t6A content. This
allowed us to classify YRDC mutations into hypomorphic
(encoding p.Ala84Val and p.Leu265del) and amorphic (encoding
p.Val241Ilefs*72) alleles, as has been previously shown for OSGEP
mutations13. A similar approach could not be applied for GON7
mutations since GON7 failed to complement the growth defect of
the Δgon7 yeast strain (see ref. 7 and our data). We therefore
measured the t6A content in fibroblasts from two individuals with
the p.Tyr7* GON7 mutation, three individuals with YRDC
mutations and one individual with the p.Arg325Gln OSGEP
mutation. The t6A levels were significantly decreased in both
YRDC- and OSGEP-mutated fibroblasts, and to a lesser extent in
GON7-mutated fibroblasts (Fig. 3d) confirming the impact of
these mutations on t6A biosynthesis in affected individuals. In
addition, we demonstrated that, similarly to individuals with
OSGEP or TP53RK mutations13, telomere length was not affected
in individuals with YRDC and GON7 mutations (Supplementary
Fig. 4). This confirms that contrary to what has been demon-
strated in yeast, human YRDC, and KEOPS complex are not
involved in telomere maintenance in human cells22–24.

In vitro characterization of WT and mutants YRDC. To
compare the stability and structure of the WT YRDC with those
of the p.Ala84Val and p.Leu265del mutants, we expressed and

purified these proteins in an E. coli expression system (Supple-
mentary Table 3). The three proteins could be purified but
we noticed that both mutants were less stable and less soluble
compared to the WT (Supplementary Methods). To probe the
proper folding of the YRDC WT and mutants, we collect 1D 1H-
NMR spectra (Supplementary Fig. 5a). All the spectra displayed
well-dispersed signals for amide protons as well as several signals
at chemical shifts lower than 0.8 ppm that are typical of methyl
groups in the hydrophobic core of proteins, suggesting the WT
and mutants were well folded. To compare their enzymatic
properties, we measured their TC-AMP synthesizing activities
in vitro by quantifying the pyrophosphate reaction product. The
p.Ala84Val and p.Leu265del mutants have lost about 75% and
30% of their activities respectively compared to WT (Supple-
mentary Fig. 5b). The activities of these mutants are compatible
with their hypomorphic nature, as suggested by the results of the
yeast Δsua5 complementation experiments (Fig. 3a).

Proliferation, apoptosis, and protein synthesis defects. We have
previously shown that transient gene expression knockdown (KD)
of human KEOPS components OSGEP, TP53RK, and TPRKB leads
to perturbations of various cellular processes including prolifera-
tion and apoptosis13. Similarly here, we transiently depleted the
expression of GON7 and YRDC, as well as LAGE3 and OSGEP as
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positive controls, in an immortalized human podocyte cell line25.
We then demonstrated using a colorimetric cell proliferation assay
that diminished expression of all four of these genes decreased cell
proliferation, with the strongest decrease being observed in LAGE3
KD podocytes (Fig. 4a). Despite efficient GON7 KD, cells exhibited
only a slight decrease in cell proliferation compared to cells treated
with the control scrambled shRNA (Fig. 4a, d). The impairment of
cell proliferation in YRDC and OSGEP KD cells was less marked
than in LAGE3 KD cells, which could be explained by a less effi-
cient gene silencing (Fig. 4d). By measuring Caspase-3/7 activity,
we next demonstrated that apoptosis was inversely related to
proliferation with LAGE3 KD podocytes displaying the highest rate
of apoptosis (Fig. 4b). Since loss of t6A modification impacts global
translation in yeast26, we also quantified the newly synthetized
protein levels, which were decreased in all KD cells (Fig. 4c), even
in GON7 KD podocytes where proliferation and apoptosis rates
were not drastically affected (Fig. 4a, b). Altogether, these results
reinforce our previous findings for the other KEOPS subunits,
OSGEP, TP53RK, and TPRBK, and confirm that mutations which
alter t6A biosynthesis in human cells have an impact on cell sur-
vival through decreased proliferation and protein synthesis, ulti-
mately leading to apoptosis.

Structure of the human GON7/LAGE3/OSGEP subcomplex. To
better understand the role of human GON7 and how its loss of

function could be connected with GAMOS, we set out to deter-
mine its structure and to establish how it interacts with the other
KEOPS subunits. We had either crystal structures (TPRKB) or
good quality 3D models (LAGE3, OSGEP, TP53RK) for all of the
KEOPS subunits at our disposal, except for GON7 (ref. 6). Based
on very weak sequence similarity, it was proposed, that GON7 is a
remote homolog of yeast Gon7 (ref. 7). We first investigated the
structure of GON7 in solution by collecting a 2D 1H-15N Band-
Selective Optimized Flip Angle Short Transient Heteronuclear
Multiple-Quantum Correlation (SOFAST-HMQC) NMR spec-
trum of a 15N-labeled GON7 sample. The poor spectral disper-
sion in the 1H dimension of the 2D correlation spectrum showed
that GON7 lacks well-defined structure, confirming the conclu-
sions of Wan et al.7. Adding non-labeled LAGE3 to the sample,
caused the shift and/or disappearance for many crosspeaks,
suggesting GON7 interacts with LAGE3 (Supplementary Fig. 6a).
We further characterized the conformation of GON7 in solution
by small-angle X-ray scattering (SAXS) measurements. By
representing the scattering data as a dimensionless Kratky plot
(qRg2 × Iq/I0 versus qRg), one can assess qualitative information
on the degree of compactness of the scattering object27. The
plateau observed for GON7 is characteristic of a fully disordered
protein, possibly with very short elements of secondary structure
(Fig. 5a), confirming our NMR data (Supplementary Fig. 6a). We
then purified the recombinant GON7/LAGE3/OSGEP complex
and analyzed its behavior in solution by SAXS. Our SAXS data

