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Abstract
LncRNAs are defined as RNA transcripts greater than 200 nucleotides in length that have no or limited protein-coding 

potential. Basal expression of lncRNAs appeared important for various homeostatic processes, like gene imprinting 

cell differentiation and organogenesis. Moreover, it has been demonstrated that lncRNAs play an important role in 

tumorigenesis and metastasis. Some lncRNAs were stably detected in exosomes, which are widely found in body 

fluids. Several studies validated the use of exosomal lncRNAs as minimally invasive diagnostic and prognostic markers 

in several types of cancers. In addition, exosomal lncRNAs have been associated with drug resistance of tumor cells, 

suggesting a clinical application in cancer-targeted therapy. Despite the recent increase of studies on exosomal lncRNAs, 

their clinical significance in cancer diagnosis, prognosis and treatment needs to be fully explored. The methodologies for 

their detection with high purity and accuracy must be also improved in order to implement their use in clinical routine. 

This review aims to summarize the main recent technologies available for the isolation of exosomal lncRNAs, their status 

as a liquid biopsy as well as their future perspectives. 
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INTRODUCTION
LncRNAs are classically defined as RNA transcripts greater than 200 nucleotides in length that have no or 
limited protein-coding potential[1]. The location of a lncRNA is often considered relatively to its neighboring 
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protein-coding gene(s). LncRNA genes overlapping with protein-coding genes are antisense lncRNAs; 
intronic lncRNAs are located in the introns of protein-coding genes; lncRNA genes in the intergenic 
genomic loci are termed lincRNA. In addition, some genes encode both protein-coding and lncRNA genes[2]. 
In recent years, lncRNA were identified to regulate gene expression through various mechanisms[3]. Basal 
expression of lncRNAs in many tissues regulates various homeostatic processes, including gene imprinting, 
cell differentiation and organogenesis[4,5]. There is also a strong association between deregulated lncRNA 
expression and disease evolution. Indeed lncRNAs play an important role in tumorigenesis and metastasis[6,7]. 
For instance, in liver, gastric and breast cancers, GAS5 and HULC lncRNAs are involved in the control of cell 
invasion by regulating miRNAs and the interactions between tumor microenvironment, and cancer cells[8-10]. 
LncRNAs are then expressed abundantly by cancer cells and show greater tissue-specificity compared to 
protein-coding mRNAs. Thus, expression levels of lncRNAs may represent a powerful biomarker[11].

LncRNAs are localized in either the nucleus or cytoplasm, and can interact with DNA, RNA or proteins[12]. 
To exert their function, lncRNAs interact in both sequence-specific and conformational engagements acting 
as scaffolds, decoys (molecular sink/miRNA sponge) and enhancer RNAs[11]. Interestingly, lncRNAs can 
also be packaged into exosomes and act as messengers in cell-to-cell communications[13]. Notably, some 
lncRNAs are enriched in exosomes, while others are barely present, indicating that lncRNAs are selectively 
sorted into exosomes. Specific proteins might act as fundamental lncRNAs carriers to control lncRNA 
release into exosomes. Unfortunately, the exact mechanisms associated with this regulation are not yet fully 
elucidated. Recently, it has been demonstrated that exosome-derived lncRNAs regulate tumor cell apoptosis, 
proliferation and migration and induce angiogenesis[14,15]. 

The influence of exosomal lncRNAs in the tumor microenvironment has been recently investigated. Cancer 
and stromal cells use exosomes to modify surrounding cells within tumor microenvironment by transferring 
ncRNAs and proteins, which activate signaling pathways via receptor-ligand interactions and contribute 
to tumor progression and metastasis[16]. In addition, exosomes modulate the escape of cancer cells from 
immune cells by releasing immunoregulatory molecules. For example, Qu et al.[17] found a high expression 
of lncARSR in sunitinib-resistant RCC cells, which were able to disseminate survival skills to other recipient 
cells via exosomes containing lncARSR[17]. Some studies showed that lncRNAs secreted by tumor-derived 
exosomes could stimulate the proangiogenic potential of circulating angiogenic cells by increasing expression 
of both membrane molecules and soluble factors[18]. In this regard, Ma et al.[19] demonstrated a high 
expression of HOTAIR lncRNA in glioma cells. Interestingly, HOTAIR is packed into exosomes secreted by 
glioma cells and transmitted to endothelial cells where it stimulates angiogenesis by increasing the expression 
of the proangiogenic factor VEGFA[19]. Interactions between metastatic cells and their microenvironment via 
lncRNA-containing exosomes were also demonstrated. High expression of exosomal HOTAIR was correlated 
with tumor migration and metastasis in several studies[20-22]. In addition, lncRNAs secreted by exosomes can 
regulate tumor stem cell characteristics. For instance, Xu et al.[23] showed that the GAS5 lncRNA controls 
human embryonic stem cell self-renewal[23].

The relationship between exosomal lncRNA and cancer disease progression as well as exosome isolation 
from liquid biopsies make exosome-derived lncRNAs excellent candidates as potential diagnostic and 
prognostic biomarkers of various cancers[24,25]. The present review aims to summarize the main recent 
technologies available for the isolation and detection of exosomal lncRNAs and their status as liquid biopsies. 
Moreover, it will focus on future perspectives. 

RNA BASED LIQUID BIOPSIES: EXOSOMAL LNCRNAS
In the field of biomarkers, RNA exhibits some advantages over DNA. First, the expression pattern of 
several RNA molecules, in particular lncRNAs, is highly tissue- or disease-state-specific. In addition, RNA 
expression is dynamic and fluctuates according to the internal needs of cells[26]. Finally, RNA analysis allows 
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the detection of several molecules such as non-coding RNAs, fusion transcripts, splice variants and RNA 
editing events. 

