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Abstract—Hypertensive Disorders of Pregnancy (HDP), a
group of medical conditions occurring during pregnancy, have
wide-reaching implications on the normal progress of 17% of
pregnancies, leading to maternal and perinatal morbidity and
mortality. One of the HDP complications is the Intrauterine
Growth Restriction (IUGR). IUGR changes the behavior of any
feature extracted from Fetal Heart Rates (FHRs). These features
if well-selected improve the classification of IUGR. However,
the choice of features was reliant on whether it’s linear or
nonlinear. Also, the classification algorithms such as, K-Means
and Support Vector Machine (SVM) used to predict and classify
biomedical signals were not optimal, and the best classification
algorithm was not yet set. Our aim is to propose a new kurtosis-
based combinations of features and explore their effect on
HDP and IUGR classification from Doppler Ultrasound FHRs.
Features extracted from FHRs were fed into K-means and SVM
classification algorithms. The database comprised 50 normal and
50 IUGR FHRs. Results showed that the best extracted features
were those based on kurtosis, and the best classification method
was the SVM. The best combination result was 67% sensitive,
100% specific and 100% precise to the classification and detection
of IUGR and thus HDP. A further future study could test
additional combination of features and other classification-based
methods to predict IUGR and thus HDP.

Index Terms—Hypertensive Disorders of Pregnancy, Intrauter-
ine Growth Restriction, Entropy Features, Kurtosis, K-means
clustering, Support Vector Machine Algorithm, Statistical Anal-
ysis.

I. INTRODUCTION

Hypertensive Disorders of Pregnancy (HDP), also known
as maternal hypertensive disorders, is a critical health com-
plications encountering pregnant women and their infants [1].
Such complications affect the normal progress of 17% of preg-
nancies [2], leading to Preeclympcia (PE). Early-onset of PE
is commonly associated with Intrauterine Growth Restriction
(IUGR), an abnormal uterine, and umbilical artery Doppler
waveforms [3]. As such, IUGR is one of the major signs and
consequences of HDP, also known as Fetal Growth Restriction
(FGR), the poor growth of the fetus while in the mother’s
womb during pregnancy [4]. IUGR is the decreased rate of
fetal growth compared to the normal rate of growth.

Many studies have been carried out on feature extraction
from Fetal Heart Rates (FHRs), specifically the use of non-

linear features, such as entropies to discriminate FHRs [5],
[6], [7], [8], [9]. A study published by Zaylaa et al, focused
on the employement of Recurrence Plots to promot the dis-
crimination between normal and IUGR fetuses. Entropy and
recurrence rates were computed, and the sensitivity, specificity,
and accuracy of the recurrence quantification parameters were
measured relative to the discrimination of IUGR fetuses [9].
Another study published by Zaylaa et al. provided N-order
and maximum fuzzy similarity entropy features for improving
the discrimination of FHR signals [7]. Zaylaa et al. focused
initially on optimizing the setting parameters for entropy
features, and proved that it was advantagous to use the n-
order similarity entropy over the regular similarity entropy [7].
Another study, explored a cascade of nonlinear kernal-based
entropy to discriminate FHRs [10]. Zaylaa et al. presented
a statistical evaluation of the discrimination power of each
parameter through a paired t-test statistics and distribution
spread [10]. However, it was merely applied on brain signals.

As FHRs have not only been explored using the theory
of complexity [6], [11], [12] or through machine learning
and classification. Recently, a crucial study extracted kurtosis
feature from cardiac signals and used classification approaches
to detect pathologies [13]. However, as per our thorough
review, kurtosis is not yet applied to FHRs.

Basically, the aim of the study is to classify HDP through
kurtosis extracted from Fetal Doppler Ultrasound information.
The database comprised fifty normal pregnancies/FHRs and
fifty IUGR pregnancies/IUGR fetuses. IUGR was explored
among a set of pathologies in order to reduce its outcomes
on the population. Recorded FHRs were collected in the
third trimester, to find signatures and to pave the way for
a decent and early diagnosis of IUGR associated with HDP.
The aim was also to implement and test K-means and SVM
algorithms on FHR’s features. This includes extracting several
kurtosis-based features and classical time-based features, such
as Sample Entropy (SampEn) and Fuzzy Entropy (FuzzyEn),
from the signals. In addition, choosing new combinations of
features, training and testing the algorithms for classification.

The paper is organized as follows. Section I provides
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Fig. 1: The Overall Framework of the Study of Hypertensive Disease of Pregnancy (HDP) and Intrauterine Growth Restriction
Fetal Heart Rates (IUGR-FHRs) Using Kurtosis-based K-means and Support Vector Machine (SVM) Algorithms.

the literature review and the objectives. Section II presents
the materials used for recording FHRs and the processing
software. Section III showcases the classical features, the new
combinations of kurtosis-based features and the classification
methods illustrated in the block diagram in Fig. 1. The block
diagram showcases the feature extraction step followed by the
classification algorithms applied to FHRs. Section IV show-
cases the results obtained. Section V provides the discussion
and conclusion, and section VI provides the future steps.

