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Abstract: Personalized medicine represents a major goal in oncology. It has its underpinning in
the identification of biomarkers with diagnostic, prognostic, or predictive values. Nowadays, the
concept of biomarker no longer necessarily corresponds to biological characteristics measured
ex vivo but includes complex physiological characteristics acquired by different technologies.
Positron-emission-tomography (PET) imaging is an integral part of this approach by enabling the fine
characterization of tumor heterogeneity in vivo in a non-invasive way. It can effectively be assessed
by exploring the heterogeneous distribution and uptake of a tracer such as 18F-fluoro-deoxyglucose
(FDG) or by using multiple radiopharmaceuticals, each providing different information. These
two approaches represent two avenues of development for the research of new biomarkers in
oncology. In this article, we review the existing evidence that the measurement of tumor heterogeneity
with PET imaging provide essential information in clinical practice for treatment decision-making
strategy, to better select patients with poor prognosis for more intensive therapy or those eligible for
targeted therapy.
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1. Introduction

Heterogeneity is a concept familiar to pathologists. Phenotypical and functional differences arise
among cancer cells during the course of the disease because of genetic changes [1]. Similarly, the
interactions of cancer cells with their microenvironment or the local variation in angiogenesis and
hypoxia are not uniform in the tumor. Not to mention the perpetual clonal remodeling under the
pressure of microenvironment and treatments. This large biological, cellular, and tissue heterogeneity
exist at the intratumoral level (molecular differences within one tumor), intrapatient level (variation
of tumor features between lesions within one patient), and interpatient level (variation of tumor
features between patients). This heterogeneity conditions tumor aggressiveness and therapeutic
resistance and represents a significant challenge in the design of effective treatment strategies [2]. The
prerequisite for personalized medicine relies on the report of such heterogeneities. Yet, the realization
of multi-region sampling from each tumor of a single patient raises ethical or technical questions.
Positron-emission-tomography (PET) imaging appears as a perfect tool to overcome this obstacle,
providing a whole-body non-invasive method of assessing tumor heterogeneity, through the use of
multiple radiopharmaceuticals, each providing different information. In parallel, the information
derived from the uptakes’ analysis of a tracer such as 18F-fluoro-deoxyglucose (FDG) has enabled
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the emergence of a wide variety of PET quantitative metrics including simple semi-quantitative
approaches such as standardized uptake value (SUV) and “high-order metrics” that involve a
segmentation step and supplementary image processing. These parameters, besides their utility for
therapeutic response, should play a key role in the prognostic characterization of tumors, along with
the development of personalized medicine. Radiomics—the high throughput extraction of large
amounts of imaging elements from radiographic images—tackles this challenge and is one of the most
promising strategies [3,4]. The purpose of this short review is to present the latest developments in the
exploration of tumor heterogeneity in PET imaging. Different examples of neoplasias are presented
during the three developed axes. Nevertheless, to emphasize to the reader that these tools can be used
in all diseases, lymphoma is used as a common thread throughout this review.

2. Inter- and Intra-patient Tumor Heterogeneity Exploration through Multiple Tracers PET
Imaging

Nuclear medicine is one of the most dynamic medical fields, in constant evolution over the past
decades. The main strength of this discipline lies in its incredible catalog of radiopharmaceuticals
allowing exploration of virtually every major organ system in the body (Table 1). Personalized medicine
has never been so relevant today and nuclear medicine is on its leading edge, probing deep inside
each patient or tumor to reveal its inner workings. Predictive biomarkers are an essential tool of
precision medicine and individualized treatment. Yet, as mentioned above, tumor heterogeneity
contributes to sampling error, especially for metastatic diseases; target’s expression at one site does
not guarantee expression at all sites. Moreover, target accessibility of drugs is not assessed by biopsy,
and target expression does not provide evidence of targeted-therapy impact on the target. In this
context, PET imaging overcomes many of these limitations exploring target heterogeneity, assessing
target expression and potential accessibility across the whole disease burden, to aid clinical decision
making. A perfect example was recently published by Bensch et al. with the initial results from
the first-in-human imaging with 89Zirconium-labeled atezolizumab [5]. The programmed cell death
protein 1 (PD1)/programmed death-ligand 1 (PD-L1) axis is an important immune checkpoint for T-cell
activation. PD-L1 overexpression is associated with a poor prognosis in a variety of cancers yet these
patients typically have a stronger response to anti-PD-L1 therapy such as atezolizumab [6–9]. The
PD-L1 expression is usually evaluated using immunohistochemistry or RNA sequencing. In Bensch
et al. study, clinical responses were better correlated with PET uptake before treatment than these
two evaluations.