Liquid biopsy compared to traditional solid biopsy has been widely used as a noninvasive diagnosis and 
molecular phenotyping technology to detect early cancer states. Liquid biopsy has been also proposed to 
determine tumor dynamics and can provide diagnostic and prognostic information prior to treatment, 
during treatment and during progression[27]. The ideal cancer biomarker must be able to identify the 
cancer subtype, the stage of the disease, the most efficient therapy and to predict/detect tumor recurrences. 
Moreover, it should be detected by a noninvasive method applicable into clinical routine. Thanks to their 
specificity, lncRNAs detectable in body fluids have the potential to meet these expectations, but some 
essential obstacles still need to be addressed.

Exosomes are extracellular vesicles that are 40-100 nm in diameter with a two-layer lipid structure. The 
formation process of exosomes mainly relies on the endocytosis of cell membrane to form endosomes. 
Exosomes contain large amounts of nucleic acids (DNA and ncRNAs, including mRNA, miRNA, and 
lncRNA), proteins and lipids. They act on the recipient cells by carrying these substances[28]. These extracellular 
vesicles are widely found in body fluids, including blood, tears, urine, saliva, milk, ascites, etc.[29]. Cancer cells 
secrete more exosomes than normal cells, and the biological information of cancer can be directly obtained 
by analyzing cancer-derived exosomes[30]. Exosomes are involved in critical processes of cancer development, 
including tumor growth, metastasis, drug resistance and tumor microenvironment[31,32]. Exosomal lncRNAs 
are differently expressed in many cancers suggesting that they could reflect the physiological and pathological 
status of their parental cells[24,33]. Moreover several studies reported great differences in the expression 
profiles of exosomal lncRNAs between healthy people and cancer patients[34,35], as well as among cancer 
patients at different stages of the disease[36]. This tumor-association specificity has attracted attention in 
precision oncology as promising biomarkers for cancer diagnosis as well as ideal prognostic biomarkers for 
cancer management. Interestingly, Dong et al.[37] examined the RNA content in exosomes, apoptotic bodies, 
microvesicles in blood, and found that lncRNAs in blood are mainly distributed in exosomes, suggesting that 
lncRNAs could be secreted into the blood by the form of extracellular vesicles[37]. The exosomal lncRNAs 
appear stable in other body fluids, such as urine, alveolar lavage fluid, saliva, etc.[38]. 

Compared to circulating tumor cells and free nucleic acids, exosomes are more stable and they are found in 
a higher concentration[39,40]. Recent findings by Matsumoto et al.[41] indicate that integrin CD47 expression 
on the exosomal surface would protect them from phagocytosis by monocytes and macrophages[41]. Thanks 
to their small size, exosomes can easily penetrate into various body fluids and reflect the real-time status of 
a live body. Finally some specific diagnostic biomarkers can be only detected in circulating exosomes thanks 
to their enrichment inside these vesicles, since normally they would not be detected in other liquid biopsies, 
such as free nucleic acids, due to their low expression values[42]. Hence, circulating exosomal lncRNAs are 
considered as a promising liquid biopsy for cancer diagnosis, prognosis monitoring, and cancer treatment. 
However, compared to other liquid biopsies such as CTCs and ctDNA, the research and application of 
exosomal lncRNAs are still in their infancy.

TECHNOLOGIES FOR THE ISOLATION AND DETECTION OF EXOSOMAL LONG NONCODING 

RNA
Isolation of exosomes is the first step in order to purify them and to obtain enough quantities to perform 
a proper analysis of their content (e.g., proteins, RNA or DNA). Various methods have been developed for 
isolating exosomes from biological fluids. Here we will review the main methodologies currently available as 
well as their major advantages and disadvantages [Table 1]. 



The most commonly used method for exosome extraction is differential centrifugation. By using low-
speed and high-speed centrifugation alternately, vesicle particles of similar size can be separated from cells 
and cell debris. Viscosity of the biofluids is the most important parameter to determine time and speed of 
the different centrifugation steps and collect isolated exosomes with high purity[43].The main advantages 
of this method are: (1) simple operation; (2) no contamination by separation reagents; (3) large amounts 
of exosomes obtained; and (4) its low cost. However, the efficiency of this method is reduced when high 
viscosity fluids such as plasma or serum are used and shearing forces may cause disruption. 

Density gradient centrifugation is another approach that combines ultracentrifugation with sucrose density 
gradient[44] for a successful separation of exosomes from particles and other vesicles with different densities 
like proteins or protein aggregates. Because sucrose is non-toxic to cells, low in viscosity and pH-neutral, 
the purity of exosomes obtained by sucrose is high[45,46]. However, this traditional method is relatively 
complicated to operate since the results are very sensitive to the centrifugation time. Consequently many 
efforts should be done to adjust this parameter properly to avoid contaminating particles in the exosomal 
fraction[47]. Cushioned Density Gradient Ultracentrifugation is a very recent modified version of this protocol 
leading to a maximal recovery and high purity of isolated exosomes, and preservating their structure and 
functionality[48]. 

Exosomes can be also isolated by size-exclusion chromatography (SEC). This method is based in a column 
packed with porous beads composed by polymers. The speed of molecules passing through the beads 
depends on their size, thus allowing precise separation of large and small molecules[49]. Compared to 
centrifugation methods, exosomes isolated by SEC are not affected by shearing force, which can potentially 
change the structure of the vesicles[50]. Moreover, different eluting solution can be used. Nevertheless, this 
technique requires long running time, making difficult processing multiple samples and exosomes are eluted 
in a high volume, which makes necessary an additional step of concentration. Currently, SEC was reported 
as a suitable technique for isolation of exosomes in both serum[51] and urine samples[52].