II. MATERIALS

The Multi-channel Doppler Ultrasound technology (MC-
DUS) was used for recording FHRs through the Mindray
Ultrasound (Mindray North America’s Diagnostic Instruments,
Inc.). Regular protocols were applied for FHRs extraction [6].
Mindray’s Ultrasound (US) is a mobile device comprising
three groups of transducers, after some processing steps the
extracted clean healthy and IUGR FHRs were displayed on
the monitor’s screen as shown in Figs. 2 (a) and (b), and
were saved. Moreover, the processing was done on MATLAB
(R2018a, U.S.).

III. FEATURES EXTRACTION AND CLASSIFICATION
ALGORITHMS OF SIGNALS

After loading FHRs, we extracted some features, and then
applied the classification techniques. Extracted features were
meant to minimize the loss of important information embedded
in the signal. The novel part was extracting kurtosis-based
combinations of features from FHRs, feeding them to the k-
means and SVM, and evaluating the outcomes statistically.

The features involved included kurtosis and entropy. En-
tropy, which measures the uncertainty of a system, can be com-
puted in different ways including Sample Entropy (SampEn),
Multi-Scale Entropy or Costa Entropy (CostaEn), FuzzyEn,
Conditional Entropy (CondEn) and Multi-scale Permutation
Entropy (MS-PermEn).

(a)

(b)

Fig. 2: The Real Fetal Heart Rate Signals. (a) Healthy Fetal
Heart Rates (HFHRs). (b) Intrauterine Growth Restricted Fetal
Heart Rate (IUGR-FHR).

A. Sample Entropy

SampEn measures similarity and excludes self-matches
from the signal. It is given by:

SampEn(m.r) = −lnA
m(r)

Bm(r)
, (1)

where A is the number of pairs of complete matches of length
m+1 (m being the embedding dimension) placed within a
predefined threshold r = 0.2∗std(signal) and B is the number
of pairs of broken matches of length m placed within ’r’ [6].

B. The Multiscale Entropy or Costa Entropy
MS-En or CostaEn quantifies the complexity of signals

by computing the SampEn over a range of scales, i.e. using
the coarse-graining procedure to eliminates the fast temporal
scales. The new time series y(τ ) is obtained using the follow-
ing formula:



TABLE I: The Selection of the Extracted Feature Sets for the Classification of HDP and IUGR.

Features CostaEn SampEn Kurtosis CondEn FuzzyEn MS-PermEn
Set I + + - - - -
Set II - - + + + -
Set III - - + + - +

y(τ) =
1

τ

jτ∑
i=(j−1)τ+1

x(i), (2)

where τ is the scale factor and for 1≤j≤N/τ . The length of
each coarse-grained time series is N/τ . SampEn provided in
section A was then calculated while varying τ [6].

C. Fuzzy Entropy
FuzzyEn measures the quantity of fuzzy information se-

lected from a fuzzy set ’C’ using a membership function,
where there are n membership functions µC . Assuming that
C is a fuzzy set on discourse U = {u1, u2, ..., un}, the
membership vector of C is ci = µ(ui) ∈ [0, 1]. FuzzyEn is
based on the distance of C [6]:

HFuzzyEn(C) =
2

n

n∑
i=1

|ci − µ(ui)|. (3)

where n is the length of the signal. The outcome is analyzed
as follows [6]:
• If C is a crisp set (ci = 0 or 1), then H(C) = 0;
• If ci = 1

2∀i, H(C) i.e. H(C) = 1.

D. Conditional Entropy

CondEn quantifies the amount of information needed to
describe the outcome of a discrete and random signal Y given
another signal X [14]. The entropy of Y conditioned on X
is written as H(Y/X). If H(Y/X = x), CondEn is defined
by [14]:

HCondEn =
∑
x∈X

P (x)H

(
Y

X
= x

)
. (4)

where P (x) is the probability function of x.
E. Multi-scale Permutation Entropy

PermEn algorithm splits the data into overlapping n-tuples
patterns, where n is the embedding dimension. Each n-tuple is
then sorted in ascending order, which generates a permutation
type π according to the ordering of the sorted data. For a
signal x0, ..., xN−1 PermEn(n) is calculated as follows:

PermEn(n) = −
n!∑
i

P (πi)logP (πi), (5)

where P (πi) is the number of occurrence. PermEn(n) ranges
from 0 to log(n!), with 0 indicating a series that is monoton-
ically increasing or decreasing (highly regular), and log(n!)
indicates a completely random series [15]. MS-PermEn is the
PermEn applied to the coarse grained signals.