a b c

d

0.8

0.6

0.4

0.2

0.0

1.5

1.0

F
ol

d 
ch

an
ge

 in
 G

O
N
7

F
ol

d 
ch

an
ge

 in
 Y
R
D
C

F
ol

d 
ch

an
ge

 in
 L
A
G
E
3

F
ol

d 
ch

an
ge

 in
 O

S
G
E
P

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

4

3

2

1

0

4

3

2

1

0

Scr
am

ble
d

Scr
am

ble
d

Scr
am

ble
d

Scr
am

ble
d

Scr
am

ble
d

KD G
ON7

KD G
ON7

KD L
AGE3

KD O
SGEP

KD Y
RDC

Scr
am

ble
d

KD G
ON7

KD L
AGE3

KD O
SGEP

KD Y
RDCDay 1

Scrambled

KD GON7

KD LAGE3

KD LA
GE

3

KD OSGEP

KD O
SG

EP

KD YRDC

KD Y
RD

C

ns
***

**

** ** ** **

**
***

***
***

ns

***

****

****

Day 2 Day 3

Incubation time

C
el

l p
ro

lif
er

at
io

n 
ra

te
(a

bs
or

ba
nc

e 
at

 4
90

 n
m

)

R
el

at
iv

e 
C

as
pa

se
3/

7 
ac

tiv
ity

(a
bs

or
ba

nc
e 

at
 5

30
/4

05
 n

m
)

H
P

G
 in

co
rp

or
at

io
n/

1 
h

(f
lu

or
es

ce
nc

e 
in

te
ns

ity
, 4

85
/5

35
 n

m
)

Day 4 Day 7

Fig. 4 Proliferation, apoptosis, and protein synthesis defects upon GON7 and YRDC knockdown. Transient knockdown (KD) of GON7, LAGE3, YRDC, and
OSGEP was performed by lentiviral transduction of shRNA in immortalized human podocyte cell lines with a scrambled (non-targeting) shRNA as control. a
Cell proliferation was assessed using a colorimetric MTT assay over 7 days, measuring absorbance at 490 nm at days 1, 2, 3, 4, and 7 (mean ± s.e.m. of n=
5 experiments, with each experiment performed in triplicate; two-way ANOVA (p < 0.0001), Dunnett’s multiple comparisons test, n.s.= 0.2031, ***p <
0.0007, ****p < 0.0001). b Cell apoptosis was evaluated by quantification of caspase 3/7 activation on the basis of fluorescence intensity (530/405 nm).
Absolute values were normalized to DAPI fluorescence intensity as an internal control and compared to non-targeting shRNA-treated control cells
(scrambled) (mean ± s.e.m. of n= 3 experiments with each experiment performed in triplicate; one-way ANOVA (F (4,10)= 21.42, p < 0.0001), Dunnett’s
multiple comparisons test, n.s.= 0.0556, **p= 0.0012, ****p < 0.0001). c Protein biosynthesis rates were assessed on the basis of incorporation of HPG,
an alkyne-containing methionine analog. After 2 h, alkyne-containing proteins were quantified on the basis of fluorescence intensity (485/535 nm).
Absolute values were normalized to DAPI fluorescence intensity as an internal control and compared to control cells (mean ± s.e.m. of n= 3 experiments,
with each experiment performed in triplicate, one-way ANOVA (F (4,10)= 16.36, p= 0.0002), Dunnett’s multiple comparisons test, **p= 0.0035, ****p <
0.0003). d Relative expression of GON7, YRDC, LAGE3, and OSGEP transcripts were normalized to that of HPRT in KD podocytes compared to non-
targeting shRNA control treated cells (mean ± s.e.m. of n= 5 experiments, with each experiment being performed in triplicate; two-tailed Mann–Whitney
test, **p < 0.05). Source data are provided as a Source Data file
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established that the complex has a 1:1:1 stoichiometry in solution
(Fig. 5b, Supplementary Table 4). In contrast with GON7, the
dimensionless Kratky plot for GON7/LAGE3/OSGEP shows a
bell-shaped curve with a maximum for qRg ≈ 2 (Fig. 5a). This
shape suggests that the complex is mainly compact, but that
disordered regions are still present. In addition, the comparison
of the distance distribution functions of GON7/LAGE3/OSGEP
and GON7 shows that the latter alone is more extended than the
complex (Supplementary Fig. 6b). In full agreement, the 15N
SOFAST-HMQC NMR spectrum of the complex reveals that
about 35 amino-acid residues of GON7 remains flexible and
disordered in the complex whereas ~35 crosspeaks vanished upon
complex formation. These latter crosspeaks likely correspond to
amino-acid residues engaged in the interaction with LAGE3 and
thus experiencing extensive line-broadening due to the large
molecular size of the complex. We therefore deduced that GON7
is becoming partially ordered upon complex formation with
LAGE3/OSGEP and set out to determine its structure by X-ray
crystallography. We obtained 1.9 Å resolution diffraction data of
the GON7/LAGE3/OSGEP complex (Fig. 5c, d, Supplementary
Table 5). The structure could be solved by molecular replacement
using our 3D models of OSGEP and LAGE3 (refs. 8,13,23). LAGE3
contains 60 residues at the N-terminus that are absent in the Pcc1
orthologs from yeast and archaea and that are predicted to be
disordered. We did not observe any electron density for this N-
terminal peptide, confirming this region indeed lacks a stable
structure. We cannot exclude however that partial proteolysis
removed this peptide during the long crystallization process.
LAGE3 is at the center of the complex, binding on one side to
OSGEP and on the other to GON7, which does not directly