Ultrafiltration membranes are another approach available to isolate exosomes from other macromolecules. 
Membranes with various pore sizes commercially available were designed for isolating 40-100 nm 

Table 1. Methods of exosome isolation

Method Principle Advantages Disavantages
Differential 
centrifugation

- Alternative low/high-speed 
centrifugation steps
- Size based separation

- Simple operation, no contamination by 
separation reagents, high yield, cheap

- Viscosity affects drastically the efficiency, 
exosome disruption

Density gradient 
centrifugation

- Combine ultracentrifugation 
and sucrose density gradient
- Density based separation

- High purity - Difficult to operate, very sensitive to 
centrifugation time

Size-exclusion 
chromatography

- Polymer column packed with 
porous beads 
- Size based separation

- High purity
- Purified exosome structure well preserved
- Compatible with different elution solutions

- Time consuming
- Low concentrated exosomes obtained

Ultrafiltration - Membranes with various 
pore size
- Size based separation

- Simple to operate
- Low volume of initial sample
- High concentrated exosomes

- Exosomes may stick to the membranes
- Exosomes structure may be affected
- Low purity

Polymer-based 
precipitation

- Polymer precipitation 
solution followed by low-
centrifugation
- Size and density based 
separation

- Mild effect on exosomes
- Different volumes and biological fluids can be 
used
- Fast, high yield and cheap

- Exosome aggregates,  polymers may 
interfere with downstream analysis
- Low purity

Immunoafinity - Antibody coated beads and 
magnets
- Specific protein expression 
based separation

- Very high purity and selectivity - Expensive
- Small sample volumes can be processed
- Low yield and nonspecific binding
- Exosomes can remain stuck to the beads

Microfluidic based 
on-a-chip systems

- Specific surface markers, 
size and density or other 
physical properties

- Integration of multiple processes in one device
- High accuracy
- Precise control
- Minimal sample size

- High physical knowledge required to design 
and operate these devices
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exosomes[53]. During the procedure, larger vesicles are removed and the exosomal population is concentrated 
on the filtration membrane. This technique requires a low volume sample input for obtaining high 
concentrated material[54]. The main pitfalls of this technology are: (1) the possibility of exosome adhesion to 
the filtration membrane with the loss of biological material; (2) the low purity; and (3) the additional force 
applied to pass the analyzed liquid through the membranes that can deform or cause damage to exosomes. 
An alternative is the tangential flow filtration, used for isolation of exosomes with well-determined size by 
removing free peptides and other small compounds, that showed promising results in both basic research 
and clinical analysis[55].

In addition to use the conventional methods, some technologies previously used to extract and separate 
other substances were proposed for exosome isolation: polymer-based precipitation and immunoafinity. 
Polymer-based precipitation technique usually starts by mixing the biological fluid with polymer-containing 
precipitation solution [being polyethylene glycol (PEG) the most common], following by an incubation 
and low- speed centrifugation steps[56]. The precipitation with polymers results in mild effects on isolated 
exosomes. Polymer-based precipitation technique is a fast method with a high yield and interestingly various 
volumes and sources of biological fluids can be used. Despite all of these advantages, the use of polymer 
based precipitation solutions can result in aggregates and coprecipitation of larger nonexosomal components 
and together with the polymer substance present in the isolated exosomes may interfere with downstream 
analyses[57]. 

Immunoafinity is based on the expression of specific protein markers expressed at the exosome membrane 
such as tetraspanins, integrins or adhesion molecules[58]. Antibodies against these markers are immobilized 
on coated beads (as Protein G coated DynabeadsTM) which bind the exosomal specific markers (CD9, CD81, 
or CD63)[59], afterwards the beads-exosome complexes are pelleted using magnets. The main advantage over 
other methods is its selectivity leading to the high purity of exosomes collected. However, this method is 
expensive and can only be used for small sample volumes and for high concentrated samples. The exosome 
yield from immunoafinity remains relatively small then reducing the potential for further analysis to low 
consumption methods. Nonspecific binding and potential detachment of exosomes from beads limit its 
interest[60,61].

In the recent years, various commercial kits have been developed to separate and purify exosomes[62,63]. 
For instance, ELISA-based ExoTESTTM, ExoQuick and immunoaffinitive superparamagnetic nanoparticles 
(ISPN) were proposed for isolating exosomes from various biological fluids[64-66]. ExoQuick kits do not 
require specific equipment, are regularly updated and the extraction efficiency is gradually improved. 
Interestingly, a recent study by Niu et al.[67] compared the application of ultracentrifugation, ultrafiltration 
and polymer-based precipitation for exosomal isolation from human endometrial cells and showed that 
polymer-based method led to the lowest protein contamination[67]. Another study compared six kits for 
serum exosome purification (exoEasy, ExoQuick, Exo-spin, ME kit, ExoQuick Plus and Exo-Flow) and 
demonstrated that all of them can isolate exosomes but with variable efficiency and contamination by 
lipoproteins and albumin. Three of these methods obtained similar yield: Exo-spin, exoEasy and ExoQuick. 
However, exoEasy or ExoQuick Plus resulted in the highest purity[68].