F. Kurtosis
Kurtosis is the measure of the thickness or heaviness of the

tails of a distribution of the signal, and the measure of the
”tailedness” of the probability distribution [13]. Kurtosis is a

descriptor of the shape of a probability distribution. There are
various interpretations of the degree of excess kurtosis:
• low for flat frequency distribution
• high for peaked frequency distribution [13].
Higher kurtosis is the result of infrequent extreme deviations

as opposed to frequent modestly sized deviations. The excess
kurtosis is given by:

Kurt(Y )− 3 =
1(∑n

j=1 σ
2
j

)2X n∑
i=1

σ4
i (Kurt(Xi)− 3) .

(6)
where σi the standard deviation of Xi, Y is a random signal
defined by the sum of the Xi (here FHR signals) and kurt
is given as: Kurt(X) = µ4

σ4 , where µ4 is the fourth central
momentum.

In our study, the features were divided into three sets as
shown in Table I. Set I, [CostaEn, SampEn], which was based
on various complexity analysis studies [5], [6], [7], and both
Set II, [Kurtosis, CondEn, FuzzyEn], and Set III, [Kurtosis,
CondEn, MS-PermEn], which were the new kurtosis-based
combination of features.

G. Signals Classification and Clustering

Each of the three sets of features was fed into two clas-
sification techniques, K-Means and SVM. The classification
approach was used to assign different FHR signals to different
groups, or to partition a data set into clusters, so that the data
in each subset shares some common trait proximity, according
to a predefined distance measure [16]. K-means and SVM
are considered as supervised and non-supervised clustering
techniques, respectively [16]. The final step demonstrated in
Fig. 1 is based on the evaluation of the classification and
detection of IUGR and thus HDP through the sensitivity,
specificity and precision measures in percentage.

IV. SIMULATION RESULTS

According to the features extracted, there are differences
in the outcomes of the classification and clustering results of
normal and the IUGR signals. The sensitivity, specificity and
precision percentages were calculated as in [9], and are shown
in Table II. The highest statistical values were highlighted in
bold.

The [Kurtosis, CondEn, FuzzyEn] combination of features
was 100% sensitive, 38% specific and 55% precise to the
classification and detection of IUGR and HDP using k-means
method, while [CostaEn, SampEn] showed lower percentages
and lower significance using K-means (Table II).

Set III was 100% sensitive, 75% specific and 80% precise
in the classification of FHRs. Moreover, set II and set III were



TABLE II: The Statistical Evaluation of the Classification of IUGR and HDP through three Different
Combinations of Features Extracted from Fetal Heart Rates Using the K-means and the Support Vector
Machine (SVM).

Studies Classification/Clustering Algorithms Sensitivity (%) Specificity (%) Precision (%)

Zaylaa et al.[6,7] and Costa et al.[7] (Set I) K-Means 100 33 50

SVM 100 67 80

New Combination (Set II) K-Means∗ 100 38 55

SVM 83.3 67 83

New Combination (Set III) K-Means∗ 100 75 80

SVM∗ 67 100 100

highly specific and precise to the classification as compared
to set I using the SVM algorithm.

The classification of IUGR and HDP mostly significant
using the kurtosis-based combination of features, i.e. [Kurto-
sis, CondEn, MS-PermEn] followed by [Kurtosis, CondEn,
FuzzyEn] features using SVM, as opposed to the classical
[CostaEn, SampEn] feature.

V. DISCUSSION AND CONCLUSION

Our results revealed that if the number of features in SVM
increases, the specificity incearses by 16.5% and the precision
of the classification increases by 11.5% as compared to the
reference results obtained by [CostaEn, SampEn] features [5],
[6], [7], however the sensitivity decreases. This decrase in
sensitivity supports the findings of Al-Angari et al. [13] which
showed that such types of kurtosis-based features are not
only sensitive to detect IUGR but also sensitive to cardiac
diseases. Kurtosis results were precise (55-100 %) which is in
agreement with the work done by Fan and Zuo [17].

Our work shows the important steps of extracting kurtosis-
based features, as they served as signatures for the change in
the state of the Doppler Ultrasound FHR information. Among
the classification methods SVM was advantageous over the
K-means. The study explores the problem of IUGR caused
by the HDP using the classification of real FHRs. FuzzyEn
features existing in literature and classification algorithms
were implemented. Real results obtained could be useful
to promote the classification and reduce the percentage and
complications of HDP on pregnancies.

VI. FUTURE WORK

Our exploratory study included the k-means and SVM to
perform the classification of IUGR and thus HDP through the
new kurtosis-based combination of features. As a prospect,
there are various different tests of new features and experi-
ments are yet to be implemented.