interact with OSGEP (Fig. 5c). The structures of the LAGE3 and
OSGEP subunits are very similar to their archaeal/fungal Pcc1
and Kae1 orthologs respectively. The two helices of LAGE3
associate with the N-terminal helices of OSGEP into a helical
bundle. Only 45% of the GON7 sequence adopts a well-defined
structure upon binding to LAGE3, confirming our SAXS- and
NMR-based conclusions (Fig. 5a, Supplementary Fig. 6a–d). The
N-terminal peptide of GON7 forms a β-hairpin between Met1
and Ser20 and the region between Gly25 and Pro50 forms a helix
that lies parallel against the β-hairpin (Supplementary Fig. 7).
Electron density for GON7 was absent for residues 21 to 24 and
for the region beyond position 50. The C-terminal half of GON7
is highly enriched in acidic and sparse in hydrophobic amino
acids and predicted to be unfolded. Despite their very weak
sequence similarity (19% identity, 34% similarity), the structures
of human GON7 and yeast Gon7 are almost identical (RMSD=
1.41 Å for 45 Cα positions; yeast Gon7 PDB entry: 4WXA)
(Fig. 5d, Supplementary Fig. 7). The β-hairpin of GON7 aligns
with the β-sheet of LAGE3 to form a continuous five stranded
anti-parallel sheet. The helix of GON7 packs in an anti-parallel
orientation against the C-terminal helix of LAGE3. The complex
is stabilized mainly by the hydrophobic packing of side chains
emanating from β1 and α1 of GON7 and α2 and β1 of LAGE3.
The association mode between GON7 and LAGE3 is very similar
to that of the yeast Pcc1/Gon7 complex, illustrated by their
superposition (RMSD= 1.4 Å; Fig. 5d). Structure based sequence
alignment between human GON7 and yeast Gon7 shows that
only 6 out of 45 ordered residues (12%) are conserved (Supple-
mentary Fig. 7). Compared to human GON7, yeast Gon7 is
longer by about 20 residues that were disordered in its structure.
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The experimental SAXS curve of the GON7/LAGE3/OSGEP
complex in solution is in excellent agreement (χ2= 0.33) with the
scattering curve calculated on the all-atom model built using the
program BUNCH from the crystal structure (see Methods)
(Fig. 5b). We therefore conclude that, although sharing very low
sequence homology, human GON7 and yeast Gon7 are homologs
that interact identically with their respective partners (LAGE3,
Pcc1) in the human and yeast KEOPS complex.

Role of human GON7 in KEOPS complex stability in vivo. We
further explored the deleterious cellular effects of the GAMOS-
associated GON7 mutations. We first confirmed by mass spec-
trometry analysis that in a human podocyte cell line stably
overexpressing either 2HA-tagged GON7 or V5-tagged LAGE3,
the four additional KEOPS subunits significantly co-purified with
GON7 or LAGE3, respectively, thus confirming that a five-
subunit KEOPS complex is present in these renal glomerular cells
(Supplementary Fig. 8a). We have previously demonstrated that
the majority of GAMOS-associated mutations in genes encoding
KEOPS complex components do not affect the intermolecular
interactions between the LAGE3/OSGEP/TP53RK/TPRKB sub-
units13. In order to check whether mutations in LAGE3 affected
GON7 binding, we co-expressed 2HA-tagged GON7 with WT or
mutant V5-tagged LAGE3 in HEK293T cells. Our co-
immunoprecipitation experiments demonstrated that the
LAGE3 mutations found in GAMOS individuals do not prevent
binding to GON7 (Supplementary Fig. 8b). Intriguingly, however,
we noticed that co-expression of GON7 with LAGE3 in
HEK293T cells led to an increased expression level of GON7, and
to a lesser extent of LAGE3, suggesting that the interaction sta-
bilizes both proteins (Fig. 6a). We therefore studied the stability
of GON7 and LAGE3 in a time-course experiment using cyclo-
heximide, an inhibitor of protein biosynthesis, in HEK293T cells
transiently expressing either 2HA-GON7 or V5-LAGE3 alone or
co-expressing both tagged-proteins. When expressed alone,
GON7 and LAGE3 protein levels decreased, suggesting both
proteins may be unstable in absence of their partner. This is
particularly obvious for GON7 whose protein level decreased by
half within an hour following cycloheximide addition (Fig. 6b,
Supplementary Fig. 9). On the contrary, when co-expressed, we
observed an increase of both GON7 and LAGE3 protein levels
reflecting an increase in their stability. We wondered whether the
absence of GON7 also impacts the stability of the whole KEOPS
complex and indeed, we were able to demonstrate that the protein
levels of the four KEOPS subunits were decreased in cells of
individuals mutated for GON7, whereas they were not affected in
cells of individuals with OSGEP or WDR73 mutations, the latter
being also responsible for a specific subset of GAMOS cases not
linked to a t6A biosynthesis defect15 (Fig. 6c, Supplementary
Fig. 10a). In addition, we demonstrated that this protein level
decrease was not due to transcriptional regulation (Supplemen-
tary Fig. 10b). Altogether, these results suggest that the absence of
GON7 affects KEOPS stability resulting in a decreased expression
level of the four other subunits, which might impact t6A levels.