Besides the traditional methodologies described above, microfluidic-based exosome isolation on-a-chip 
systems have recently emerged. Microfluidic-based exosome isolation approaches can be divided in: (1) 
systems based on specific surface markers such as microfluidics-based immunoafinity capture (Mf-IAC); 
(2) techniques related to specific size and density such as microfluidics-based membrane filtration (Mf-F), 
nanowire-based traps (NTs), nano-sized deterministic lateral displacement (nano-DLD), viscoelastic flow 
and acoustic isolation; and (3) devices based on other physical properties, such as dielectrophoresis (DEP). 
Briefly, Mf-IAC consists in targeting exosomal specific surface markers either with selected antibodies 
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immobilized in the inner surface of microfluidic chips or beads coated with antibodies[69]. Continual 
advances in nanotechnology made possible the development of several Mf-IAC devices that allow the 
isolation of exosomes with sensitivity and specificity while suppressing non-specific capture[70-73]. Mf-IAC 
can isolate exosomes from culture medium or body fluids. However, it is mandatory to know previously 
the surface antigen to target. Mf-F is based on the specific size of exosomes. The pioneer Mf-F devices were 
pressure- and electrophoresis-driven, which separate exosomes from undesirable particles via a nanoporous 
membrane with an adjustable pore size[74]. Further on, double-filtration approaches were developed, offering 
significantly higher throughput and higher purity[75]. The NT system is a multiscale filtration system using 
nanowires. NT selectively traps specific sizes of particles, and the concept is similar to size exclusion 
chromatography[53]. Nano-DLD is a pillar-array-based microfluidic device that sorts exosomes in continuous 
flow by taking advantage of the streamlines that particles are forced to follow due to the physical constrains 
imposed by the chip design or by the mechanical properties of the device[76]. The viscoelastic flow sorting 
is a continuous, size based and label-free method where exosome isolation is determined by elastic lift 
forces acting on particles of different sizes in a viscoelastic medium[77]. This method showed a very high 
level of purity (> 90%) and good yields. An acoustic isolation system relies on the application of differential 
of acoustic pressure fields that can separate small particles based on their mechanical properties including 
compressibility, diameter and density[78]. Interestingly Lee et al. recently established an acoustofluidics 
technique based on two modules: a cell-removal module and an EV-isolation module, that greatly simplifies 
the pre-processing of complex samples such as blood[79]. Finally, DEP devices enable exosomes isolation 
in the presence of a non-uniform electric field. Separation is based on dielectric constant differences 
that determine how quickly particles move. Advantages of this approach are the few instrumentation 
requirements and exosome structure remains unaffected[80].

Overall, microfluid-based isolating device on-a-chip provides convenience, the lab-on-a chip format can also 
be exploited to integrate multiple processes in a single instrument, simplifying operation and reducing the 
risk of cross-contamination. Moreover micro- and nano-scale devices exhibit high accuracy, precise control, 
lower energy consumption, cost reduction with respect to benchtop instruments and minimal sample size. 
A general disadvantage of all flow-induced methods is that they are based on microfluidics rules; hence, an 
exhaustive physical knowledge is needed for the design and operation of these devices. These microfluidic-
based exosome isolation on-a-chip techniques have been reviewed in more detail in recent reviews[69,81,82].

Once the exosomes have been isolated, the next step is RNA extraction. Exosomes are limited by a more 
rigid membrane compared to the cellular membrane due to the lipid composition, which would potentially 
affect the RNA extraction[83]. A number of conventional RNA extraction techniques are available, including 
phenol based techniques, combined phenol and column based approaches and pure column based methods. 
Eldh et al.[84] performed an study to determine the most suitable RNA isolation method for exosomal 
RNA[84]. They tested seven different methods: Trizol®, RNeasy®, miRNeasy, mirVanaTM, RNeasy®, modified 
RNeasy® and miRCURYTM. All tested methods were able to extract RNA with high quality but with huge 
variation in the yield and size distribution of exosomal RNA. miRCURYTM showed the highest total RNA 
yield while Trizol®, miRNeasy and mirVanaTM showed the lowest total RNA yield in exosomes. Moreover, the 
relative presence of smaller and larger RNA molecules was dependent on the used method. In short, column 
based RNA extraction techniques could extract RNA with a broad size distribution, whereas the pure phenol 
and the combined phenol-column extraction techniques seemed to be more efficient at extracting small 
RNA rather than total RNA. In terms of RNA purity Trizol®, modified RNeasy®, miRNeasy and mirVanaTM 
showed a reduced purity comparing to the other strategies, probably due to residual phenol/guanidine. Since 
the different isolation methods give such an extensive variation in exosomal RNA yield and pattern, it is of 
main importance to select the RNA extraction method according to the aims of the research, especially in 
exosome research, since there is a relatively limited amount of exosomes from different body fluids. 
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Finally, for the detection of lncRNA, after exosomal RNA isolation, several methods are in continuously 
innovation and improvement [Table 2]. Briefly, northern blot was initially the main methodology used for 
detection and quantification of RNA in cancer cells and tissues[85]. With the rapid development of next-
generation sequencing (NGS) technology, the high-throughput sequencing has been widely used for 
discovery of candidate genes and lncRNAs[86]. Similarly, lncRNA microarray is used to analyze lncRNAs 
differentially expressed[87]. However, the cost of NGS and microarray analysis is relatively high, and the high 
amounts of data generated do not allow their use in clinical practice. Thus, nowadays the quantitative reverse 
transcription polymerase chain reaction (RT-qPCR) represents the most common detection method for 
detecting lncRNA with a relatively simple procedure[88]. 