REFERENCES

[1] L. Zhenhu, D. Xuejing, and L. Xiaoli, Entropy Measures in Neural
Signals. Singapore: Springer Singapore, 2016, pp. 125–166. [Online].
Available: https://doi.org/10.1007/978-981-10-1822-0 8

[2] S. Singh, E. B. Ahmed, and S. Constan, NICP,” PMC, [Online], Sep-
Oct 2014.

[3] D. J. Sawchuck and B. K. Wittmann, “Pre-eclampsia renamed
and reframed: Intra-abdominal hypertension in pregnancy,” Medical
Hypotheses, vol. 83, no. 5, pp. 619 – 632, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306987714002722

[4] G. Mandruzzato, A. Antsaklis, F. Botet, and et al., “Intrauterine restric-
tion (iugr),” Journal of Perinatal Medicine, vol. 36, no. 4, p. 277281,
2008.

[5] S. Oudjemia, A. Zaylaa, J. Charara, and J.-M. Girault, “Delta-fuzzy
similarity entropy to discriminate healthy from sick fetus,” in Proc.
ICABME. IEEE, 2013, pp. 1–4.

[6] A. Zaylaa, “Analysis and extraction of complexity parameters of biomed-
ical signals,” Ph.D. dissertation, François-Rabelais University of Tours,
2014.

[7] A. Zaylaa, S. Oudjemia, J. Charara, and J.-M. Girault, “n-order and
maximum fuzzy similarity entropy for discrimination of signals of
different complexity: Application to fetal heart rate signals,” Computers
in biology and medicine, vol. 64, pp. 323–333, 2015.

[8] A. Zaylaa, A. Harb, F. Khatib, Z. Nahas, and F. Karameh, “Entropy
complexity analysis of electroencephalographic signals during pre-ictal,
seizure and post-ictal brain events,” in Proc. ICABME,. IEEE, 2015,
pp. 134–137.

[9] A. Zaylaa, J. Charara, and J. Girault, “Advanced discrimination between
healthy and intrauterine growth restricted fetuses by unbiased recurrence
plots,” Advanced Techniques in Biology and Medicine, vol. 4, no. 2, pp.
1–10, 2016.

[10] A. Zaylaa, S. Saleh, F. Karameh, Z. Nahas, and A. Bouakaz, “Cascade of
nonlinear entropy and statistics to discriminate fetal heart rates,” in Ad-
vances in Computational Tools for Engineering Applications (ACTEA),
2016 3rd International Conference on. IEEE, 2016, pp. 152–157.

[11] A. Zaylaa, J.-M. Girault, and J. Charara, “Unbiased recurrence plot quan-
tification of chaotic dynamic systems by eliminating sojourn points,” in
Proc. ICABME. IEEE, 2013, pp. 187–190.

[12] A. Zaylaa, J. Charara, and J.-M. Girault, “Reducing sojourn points from
recurrence plots to improve transition detection: Application to fetal
heart rate transitions,” Computers in biology and medicine, vol. 63, pp.
251–260, 2015.

[13] H. M. Al-Angari, Y. Kimura, L. J. Hadjileontiadis, and A. H. Khandoker,
“A hybrid emd-kurtosis method for estimating fetal heart rate from
continuous doppler signals,” Frontiers in physiology, vol. 8, p. 641, 2017.

[14] P. Gaspard, Rossler System. Encyclopedia of Nonlinear Science, 2005,
no. 808-811.

[15] F. C. Morabito, D. Labate, F. La Foresta, A. Bramanti, G. Morabito,
and I. Palamara, “Multivariate multi-scale permutation entropy for
complexity analysis of alzheimers disease eeg,” Entropy, vol. 14, no. 7,
pp. 1186–1202, 2012.

[16] S. Al Obaidly and A. Kurjak, “Prenatal diagnosis of morbidly adherent
placenta with 2d ultrasonography, 3d color power doppler and magnetic
resonance imaging,” Donald School Journal of Ultrasound in Obstetrics
and Gynecology, vol. 4, no. 2, pp. 199–204, 2010.

[17] F. Xianfeng and J. Z. Ming, “Machine fault feature extraction
based on intrinsic mode functions,” Measurement Science and
Technology, vol. 19, no. 4, p. 045105, feb 2008. [Online]. Available:
https://doi.org/10.1088%2F0957-0233%2F19%2F4%2F045105

https://doi.org/10.1007/978-981-10-1822-0_8
http://www.sciencedirect.com/science/article/pii/S0306987714002722
https://doi.org/10.1088%2F0957-0233%2F19%2F4%2F045105

	Introduction
	Materials
	Features Extraction and Classification Algorithms of Signals
	Sample Entropy
	The Multiscale Entropy or Costa Entropy
	Fuzzy Entropy
	Conditional Entropy
	Multi-scale Permutation Entropy
	Kurtosis
	Signals Classification and Clustering

	Simulation Results
	Discussion and Conclusion
	Future Work
	References