Discussion
In this study, we identified mutations in two genes encoding
proteins involved in t6A biosynthesis in GAMOS patients: YRDC
encoding the enzyme that synthesizes the TC-AMP intermediate
used by the KEOPS complex and GON7 encoding the fifth sub-
unit of the KEOPS complex. Functional analysis of these specific
mutations has revealed that they directly impact t6A modification
(YRDC) and/or affect the stability of the KEOPS complex
(GON7). These results complement our previous findings and

establish that mutations in all the genes involved in this pathway
lead to GAMOS.

All individuals bearing GON7 or YRDC mutations present with
the clinical features of GAMOS, similarly to the individuals
previously reported to have mutations in the genes encoding the
four other KEOPS subunits. In addition, we have expanded the
GAMOS phenotype spectrum by describing congenital hypo-
thyroidism to be associated with YRDC mutations. Although the
two GON7 mutations encode truncated non-functional proteins,
we noticed that they unexpectedly result in a less severe clinical
outcome compared to that of individuals affected by mutations in
other KEOPS subunit genes or in YRDC, for which biallelic null
mutations were not found. This suggests that the absence of
GON7 has less severe consequences for cell life compared to the
other components of the t6A biosynthesis pathway, where four
out of six are encoded by genes considered to be essential28. This
less severe clinical outcome correlates with our data showing that
GON7 loss of function and depletion in fibroblasts and podo-
cytes, respectively, have globally a weaker effect on t6A levels,
proliferation, apoptosis, and protein synthesis compared to that
of other KEOPS subunits and YRDC mutations or depletion.
However, although our data have confirmed that GON7 is a
functional homolog of Gon7, the effect of their absence in human
and yeast, respectively, is markedly different since in the absence
of Gon7, the yeast KEOPS complex has only very low t6A activity
and cell growth is dramatically affected3. Altogether, our data in
humans suggest that GON7 is not as essential in humans as in
yeast for t6A biosynthesis.

Our biochemical and structural data provide a molecular fra-
mework to understand the pathophysiological effects of the
GAMOS-associated mutations. The structure of the GON7/
LAGE3/OSGEP complex shows that GON7 is bound exclusively
to the non-catalytic LAGE3 subunit, distant from the catalytic
center of OSGEP. It has been shown in vitro that the intact
human KEOPS complex has a 1:1:1:1:1 stoichiometry, in contrast
with the complex lacking GON7 which has a 2:2:2:2 stoichio-
metry7. The latter stoichiometry has also been observed for the
archaeal KEOPS complex, for which no fifth subunit similar to
Gon7 has yet been discovered. The Pcc1 subunit constitutes the
dimerization unit of archaeal KEOPS29 and this is also very likely
the case for the LAGE3 subunit of human KEOPS in absence of
GON7 (ref. 7). In line with these results, our structure of the
GON7/LAGE3/OSGEP complex shows that GON7 competes
with LAGE3 for dimerization, explaining the different stoichio-
metries of the KEOPS complex observed in the absence or pre-
sence of GON7. Indeed, GON7 covers a large hydrophobic
surface of LAGE3 (Supplementary Fig. 11), which is very likely
occupied by another LAGE3 subunit in the context of a homo-
meric dimer, as observed in the structure of Pcc1 dimer29. The
exposure of this hydrophobic surface due to the absence of GON7
in the GAMOS patients may affect the solubility and activity of
the KEOPS complex, and indeed, our data from experiments on
cell lines further indicate that GON7 contributes to the stability of
the KEOPS complex and/or to the maintenance of the correct
(catalytically active) quaternary structure as evidenced by the
decrease in KEOPS subunits protein levels observed in GON7
patient cells. Taken together, our data demonstrated that GON7
impacts the stability of the KEOPS complex therefore having an
effect on its enzymatic activity. This is in line with the in vitro
data of Sicheri’s group showing that in presence of GON7,
KEOPS t6A activity is potentiated29 and with our in vivo data
showing that t6A levels in GON7-mutated patient fibroblasts are
slightly decreased compared to YRDC- and OSGEP-mutated
fibroblasts.

Although human GON7 and yeast Gon7 have low sequence
identity, their structures and interactions with LAGE3 and Pcc1,
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respectively, are nearly identical. It is therefore surprising that
GON7 could not complement the yeast Δgon7 deletion mutant7.
Comparison of the GON7/LAGE3 and Gon7/Pcc1 complexes
shows that the hydrophobic character of the residues at the
interface is very well conserved (Supplementary Fig. 7). However
quite a few amino-acid substitutions between GON7 and Gon7
might create steric clashes that weaken or disrupt the interaction
with Pcc1, explaining the lack of complementation. Nevertheless,
the exquisite superposition of GON7 and Gon7 qualifies them as
orthologs and confirms that GON7 is the functional fifth subunit
of the human KEOPS complex. Such discrepancies between the
protein sequence and structure conservation between distant
species might be relevant in other protein complex, with their
characterization helping to identify new candidate genes for
human monogenic disorders.