In the following paragraphs, we will review the principles of the different methodologies for lncRNA 
detection as well as their pros and cons. Northern blot was more used in the past, however there are 
still some reports using this technique for lncRNA detection[85,89]. Northern blotting involves the use of 
electrophoresis to separate RNA samples by size, and detection with a hybridization probe complementary 
to part of or the entire target sequence[90]. Some advantages of using northern blotting include: relatively 
fast, low -tech and cheap procedure; ability to detect the size of RNA fragment; observation of alternative 
splicing products; measurement of both RNA quality and quantity. Northern blot is a high specific method 
that reduces false positives and gives the opportunity to store membranes that can be reprobed years after 
blotting. Northern blot also has some pitfalls like: high risk of sample degradation by RNases; its low 
sensitivity and the use of some chemicals, such as formaldehyde, radioactive material or ethidium bromide 
used which can have harmful effects on health[91].

The most used methodology for lncRNA is RT-qPCR[34,36,92], which allows the quantification of lncRNAs 
expression in the sample thanks to transcript amplification and further fluorescent signal detection[93]. It is 
a cost-effective and time efficient method, moreover it shows a high sensitivity and specificity, low amount 
of starting RNA is required, and the results are fast and easy to obtain, since it is not required any post PCR 
processing or data processing. However RT-qPCR has also some limitations such as: the amplicon size 
cannot be detected; maximum of four lncRNAs can be detected simultaneously; and non-specific binding 
can occur if SYBR® green is used, among others[94]. Another technique commonly used to identify lncRNAs 
are microarrays[95,96], which consist of a library of DNA specific sequences (known as probes) immobilized 
in a grid. The isolated mRNA is reversed transcribed into cDNA incorporating fluorescent probes and 
hybridized to the microarray. Only the cDNAs complimentary to the probes, and thus the ones that are 
expressed, are detected by the laser scanner[97]. This technology provides data for multiple lncRNAs in the 
same experiment, the protocols are well defined and standardized, and it is a relatively low-cost method. But 

Table 2. Methods used for detecting lncRNAs

Method Principle Advantages Disavantage
Northern Blot - Electrophoresis and detection 

with specific probe
- Fast, low-tech, cheap
- Alternative splicing products can be detected
- Both quantitative and qualitative method
- High specific

- High risk of sample degradation 
- Low sensitivity
- Only known sequences detected

RT-qPCR - Transcript amplification and 
fluorescence signal detection 
after specific probe hybridization

- Cost-effective
- Time-efficient
- High sensitivity and specificity, l
- Low amount of starting material
- Results easy and fast to obtain

- Splicing products no detected 
- Nonspecific binding
- Maximum 4 different mRNAs can be 
detected simultaneously
- Only known sequences detected

Microarrays - Molecular hybridization to 
detect the expression levels

Multiple mRNAs can be analyzed in the same 
experiment, well defined and standardized protocols, 
relatively low cost

- Detection of known sequences
- Non-specific hybridization
- No identification of mRNA variants
- High variability of low expressed mRNAs

RNA-seq - Next generation sequence 
based 

- Independency from previous sequence information
 - High dynamic range
- Several isoforms of mRNA can be detected
- Low amount of starting material is required

- High cost
- Complex analysis of data

Tellez-Gabriel et al. Cancer Drug Resist  2019;2:xx  I  http://dx.doi.org/10.20517/cdr.2019.69                                                   Page 7

a
高亮
Maybe this Spaces should not exit， is it right?

A
附注
check carefully, make sure there is nothing wrong in table.




it has also some disadvantages like: the analysis is only possible for known lncRNAs; the hybridization can 
be non-specific, thus giving false positives; high variability for low expressed genes; and not identification 
of lncRNAs sequence variants[98]. RNA-seq is probably the most accurate technique to reveal the presence 
and quantify lncRNA in a biological sample at a given time[86]. The fact that RNA-seq is not dependent on 
previous sequence information is a major strength, it has a high dynamic range and several isoforms of 
lncRNAs can be detected. Disadvantages are more related to the high cost of the technology and complex 
analysis process that requires high expertise of researchers[95]. Interestingly Lane et al.[57] recently published a 
book with extended information about methodologies for exosomal isolation and identification[57].

CLINICAL VALUE OF USING EXOSOMAL LNCRNAS AS LIQUID BIOPSIES
The continuous development of diagnostic techniques provides a technical basis for liquid biopsy in patients 
with cancer and for quantitative detection of circulating exosomal lncRNAs. By comparing the expression 
of lncRNA between normal population and cancer patients, the exosomal lncRNA-based liquid biopsy 
may be used as a diagnostic technique[99]. Several studies validated the utility of exosomal lncRNAs as 
minimally invasive diagnostic and prognostic marker in all kind of body fluids [Table 3]. Although there is 
no systematic study on the difference of circulating lncRNAs between serum-derived and plasma-derived 
exosomes, the method of blood sample testing is widely used in the clinic because of the accessibility and 
relative high stability of the biological material and the minimally invasive operation requested. In this 
paragraph, we will review some of the most studies recently published [Table 3]. 