Table 1. Main validated positron-emission-tomography (PET) tracers and their principal indications
(based on [10,11]).

Tracer Metabolic Process Principal Oncological Indications

11C-Methionine Amino acid transport and protein
synthesis Diagnosis and grading of brain tumors

18F-Choline (FCH) Phosphatidylcholine metabolism
and cellular membrane turnover

Biopsy guidance of prostate cancer recurrence/primary
staging in high-risk prostate cancer before surgical

procedures or planning external beam radiation

18F-Fluoro-Deoxyglucose (FDG) Glucose metabolism
Diagnosis/restaging of lung cancer, colorectal cancer, breast

cancer, lymphoma, sarcoma, melanoma, head and neck
cancer

18F-DOPA Dopamine uptake and metabolism Diagnosis of neuroendocrine tumors (NET)/documented
NET metastasis in unknown primary

68Ga-DOTA-Peptides Somatostatin receptors
Identification of primary tumor in patients with

documented NET metastasis/assessment of NET disease
extent before treatment

18F-Fluoroestradiol (FES) Estrogen receptor Status of tumor lesions to determine need for endocrine
therapy in breast cancer
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Table 1. Cont.

Tracer Metabolic Process Principal Oncological Indications

18F-Fluorothymidine (FLT) Cellular proliferation and Differential diagnosis between benign and malignant
lesions/lymphoma staging and therapeutic evaluation

18-Sodium Fluoride (NaF) Bone metabolism Detection of bone involvement in tumors with elevated
risk of bone metastasis

68Ga-Prostate-Specific Membrane
Antigen (PSMA) PSMA expression Localization of tumor tissue in recurrent prostate cancer

Breast cancer also represents a great model for this type of approach [12,13]. Indeed, in this
pathology, 18F-fluoroestradiol (FES) PET has been validated as an accurate method for providing
information on estrogen receptor (ER) status of tumor lesions to determine need for endocrine
therapy [14–17]. Indeed, the uptake of FES has been proven to correlate with ER expression in
biopsy sample [16]. Similarly, several works showed that radiolabeled monoclonal antibodies could
non-invasively identify lesions with positive or over-expression of the human epidermal growth factor
receptor 2 (HER2) and predict response to anti-HER2 antibody-based therapy [18–21]. In particular,
Gebhart et al. recently reported the promising results of the ZEPHIR trial. This work successfully
evaluated two PET imaging as tools to investigate heterogeneity of advanced HER2-positive breast
cancer (PET imaging using trastuzumab radiolabeled with 89Zirconium) and to predict patient outcome
under trastuzumab emtansine (PET imaging with FDG) [22,23]. This innovative study showed the
clear benefit of combining both imaging methods in predicting whether adequate tumor targeting is
followed by sufficient efficacy and cytotoxicity.