An increasing number of mutations are being identified in
genes encoding tRNA-modifying enzymes that are linked to
human neurodevelopmental disorders. Very recently, mutations
in WDR4, initially described to cause a distinct form of micro-
cephalic primordial dwarfism and brain malformations30,31, have
been identified in individuals with GAMOS14. WDR4 is a com-
ponent of the METTL1/WDR4 holoenzyme, an N7-methylgua-
nosine (m7G) methyltransferase that is responsible for the highly

conserved m7G modification on a specific subset of tRNAs32,33.
Interestingly, it has been shown that the absence of m7G tRNA
modification leads to impaired cell proliferation, neural differ-
entiation, and a decrease in global translation with a less efficient
translation of mRNAs involved in cell division and brain devel-
opment, consistent with the microcephaly and brain anomalies
found in individuals with WDR4 mutations34. Similarly, as a
consequence of the decrease in t6A levels observed in affected
individual’s cells, perturbed protein translation could impact the
translation of specific mRNA involved in kidney and brain
development and/or podocyte/neuron maintenance. It is likely
that the requirement for t6A-modified tRNAs levels is dependent
of the cell-type and/or cell cycle as has been previously shown in
D. melanogaster where highly proliferative cells of the wing
imaginal discs are more affected by the absence of t6A mod-
ification than fully differentiated photoreceptors35. Neuronal
progenitors that have high mitotic activity probably have higher
demands for protein translation, making them more vulnerable to
any perturbation in the tight regulation of tRNA modifications.
Furthermore, another potential regulatory step to spatiotempo-
rally modulate these tRNA modifications and thus protein
translation is the tissue- and developmental stage-specific
expression of the tRNA-modifying enzymes36,37. YRDC and
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KEOPS subunits could be differentially expressed between spe-
cific cell-types in the brain (neural progenitors) and the kidney
(podocytes) and/or during development/differentiation explain-
ing the tissue involvement and the course of the disease as well as
its clinical outcome. Further studies on neuronal/renal progeni-
tors and neurons/podocytes differentiated from induced plur-
ipotent stem cells obtained from individuals with mutations in
YRDC and KEOPS subunits will probably provide further
insights into the pathogenesis of GAMOS.

Together, our data strongly emphasize the importance and
relevance of the t6A biosynthesis pathway in the pathogenesis of
GAMOS. Further investigations are needed to fully characterize
all the KEOPS mutations at the biochemical, structural, and
enzyme activity levels to better understand their impact on
KEOPS complex-dependent t6A biosynthesis activity and how
they influence the clinical phenotypes. Genes encoding compo-
nents of the t6A biosynthesis pathway have to be added to the
growing list of translation-associated proteins whose loss of
function are responsible for rare genetic disorders.

Methods
Patients and families. Written informed consent was obtained from participants
or their legal guardians, and the study was approved by the Comité de Protection
des Personnes “Ile-De-France II.” Genomic DNA samples were isolated from
peripheral blood leukocytes using standard procedures.

Whole-exome sequencing and mutation calling. We performed whole-exome
sequencing using Agilent SureSelect All Exon 51 Mb V5 capture-kit on a
HiSeq2500 (Illumina) sequencer (paired-end reads: 2 × 100 bases). Sequences were
aligned to the human Genome Reference Consortium Human Build 37 (GRCh37)
genome assembly with the Lifescope suite from Life Technologies. Variant calling
was made using the Genome Analysis Toolkit pipeline. Then, variants were
annotated using a pipeline designed by the Paris Descartes University Bioinfor-
matics platform. We assumed the causal variant: (i) segregates with the disease
status, (ii) is novel or has a minor allele frequency <1/1000 in gnomAD, (iii) was
not found in >10/2352 projects of our in-house database. Missense variant
pathogenicity was evaluated using in silico prediction tools (PolyPhen2, SIFT and
Mutation Taster). Sanger sequencing was used to validate the variant identified by
exome sequencing and to perform segregation analysis in the families. Sequence
were analyzed with the Sequencher software (Gene Codes, Ann Arbor, MI) and
positions of mutations were numbered from the A of the ATG-translation initia-
tion codon. For Family G, WES, and SNP-array were performed according to
standard diagnostic procedures and WES quality criteria at the UMC Utrecht, the
Netherlands. The patient–parent quartet WES with sibling-sharing analysis focused
on the regions of homozygosity determined by SNP-array (parents are con-
sanguineous in the eighth degree).

Plasmids, cell culture, establishment of cell lines. The following expression
vectors were used in this publication: LentiORF pLEX-MCS (Open Biosystems),
pESC-TRP with a c-myc tag (Agilent), and pLKO.1-TRC Cloning vector (# Plas-
mid 10878, Addgene). The LentiORF pLEX-MCS plasmid was modified by site-
directed mutagenesis (QuickChange kit, Agilent) to insert one NheI restriction site,
and either two copies of the Human influenza hemagglutinin (HA) tag or one copy
of the V5 epitope tag allowing epitope-tagging at the N-terminal of the encoded
protein. Human full-length GON7, LAGE3, and YRDC cDNA (NM_032490.5,
NM_006014.4, and NM_024640.4, respectively) were amplified by PCR from
IMAGE cDNA clones (IMAGE 4796574, IMAGE 5485603, IMAGE 5211591, and
IMAGE 6147134, respectively), and subcloned into the modified pLEX-MCS
plasmid using either SpeI and XhoI (for GON7 and LAGE3) or NheI and XhoI (for
YRDC). Human YRDC cDNA was also subcloned into the BamHI and SalI sites of
pESC-TRP. Site-directed mutagenesis (QuickChange kit, Agilent) was used to
generate the mutations used in this study. An adapted cloning protocol was used to
obtain the C-terminal extension found for the YRDC p.Val241Ilefs*72 mutant. For
gene silencing, the shRNA sequences described in Supplementary Table 6 were
cloned into the lentiviral pLKO.1-TRC Cloning Vector using the AgeI and EcoRI
restriction sites. This vector contains a cassette conferring puromycin resistance.
All constructs were verified by Sanger sequencing.