Liu et al.[100] analyzed the utility of the exosomal colorectal neoplasia differentially expressed-h (CRNDE-h) 
non-coding RNA in a cohort of 148 patients suffering from a variety of colorectal cancer (CRC) compared 
to control volunteers. They isolated RNA from serum-purified exosomes and measured the CRNDE-h 
expression levels by RT-qPCR. Their main findings indicated a significant correlation of the exosomal 
CRNDE-h lncRNA levels with the CRC regional lymph node/distant metastatic status. Moreover, ROC 
analysis showed the possibility to distinguish CRC patients, colorectal benign diseases and healthy 
individuals with 70.3% sensitivity and 94.4% specificity, which was superior to the traditional CEA tumor 
marker. In conclusion, detection of exosomal CRNDE-h lncRNA has a high potential as a noninvasive 

Table 3. Clinical investigations using exosomal lncRNAs as prognostic and diagnostic biomarkers

Type of cancer Body fluid Main findings Ref.
Colorectal cancer 
(CRC)

Serum Correlation of exoCRNDE-h levels with CRC regional lymph node metastasis and distant metastasis. 
ExoCRNDE-h levels can differentiate CRC from patients with benign disease and healthy donors. n  = 148

[100]

CRC Plasma Upregulation of exoLNCV6_116109, 98390, 38772, 108266, 84003, and 98602 in early CRC stages. n  = 100 [101]

Non-small cell lung 
cancer (NSCLC)

Serum Lower expression levels of Exo-GAS5 in NSCLC patients than healthy donors. Higher Exo-GAS5 in early 
stages. Exo-GAS5 is a better prognostic marker than carcinoembryonic antigen (CEA). Lower expression 
of Exo-GAS5 correlates with larger tumors. n  = 104

[36]

Glioblastoma 
multiforme (GBM)

Serum Exo HOTAIR expression higher in GBM patients. n  = 83 [33]

Breast cancer (BC) Serum Exo HOTAIR higher expressed in BC patients than in healthy donors. High expression of Exo HOTAIR 
correlates with poor disease free survival (DFS), overall survival (OS) and poor response to neoadjuvant 
chemotherapy (CT) and tamoxifen hormone therapy. Exo HOTAIR better prognostic and diagnostic 
biomarker than CA 15-3. n  = 30

[102]

Bladder cancer Urine Exo MALAT1, PCAT-1 and SPRY4-IT1 overexpressed in bladder cancer patients. High expression of PCAT-1 
and SPRY4-IT1 correlates with TNM stage. n  = 160

[35]

Bladder cancer Urine Exo UCA1-201 expression levels can discriminate between patients suffering from bladder cancer, 
nonmalignant urinary related disorders and healthy donors. n  = 108

[103]

Oral Squamous Cell 
Carcinoma (OSCC)

Saliva OSCC patients expressed MALAT-1. Higher HOTAIR expression in patients with lymph node metastasis. 
n  = 20

[34]

NSCLC Serum Exo RP11-838N2.4 as a potential target to predict response of NSCL patients to erlotinib treatment. n  = 78 [104]

BC Serum Exo SNHG14 higher expressed in resistant patients to trastuzumab treatment. Increased Ex SNHG14 
expression associated with metastasis and cardiac toxicity. n  = 72

[105]

Renal Cell 
Carcinoma (RCC)

Plasma High levels of Exo lnARSR associated to sunitinib resistance. LnARSR have to be packed into exosomes to 
exert resistance. Exo lnARSR is a therapeutic target. n  = 74

[17]
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serum-based tumor marker for diagnosis and prognosis of CRC, for developing new therapeutic 
strategies[100]. The survival of CRC patients is closely related to the stage at diagnosis; therefore, there is an 
urgent need for early diagnosis for CRC prevention and successful treatment. The study performed by Hu 
et al.[101] aimed to identify potential exosomal lncRNAs that may use as early stage biomarkers for CRC. 
Microarray studies identified a subset of 6 lncRNAs (LNCV6_116109, LNCV6_98390, LNCV6_38772, 
LNCV_108266, LNCV6_84003, and LNCV6_98602) significantly higher expressed in the plasma of CRC 
patients than in negative control individuals. They isolated exosomal RNA from the plasma of 50 CRC 
patients and 50 healthy donors for validation of these potential biomarkers by RT-qPCR. The authors found 
a correlation between the high levels of expression of these markers and the presence of CRC. Furthermore, 
they analyzed the expression patterns in each stage of CRC and found the 6 lncRNAs significantly 
upregulated in stage I/II of CRC disease. These authors concluded that the 6 lncRNA panel can be used as 
biomarkers for non-invasive screening of CRC with high sensitivity and specificity[101]. Li et al.[36] also carried 
out an study to determine the usefulness of the exosomal GAS5 lncRNA (Exo-GAS5) as a biomarker for 
early stage non-small cell lung cancer (NSCLC) diagnosis. They analyzed by RT-qPCR the expression of Exo-
GAS5 isolated in the serum from 64 NSCLC patients and 40 healthy donors, and found a lower expression 
in the former group. Moreover, those patients in early stage presented higher Exo-GAS5 levels compared 
with advanced-stage patients. The authors also demonstrated a better performance of the Exo-GAS5 than 
the conventional tumor marker CEA to distinguish NSCLC patients at early stages from healthy volunteers. 
Finally, they identified a significant association between lower Exo-GAS5 expression with larger tumor size 
and advanced TNM stage[36].

Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. 
After tumor resection, patients are monitored by magnetic resonance imaging (MRI)[92]. However, this 
imaging technique is unable to distinguish between true progression from pseudo-tumor progression, which 
may have consequences in clinical decisions. Tan et al.[33] designed a study including 43 GBM patients and 
40 healthy donors to determine the feasibility of using exosomal HOTAIR lncRNA as a serum biomarker in 
conjunction with MRI to distinguish pseudo-progression and true progression. They assessed the HOTAIR 
expression levels by RT-qPCR and observed an increase in HOTAIR both in whole serum and purified 
exosomes but not in serum supernatant depleted of exosomes of GBM patients in contrast to control 
group. Moreover, they confirmed this finding by single molecular sequencing (SMS) analysis. Therefore, 
they proposed the detection of exosomal HOTAIR lncRNA in the serum of GBM patients as a noninvasive 
biomarker to detect GBM growth or recurrence[33]. Similarly Tang et al.[102] also showed the correlation of 
high serum exosomal HOTAIR levels with poor survival and poor response to chemotherapy in breast 
cancer patients[102]. Briefly, they compared serum exosomal HOTAIR expression levels between 15 breast 
cancer patients and 15 healthy individuals, demonstrating a significantly higher expression in breast cancer 
patients than in healthy controls. They observed a marked decrease of serum exosomal HOTAIR lncRNA 
levels after 3 months of surgery and ROC analyses showed that serum exosomal HOTAIR had a significant 
greater capacity than the CA 15-3 antigen as a diagnostic and prognostic biomarker. In addition, results for 
the survival analysis revealed that high expression of exosomal HOTAIR lncRNA led to a worse disease-
free survival and overall survival than low expression. Finally, the analysis of exosomal HOTAIR lncRNA 
expression in patients before and after treatment suggested that high levels may lead to a poor response to 
neoadjuvant chemotherapy and to tamoxifen hormone therapy.

Exosomal lncRNAs can be also isolated from other body fluids rather than the most common, such as plasma 
or serum. For instance, Zhan et al.[35] validated a panel of three lncRNAs (MALAT1, PCAT-1 and SPRY4-
IT1) by RT-qPCR, in urine exosomes (UE) of 80 bladder cancer patients and 80 healthy controls, and found 
a significant overexpression in bladder cancer patients. The verification of the diagnostic capacity indicated a 
much better performance for this panel than for the urine cytology, which is widely used in clinical practice. 
Moreover, they identified a significant correlation between the overexpression of UE-derived PCAT-1 and 
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SPRY4-IT1 and the advanced TNM stage[35]. The utility of UE as a liquid biopsy in bladder cancer was 
confirmed by Yazarlou et al.[103]. The study included a total of 59 BC patients, 24 healthy individuals and 
25 patients with non-malignant urinary related disorders. They evaluated expression of several lncRNAs 
in urinary isolated exosomes by RT-qPCR in all the study participants. They found a significantly higher 
expression of LINC00355, UCA1-203, and MALAT1 and a decreased UCA1-201 expression in bladder 
cancer patients compared to the other two groups. Among all these lncRNAs, UCA1-201 transcript levels 
had the best performance to discriminate between bladder cancer from normal/nonmalignant disease 
samples, and thus indicating its potential use as a prognostic biomarker in BC[103].

Saliva is another source of lncRNA and liquid biopsy that has been proposed for clinical application. Tang et al.[34] 
detected by RT-qPCR the presence of the MALAT-1 lncRNA in the saliva of all oral squamous carcinoma 
patients analyzed (n = 20), despite mRNA expression was not significantly different between metastatic and 
non-metastatic samples. However, HOTAIR was detected mostly in patients with lymph node metastasis, 
compared with those without metastasis. These results indicated a promising use lncRNAs in saliva as a 
noninvasive and rapid diagnostic tool for the diagnosis of oral cancer, but a higher number of samples must 
be included to confirm that results[34]. 

In addition to their value as diagnosis and prognosis biomarkers in cancer, exosomal lncRNAs were involved 
in drug resistance of tumor cells, suggesting a clinical application in cancer-targeted therapy. A recent study 
demonstrated the therapeutic benefit of erlotinib in patients suffering from NSCLC in large randomized 
phase III studies, however the majority of these patients exhibited erlotinib-refractory disease, acquiring 
chemoresistance. In this context, there is an urgent need to elucidate the mechanisms of erlotinib resistance 
and to discover reliable biological targets that play important role in erlotinib resistance[106]. Zhang et al.[104] 
analyzed the expression level of exosomal RP11-838N2.4 lncRNA by RT-qPCR in 78 serum samples from 
patients with advanced NSCLC receiving erlotinib treatment[104]. They identified the involvement of the 
exosomal RP11-838N2.4 lncRNA in the modulation of chemotherapeutic responses, suggesting its potential 
role as a novel target for prediction of NSCLC treatment with erlotinib. 

Trastuzumab is effective used for early stage treatment of breast cancer patients bearing positive HER2 
mutations, however, after a period of exposure, some patients acquire resistance. Then, there is a clear need 
for useful therapeutic biomarkers able to predict chemoresponses to treatment with trastuzumab[107]. Several 
in vitro assays performed by Dong et al.[105] confirmed that the exosomal SNHG14 lncRNA was essential for 
trastuzumab resistance in breast cancer. They validated this statement in serum samples from a cohort of 72 
patients with advanced HER2+ breast cancer treated with trastuzumab. Their results showed an increased 
serum exosomal SNHG14 lncRNA expression level, determined by RT-qPCR, in patients who did not 
respond to the treatment compared to good responders. ROC analysis demonstrated a high sensitivity and 
specificity of SNHG14 lncRNA as a potential diagnostic biomarker for trastuzumab breast cancer treatment. 
Moreover, they also observed an increased expression of exosomal SNHG14 lncRNA was markedly 
associated with distant metastasis, lymph node metastasis and cardiac toxicity[105].  