Beyond the “simple” search for the expression of a target before initiating a treatment directed
against it, the use of several radiotracers in the same patient can allow to comprehensively assess
disease activity, extent, and heterogeneity. Tumors derived from cells of the neural crest represent
the perfect historical model for this approach [24]. This large group of neoplasms includes a large
variety of tumors, such as gastroenteropancreatic neuroendocrine tumors (GEPs), neuroblastoma,
paraganglioma, pheochromocytoma, medullary thyroid carcinoma, and small cell lung cancer. These
tumors are characterized by similar appearances and expression of different peptides and amines.
Prognostic criteria of this group are generally related to the metastatic extension of the disease but
also to the functional activity, degree of differentiation of the tumor and proliferative indices. These
parameters are essential in the management of these patients. Today, multiple molecular imaging
methods are available to explore these various biologic and histologic characteristics with very high
specificity and can be performed at the whole-body scale [25,26]. Tracers used can be grouped in
three different categories. 123-metaiodobenzylguanidine (123MIBG), an analog of norepinephrine and
18F-fluorodihydroxyphenylalanine (FDOPA), an amine precursor, exploit catecholamine synthesis,
storage, and secretion pathways. 111In-pentetreotide and 68Gallium-labeled somatostatin analog
peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE) assess the somatostatin receptors
expression. Finally, FDG uptake has been found to correlate with de-differentiation, increasing
aggressiveness and proliferation rate, and poor prognosis. This phenomenon was first described in
differentiated thyroid carcinomas. Indeed, de-differentiated thyroid carcinomas lose their capacity to
capture radioiodine and can be detected by FDG-PET since glycolysis increase at the same time. Thus,
imaging assessment of two or more tracers may yield more clinical information than each alone [27–32]
(Figures 1 and 2).
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Figure 1. An example of a 46-year-old patient with pluri-metastatic intestinal neuroendocrine tumor 
(grade 2, ki67 at 4%). 68Ga DOTA-TOC (A), FDG-PET (18F-fluoro-deoxyglucose- positron-emission-
tomography) (B) and FDOPA (18F-fluorodihydroxyphenylalanine) (C) imaging were realized. MIP 
(maximum intensity projections) images from the respective PET data sets are shown. The subject has 
positive on both FDOPA and somatostatine-receptor imaging, dominant disease which exhibits no 
FDG uptake (green arrows). One hepatic lesion was FDOPA-negative and 68Ga-DOTA-TOC-positive 
(red arrow) and one gastric lesion was FDOPA-positive and 68Ga-DOTA-TOC negative (blue arrow). 
Images courtesy of Pr C. Bodet-Milin. 

 

Figure 2. An example of 37-year-old patient with pluri-metastatic paraganglioma. MIP (maximum 
intensity projections) images of the realized 123MIBG-scintigraphy (A), FDG-PET (B) and FDOPA-
PET (C) are shown. The subject has a mediastinal lesion, barely seen on 123MIBG-scintigraphy and 
clearly positive with the others tracers (red arrows). Pulmonary and skull lesions (green arrows) were 
only visible on FDOPA-PET. Images courtesy of Dr C. Ansquer © Catherine Ansquer 