The human immortalized podocyte cell line (AB8/13) provided by M. Saleem
(University of Bristol, UK) was grown at 33 °C with 7% CO2 in RPMI 1640
medium supplemented with 10% fetal bovine serum, insulin-transferrin-selenium,
glutamine, and penicillin and streptomycin (all from Life Technologies), and
human primary fibroblasts, obtained from patient skin biopsies, were cultured in
OPTIMEM medium supplemented with 10% fetal bovine serum, sodium pyruvate,
glutamine, fungizone, and penicillin and streptomycin (all from Life Technologies)
at 37 °C with 7% CO2. Obtention and culture of lymphoblastoid cell lines are

detailed in Supplementary Methods. Human podocytes stably overexpressing 2HA-
GON7 or V5-LAGE3, or transiently depleted for GON7, LAGE3, OSGEP, or YRDC
were obtained by transduction with lentiviral particles and subsequent puromycin
selection (2 μg/ml). HEK293T cells (ATCC CRL-3216) were transiently transfected
using Lipofectamine® 2000 (ThermoFisher Scientific).

Antibodies and chemical compounds. The following antibodies were used in the
study: mouse anti-α-tubulin (T5168, used at 1:1000), mouse anti-actin (A5316,
used at 1:1000), mouse anti-HA (12CA5, at 1/1000), rabbit anti-GON7 (HPA
051832, used at 1:500), rabbit anti-LAGE3 (HPA 036122, used at 1/500), rabbit
anti-TPRKB (HPA035712, used at 1:500), rabbit anti-OSGEP (HPA 039751, used
at 1/1000), and mouse anti-GAPDH (MAB374, used at 1/2000) from Sigma-
Aldrich; mouse anti-V5 (MCA1360, used at 1/1000) from Bio-Rad; rabbit anti-
YRDC (PA5-56366, used at 1:500) from ThermoFisher Scientific; rabbit anti-
LAGE3 (NBP2-32715, used at 1:1000) and mouse anti-OSGEP (NBP2-00823, used
at 1:500) from Novus Biologicals; rabbit anti-TP53RK (AP17010b, used at 1:500)
from Abgent. Secondary antibodies for immunoblotting were sheep: anti-mouse
and donkey anti-rabbit HRP-conjugated antibodies (GE Healthcare, UK), and
IRDye 800CW Donkey anti-rabbit (926-32213) and IRDye 680RD Donkey anti-
mouse (926-68072) antibodies (LI-COR). Cycloheximide (C7698), Nuclease P1
(N8630), phosphodiesterase I from snake venom (P3243), and alkaline phospha-
tase (P4252) were purchased from Sigma-Aldrich.

Yeast culture and heterologous complementation assay. Yeast cells were grown
at 28 °C in standard rich medium YEPD (1% yeast extract, 2% peptone, 2% glu-
cose) or minimal supplemented media (0.67% YNB, 2% carbon source). Cells were
transformed using the lithium acetate method38. Media were supplemented with
2% agar for solid media. The S. cerevisiae W303 derived strain, Δsua5::KanMX
(YCplac33-SUA5)39, was used as the host for the complementation assay. For each
pESC-TRP plasmid derivative to be tested, three independent clones were selected
after transformation and grown on GLU-TRP media. Clones were then streaked
onto GAL-TRP containing 0.1% 5-fluoroorotic acid (5-FOA) to counter-select the
YCplac33-SUA5 plasmid (containing URA3). After two rounds of selection, clones
were checked for their acquired Ura- phenotype, their plasmid content was con-
firmed by sequencing after plasmid rescue before being finally evaluated for fitness
by a 10-fold serial dilution spotted onto GAL-TRP minimal supplemented media.
Empty pESC-TRP, pESC-TRP-SUA5, and pESC-TRP-SUA5-myc were used as
negative and positive controls, respectively.

Quantitative real-time PCR. Total mRNA from knocked down podocytes, pri-
mary skin fibroblasts, and LCLs was isolated using Qiagen Extraction RNeasy® Kit
and treated with DNase I. One microgram total RNA was reverse-transcribed using
Superscript II, according to the manufacturer’s protocol (Life Technologies). The
relative expression levels of the mRNA of interest were determined by real-time
PCR using Power SYBR Green ROX Mix (ThermoFisher Scientific) with specific
primers listed in Supplementary Table 7. Samples were run in triplicate and gene of
interest expression was normalized to human hypoxanthine-guanine phosphor-
ibosyl transferase (Hgprt). Data were analyzed using the 2−ΔΔCt method.

Quantification of t6A modification. Yeast tRNAs were extracted and purified
from actively growing cells (at OD600nm of approximately 3 × 107 cells/ml) with
phenol induced cell permeabilization, LiCl-selective precipitation, and subsequent
ion exchange-chromatography purification on an AXR-80 column (Nucleobond,
Macherey-Nagel), according to the manufacturer’s instructions. For human pri-
mary fibroblasts, the two-step protocol that was applied is detailed in Supple-
mentary Methods. Ten micrograms of yeast tRNAs and approximately 1 µg of
human fibroblast tRNAs were then enzymatically hydrolyzed into ribonucleosides
with nuclease P1, phosphodiesterase, and alkaline phosphatase, deproteonized by
filtration, and finally dried under vacuum according to the protocol of Thuring
et al.40. t6A ribonucleoside was analyzed using the quantitative LC/MS-MS pro-
tocol of Thüring et al.40. Quantification of t6A was performed by integration of the
peaks of interest and expressed relative to the total area of the peaks corresponding
to the four canonical unmodified ribonucleosides assessed in the same sample for
normalization. tRNA extracted from three independent samples were each mea-
sured twice (two technical replicates). Detailed information are provided in Sup-
plementary Methods.