In renal cell carcinoma (RCC) nearly 30% of patients develop recurrence and metastasis after tumor 
resection[108]. Sunitinib, which has potent anti-angiogenic effects and direct antitumor activities, was proposed 
as an effective therapy for RCC patients. However, the development of sunitinib resistance was observed resulting in 
failure of sunitinib and reduced survival rate[109]. The in vitro studies carried out by Qu et al.[17] pointed out that high 
level of lncARSR gene were responsible for sunitinib resistance. They confirmed these findings by comparing 
the expression of this lncRNA between responding and non-responding patients, both in tissues and 
plasma (n = 74). Additional analysis let to conclude that high lncARSR levels in plasma correlated with poor 
sunitinib response in RCC patients. They investigated further into the mechanism of resistance to sunitinib 
indicating that it was required lncARSR to be packed in exosomes to exert resistance. Moreover, they 
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observed that lncARSR incorporated into exosomes and transmitted to sensitive cells, resulted in sunitinib 
resistant cells, thereby disseminating drug resistance[17]. All together the authors demonstrated not only 
potential utility of exosomal lncARSR as a clinical biomarker to sunitinib response but also as a therapeutic 
target to overcome sunitinib resistance and improve the clinical benefits in RCC patients. Thus, liquid biopsy 
by detecting exosomal lncRNA provides a minimally invasive approach, a real-time monitoring of drug 
response, and accurate information for clinicians to administer a reasonable medication.

DISCUSSION AND FUTURE PERSPECTIVES
LncRNAs were confirmed to be closely related to the development of cancer[6], and exosomal lncRNAs can 
be stably detected in human body fluids because of the protection of exosomes[29]. This together with the 
continuous development of lncRNA detection techniques has promoted exosomal lncRNA-derived liquid 
biopsy to become a novel approach in the diagnosis, prognosis, and treatment of cancers[110]. As described in 
the section 4 of this review the studies on exosomal lncRNAs are accumulating, however its clinical use is not 
really extended yet. Indeed, liquid biopsies are not currently considered as a standard operating procedure 
for the diagnosis of cancers and for the characterization of the disease. Instead it is used as a complimentary 
test to tissue biopsy[111]. However, cancer patients are often unable to undergo highly invasive examinations 
because of their poor physical condition, thus a minimally invasive, reproducible, real-time detection is 
extremely desirable. Despite the numerous studies in liquid biopsy, clinical validations are mandatory to 
assess its accuracy explaining why its use is not very widespread in medical practices. 

To use exosomal lncRNAs as novel biomarkers, high purity and accuracy techniques for their isolation and 
detection are required. Currently, many methods were developed for and each of them has many advantages 
and disadvantages which must be evaluated. The method used should be selected according the objectives of 
the study. 

Many challenges regarding exosomal lncRNAs need to be confronted. For instance, physiological and 
pathological roles of exosomes and exosomal lncRNAs in the tumor microenvironment remain to be further 
explored. In addition, the heterogeneity of exosomes in body fluids may be a drawback to their use as 
biomarkers, since can lead to false negatives or positives in cancer diagnosis. Prior to the application in the 
clinical context, standardized methods of preparation of exosomal lncRNAs from biofluids are mandatory. 
Indeed, many pre-analytical factors such as time of fluid collection, fluid preservation or RNA isolation 
protocol among others, influence RNA abundance levels in body fluids both inside and outside extracellular 
vesicles[112], affecting RNA liquid biopsy performance. Thus, the exact contribution of these variables must be 
rigorously assessed. A recent initiative for this purpose is “The extracellular RNA quality control (exrnaqc) 
study” carried out by Decock et al.[113]. The most appropriate source (nature of the biological fluids) of 
exosomal lncRNAs must be defined[29]. For instance, results from lncRNAs extracted from whole blood 
should be interpreted cautiously due to lncRNAs contained in blood cells and/or circulating cancer cells and/
or systemic inflammatory context that could result in important deviations[114]. The individual variability/
heterogeneity in lncRNA tumor expression patterns (intra- and inter-tumor heterogeneity[115]) should be 
considered as well as other external variables such as diet, physical activity or drugs[116,117]. Technological 
improvements of lncRNA measurement are then needed to improve its sensitivity, normalization as well as 
data analysis. For instance, total RNA sequencing methods are still difficult to implement in many research 
laboratories and would benefit from further technological improvement. Notably, in the vast majority of 
the studies that we found in the literature, the detection of lncRNA is currently carried out by RT-qPCR, 
however the cost related to the yield is still too high. A similar emerging technology is digital PCR (dPCR) 
characterized by a highest robustness and technical reproducibility as well as an improved sensitivity (30-
fold) and accuracy (10-fold)[118]. Therefore, dPCR represents a very promising method for detecting lncRNAs 
in liquid biopsies with low nucleic acid content[119]. Recent studies already reported the use of dPCR to detect 
exosomal lncRNAs[120,121]. However, data normalization is required to reduce the variation associated with 
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sample collection, processing and measurement. Despite of some studies on exosomal lncRNAs showed 
a better performance than the conventional biomarkers in terms of prognosis and diagnosis[36,102], further 
investigations are necessary to confirm if lncRNAs can be used as independent biomarkers or should be 
used in combination with the existing ones. Multicentric clinical studies will be also required before to use 
lncRNAs as diagnostic biomarkers. 

CONCLUSION
The recent discovery of the association of exosomal lncRNAs and cancer progression has attracted the 
attention of researchers and opened up exciting prospects for diagnostics, prognostics and drug response 
monitoring. Elucidating the exact roles of exosomal lncRNAs in tumorigenesis, metastasis, and drug 
resistance, as well as the development and application of standard operating procedures, are areas of 
considerable interest to offer a more sensitive and accurate biomarker for early cancer detection or to 
improve the efficiency of existing clinical biomarkers.
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