Figure 1. An example of a 46-year-old patient with pluri-metastatic intestinal neuroendocrine
tumor (grade 2, ki67 at 4%). 68Ga DOTA-TOC (A), FDG-PET (18F-fluoro-deoxyglucose-
positron-emission-tomography) (B) and FDOPA (18F-fluorodihydroxyphenylalanine) (C) imaging
were realized. MIP (maximum intensity projections) images from the respective PET data sets are
shown. The subject has positive on both FDOPA and somatostatine-receptor imaging, dominant
disease which exhibits no FDG uptake (green arrows). One hepatic lesion was FDOPA-negative
and 68Ga-DOTA-TOC-positive (red arrow) and one gastric lesion was FDOPA-positive and
68Ga-DOTA-TOC negative (blue arrow). Images courtesy of Pr C. Bodet-Milin.
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Figure 2. An example of 37-year-old patient with pluri-metastatic paraganglioma. MIP (maximum
intensity projections) images of the realized 123MIBG-scintigraphy (A), FDG-PET (B) and FDOPA-PET
(C) are shown. The subject has a mediastinal lesion, barely seen on 123MIBG-scintigraphy and clearly
positive with the others tracers (red arrows). Pulmonary and skull lesions (green arrows) were only
visible on FDOPA-PET. Images courtesy of Dr C. Ansquer© Catherine Ansquer
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Lymphomas represent another cancer group where multiple tracers’ exploration might allow a
better potential characterization of tumor heterogeneity. Indeed, today, FDG-PET occupies a central
position in accurate staging and therapeutic evaluation of lymphomas [33]. Nevertheless, a certain
number of crucial questions remain regarding its optimal application. While risk-based strategies
may appear to enhance patients’ outcomes for those with Hodgkin’s lymphoma, findings are not so
impressive in non-Hodgkin’s lymphoma [33]. Similarly, novel therapies that may generate an immune
response may lead to false-positive FDG-PET results, requiring the incorporation of these flare-ups
reactions in existing interpretation criteria [34]. Therefore, the development of other radiotracers
with different uptake mechanisms from FDG could be of interest [35]. 18F-fluorothymidine (FLT)
and 11C-methionine (MET), for instance, were both reported to correlate with cellular proliferation
activity and lymphoma histological grade of malignancy, respectively, through the exploration of DNA
and protein synthesis [36,37]. Moreover, FLT showed excellent results in treatment monitoring and
particularly in the setting of early interim evaluation, with more specific and accurate analyses than
FDG [38,39]. In the same way, 18F-fludarabine, an adenine nucleoside analog, owing to its specificity for
lymphoid cells and its absence of uptake in inflammatory tissues, holds great promise for therapeutic
evaluation [40]. Finally, the first in-human study of 68Ga-CXCR4, targeting chemokine receptor
CXCR4, which is frequently overexpressed in various tumor types, showed high lesions’ uptake [41,42].
Moreover, voxel-by-voxel analysis in one patient identified striking inter- and intralesional heterogeneity
in the uptake of 68Ga CXCR4 and FDG, implying that the biological information given by the two
probes may be complementary even in lesions that show avidity for both [42].

Systematic multiple tracers imaging could be used to reveal different profiles with highly different
prognoses. This multiple-tracers imaging associated with an appropriate scoring system might also
influence patients’ management and help selecting between different therapy options [28,43,44].
Indeed, these tumors may be treated with molecular radiotherapy using the same pathways:
131-metaiodobenzylguanidine (131-MIBG) and 177Lutetium-DOTA-TATE. Impressive reports were
reported with these targeted therapies in GEPs and neuroblastoma [45–49]. A theranostic approach,
integrating imaging and therapy in the same system, providing individualized tailored treatment,
despite intratumor and interlesional heterogeneities, is expected to play an increasingly pivotal role in
this large tumor group [50,51].

The theranostic approach indeed represents a formidable field of expansion for nuclear medicine
in an era where targeted therapies have become essential tools in oncology pharmacopoeia [52,53].
As described above in breast cancer and neuroendocrine tumors, it offers a non-invasive method
for quantitatively evaluating target expression in vivo, selecting patients for costly and potentially
toxic treatments, and monitoring responses [50,51,54–56]. In addition, this approach constitutes a
valuable asset in the development of new drugs by pharmaceutical companies. Drug development
being a fairly time-consuming and costly process, it represents an effective solution to rapidly monitor
drug candidates’ pharmacokinetics and biodistribution. This strategy can improve the strength and
effectiveness of early trials by enhancing patient selection, optimizing dose, and rationalizing treatment
reactions [54].