Protein extraction and immunoblotting. Proteins from KD podocytes, primary
fibroblasts, and LCLs were extracted in lysis buffer containing 150 mM NaCl, 50
mM Tris-HCl pH 7, 0.5% Triton-X100 with CompleteTM protease inhibitors
(Roche), as in Serrano-Perez et al.41. Fifty micrograms of proteins were loaded onto
acrylamide gels and blotted onto nitrocellulose membranes (Amersham). The
membranes were blocked in 1× Tris-buffered saline, 0.1% Tween 20 (TBST) with
5% bovine serum albumin or in Odyssey (LI-COR Bioscience) blocking buffer.
Membranes were then incubated with the indicated primary antibodies, washed,
and then incubated with either HRP-conjugated or LI-COR IRDye secondary
antibodies. Signals were detected using ECL reagents (Amersham Biosciences) and
acquired in a Fusion Fx7 darkroom (Vilber Lourmat) or acquired with Odyssey
CLx near-infrared fluorescent imaging system (LI-COR Bioscience). Densitometry
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quantification was performed either using Bio-1D software or using Image studio
lite software (version 5.2). Uncropped and unprocessed blots are provided in the
Source Data file.

Immunoprecipitation and cycloheximide chase experiments. For immunopre-
cipitation, HEK293T cells were transiently transfected with the adequate plasmids
(2HA-tagged GON7, V5-tagged-LAGE3 wild-type (WT) and/or mutants) using
calcium phosphate. Forty-eight hours post transfection, cells were lysed in 150 mM
NaCl, 25 mM Tris-HCl pH 8, 0.5% Triton with protease inhibitors and HA-tagged
GON7 was immunoprecipitated using the µMACSTM Epitope Tag Protein Isola-
tion Kit (Miltenyi Biotec). Briefly, fresh lysates (1–1.5 mg of protein) were incu-
bated either with mouse anti-V5 antibodies, followed by a 30-min incubation with
magnetic beads coupled to protein A, or directly with magnetic beads coupled to an
HA antibody. Immunoprecipitated proteins were isolated using µMACS® Separa-
tion Columns in a magnetic µMACS separator and subsequently eluted with 1×
Laemmli buffer. Lysates and immunoprecipitated samples were subjected to
immunoblot41. To assess rates of protein degradation, HEK293T cells transiently
expressing either 2HA-GON7 or V5-LAGE3 alone, or co-expressing both proteins
were incubated with cycloheximide at a final concentration of 100 µg/ml for the
indicated time periods (0.5, 1, 2, 4, and 6 h). Total protein extracts and immu-
noblotting were performed as described above. Anti-HA and anti-V5 antibodies
were used to reveal GON7 and LAGE3, respectively. Relative GON7 and LAGE3
protein amounts were normalized to those of α-tubulin at each time point.

Cell proliferation, apoptosis, and protein synthesis assays. Cell proliferation,
apoptosis level, and rates of protein synthesis were assessed in KD podocytes using
the CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay (MTT) (Pro-
mega), the Caspase-3/7 Green detection Reagent (C10423; ThermoFisher Scien-
tific), and the Click-iT HPG Alexa Fluor 488 Protein Synthesis Assays (C10428;
ThermoFisher Scientific), respectively, according to the manufacturer’s instruc-
tions. Detailed information are provided in Supplementary Methods.

Proteomic studies. Human podocyte cell lines stably expressing either 2HA-
GON7 or V5-LAGE3 were used to perform proteomic studies. 2HA-GON7 and
V5-LAGE3 were immunoprecipitated as described in the section above. Eluates
were processed according to Braun et al.13. Two groups (control IP versus IP HA or
IP V5), each containing three biological replicates, were used for statistical analysis.
Only proteins that were identified at least three times out of six were retained. A t-
test was performed, and the data were represented in a volcano plot (FDR < 0.01,
S0= 2, 250 randomizations).

Telomeric restriction fragment. Measurement of the length of the terminal
restriction fragments was performed by Southern blotting according to Touzot et al.42.

Expression and purification of KEOPS subunits. All structural work was done
using the full-length proteins of GON7, LAGE3, and OSGEP.

For NMR experiments, two vectors were ordered from Genscript (Piscataway,
USA) for the expression of either unlabeled his-tagged LAGE3 (vector “pET21a-
LAGE3_hisTEV_op”) or 15N-labeled his-tagged GON7 (vector “pET24d-
C14_hisTEV_op”) whose sequences are shown in Supplementary Table 8.
Expression and purification of LAGE3 and 15N-GON7 and subcomplex LAGE3/
15N-GON7 preparation are described in detail in Supplementary Methods.

For SAXS or crystallogenesis experiments, preparation of unlabeled GON7 and
GON7/LAGE3/OSGEP subcomplex, and co-expression and purification of the
KEOPS subunits are detailed in Supplementary Methods and Supplementary Figs.
12 and 13. Fractions of the heterotrimeric GON7/LAGE3/OSGEP complex eluted
from size exclusion chromatography (Supplementary Table 9) were then re-loaded
onto NiIDA and washed with lysis buffer A supplemented with increasing
concentrations of NaCl (0.2; 0.5; 1, and 2M) in order to remove traces of
contaminants. Bound proteins were eluted using three fractions of 2 ml of buffer A
supplemented with 100, 200, and 400 mM imidazole and the three subunits
complex was concentrated to 8.3 mg/ml for crystallization trials. A unique crystal
was obtained using the sitting-drop vapor diffusion method after more than
6 months incubation at 4 °C. The successful condition was composed of 100 nl of
protein solution and 100 nl of 30% PEG 4000, 0.1 M Tris-HCl pH 8.5 and 0.2 M
magnesium chloride. The crystal was cryo-protected by quick-soaking in reservoir
solution supplemented with 30% glycerol prior to flash freezing in liquid nitrogen.

Modeling and crystal structure determination. Modeling of YRDC: the Phyre2
and I-tasser webservers both proposed high confidence models for YRDC based on
the StSua5 crystal structure despite weak sequence identity between the two species.
A 3D model of YRDC was built using the MODELLER software43. X-ray dif-
fraction data collection was carried out on beamline Proxima1 at the SOLEIL
Synchrotron (Saint-Aubin, France) at 100 K. Data were processed, integrated, and
scaled with the XDS program package44. The crystal belonged to space group P43.
The OSGEP and LAGE3 subunits were positioned by molecular replacement with
the programs PHASER45 and MOLREP, implemented in the CCP4 suite46 using
the structures of MjKae1 (PDB ID: 2VWB) and ScPcc1 (PDB ID: 4WX8) as search

models. Residual electron density showed clearly the presence of the
GON7 subunit, which was constructed using the program BUCCANEER46. The
initial structure was refined using the BUSTER program47 and completed by
interactive and manual model building using COOT48. The correctness of the
assigned GON7 sequence was verified by omit mFo-DFc, 2mFo-DFc, Prime-and-
switch electron density maps49 (Supplementary Fig. 14). One copy of the GON7/
LAGE3/OSGEP heterotrimer was present in the asymmetric unit. Data collection
and refinement statistics are gathered in Supplementary Table 5. The coordinates
have been deposited at the Protein Data Bank (code 6GWJ).

Small-angle X-ray analysis. SAXS experiments were carried out at the SOLEIL
synchrotron SWING beamline (Saint-Aubin, France). The sample to detector
(Aviex CCD) distance was set to 1500 mm, allowing reliable data collection over
the momentum transfer range 0.008 Å−1 < q < 0.5 Å−1 with q= 4πsin θ/λ, where
2θ is the scattering angle and λ is the wavelength of the X-rays (λ= 1.0 Å). To
isolate the various species in solution, SAXS data were collected on samples eluting
from an online size exclusion high-performance liquid chromatography
(SEHPLCBio-SEC3Agilent) column and directly connected to the SAXS measuring
cell. sixty-five microliters of GON7/LAGE3/OSGEP and GON7 samples con-
centrated at 1.5 and 6.7 mg/l, respectively, were injected into the column pre-
equilibrated with a buffer composed of 20 mM MES pH 6.5, 200 mM NaCl, and
5 mM 2-mercaptoethanol. Flow rate was 300 µl/min, frame duration was 1.0 s,
and the dead time between frames was 0.5 s. The protein concentration was esti-
mated by UV absorption measurement at 280 and 295 nm using a spectrometer
located immediately upstream of the SAXS measuring cell. A large number of
frames were collected before the void volume and averaged to account for buffer
scattering. SAXS data were normalized to the intensity of the incident beam and
background (i.e. the elution buffer) subtracted using the program FoxTrot50, the
Swing in-house software. The scattered intensities were displayed on an absolute
scale using the scattering by water. Identical frames under the main elution peak
were selected and averaged for further analysis. Radii of gyration, maximum par-
ticle dimensions, and molecular masses were determined using PrimusQT51

(Supplementary Table 4). The BUNCH program52 was then used to build atomic
models of GON7/LAGE3/OSGEP starting from the crystal structure and by
determining the optimal position of the missing regions as to fit the data. In a final
step, we substituted the dummy residues of these flexible parts with all-atom
descriptions using the programs PD2 and SCWRL4 (ref. 53). An ultimate adjust-
ment was performed using the program CRYSOL54. The modeling was repeated
10 times and the best model was deposited in SASBDB55 with codes SASDFK8,
SASDFM8, and SASDFL8 for GON7, GON7/LAGE3, and GON7/LAGE3/OSGEP,
respectively.

Statistical analyses. GraphPad Prism 8.0 software was used for the graphical
representation and statistical analysis of cell-based data. Results are presented as
mean ± s.e.m. of at least n= 3 independent experiments. For statistical analysis, data
sets comparing more than three conditions (to a control group) were analyzed with
ANOVA followed by Dunnett’s multiple comparisons test or by using Kruskal–Wallis
test followed by a Dunn’s multiple comparisons test. Data sets with only two con-
ditions to compare were analyzed using an unpaired t-test or a Mann–Whitney test.
P < 0.05 was considered statistically significant. A standard confidence interval of 95%
was applied in all analyses. Displayed in the figures are the mean values of all technical
replicates for each of the independent experiments (displayed as single data points).
Black lines indicate the mean values of all independent experiments.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 3c–d, 4 and 6 and Supplementary Figs. 1, 5b, 8b, 9 and
10 are provided as a Source Data file. Patients’ consent was not obtained for public
deposition of whole-exome sequencing data, but these are available from the
corresponding author upon reasonable request. Other data generated during the current
study are available from the corresponding authors upon reasonable request. Accession
codes for deposited data: crystal structure of GON7/LAGE3/OSGEP (PDB ID: 6GWJ,
[https://www.rcsb.org/structure/6GWJ]); SAXS model codes SASDFK8, SASDFM8, and
SASDFL8 for GON7, GON7/LAGE3, and GON7/LAGE3/OSGEP, respectively.
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