3. Intrapatient Tumor Heterogeneity Exploration through Quantitative Analysis of PET Imaging

FDG-PET has become an essential tool for cancer diagnosis, staging, and therapeutic evaluation.
It has undoubtedly changed the landscape of lymphoma, lung, head and neck or breast cancers
management [57–59]. This spread of the PET imaging technique was particularly enabled by its
quantification ability which allows the use of a reproducible metric for cancer monitoring. The SUV
and particularly SUVmax (defined as the SUV value of the maximum intensity voxel within a region of
interest) is widely used in everyday clinical practice. It is popularly adopted as a surrogate of tissue
accumulation of tracers and particularly as the overall net rate of FDG uptake. It is defined as the
ratio between the radiopharmaceutical concentration (expressed in Bq/mL) and the decay-corrected
injected activity normalized by a given factor (mass of the patient, body surface area or lean body
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mass) [60]. The precise description of underlying technical limitations of this metric is beyond the
scope of this short review and is already largely discussed in the literature [60–62]. Only its use under
clinical situation is highlighted here. Indeed, the computation of intrapatient tumor heterogeneity in
FDG-PET imaging using SUV has been already applied in a wide variety of indications even if not
intentionally or explicitly. FDG uptake heterogeneity may reflect different tumor profiles with different
aggressiveness and consequently prognosis. This contribution offered by the calculation of SUV has
been particularly investigated in lymphoma.

Some histological subtypes of lymphoma such as follicular and mantle cell lymphomas are
heterogeneous diseases with a variety of clinical, genetic, biological features and related different
outcomes. In these pathologies, the intensity of FDG uptake on PET imaging at baseline varies greatly
between patients [33]. Some present barely detectable uptakes while others exhibit very intense
fixations. Yet, this spectrum of SUV, from very low to very high uptakes, provides clinically relevant
information. Indeed, several reports demonstrated that the level of FDG uptake on PET imaging
is largely correlated to lymphoma histology [63,64]. More particularly, indolent disease with low
proliferation rate is generally associated with low uptake, while a more aggressive disease presented
higher FDG uptake. In the same way, very intense FDG uptake associated to a clear uptake gradient
may pertain transformation from indolent to aggressive lymphoma. These findings were confirmed in
a prospective study conducted to evaluate the value of FDG-PET as an accurate guide for biopsies
in suspected transformed tissues [65]. In patients with newly diagnosed indolent lymphoma, low
SUV numbers may reduce the suspicion of transformation in disease sites that were not biopsied.
Conversely, in patients with histologically proven indolent lymphoma, an uncharacteristically higher
than expected SUV may herald an aggressive subtype, warranting a targeted biopsy. Our team reported
similar findings in mantle cell lymphomas. A broad inter-individual tumor cell heterogeneity regarding
FDG avidity was observed in several works with a strong prognostic value on survival of quantitative
parameters such as SUVmax of the lesions with the highest uptake determined at diagnosis [66–69].
This close relationship between high SUVmax values and a more aggressive mantle cell lymphoma
behavior was also supported by the concordance between SUVmax, aggressive variants, and high
percentage (> 30%) of Ki67 positive cells.

This hypothesis that the prognosis of the disease is linked to the most aggressive contingent
corresponding to the lesion with the highest FDG uptake is also reinforced by some studies exploring
the predictive prognostic value of FDG-PET during treatment. Since the development of normalized
criteria for assessment of tumor burden changes, the required number of lesions to consider for response
determination remained a fundamental question [70–72]. The RECIST criteria used for radiological
evaluation recommended the measurement of five target-lesions, selected “randomly,” only on their
suitability for accurate repeated measures [70]. On the contrary, several works using PET imaging
showed that only the most metabolically active lesions, representing the most aggressive portions
of tumors, are critical to consider [73–77]. This approach implies taking the single hottest area as
the reference point on the pre-treatment and post-treatment studies, even if not necessarily the same
area, considering only the worst biologic behaviors of the malignancy. This controversial concept was
explored in many cancers and was applied both in solid tumors with the PERCIST criteria and in
lymphomas. For example, Lin et al. were the first to measure the reduction of SUVmax in the “hottest”
lesion before and during the treatment, in diffuse large B-cell lymphoma (Figure 3). In their study, they
also investigated the FDG uptake changes on interim FDG-PET within the initial hottest tumor site
on baseline FDG-PET (18% of 92 patients) which resulted in more false-negative exams in predicting
PFS [76].
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Figure 3. Selection of regions of interest in 57-y-old patient before chemotherapy. (A) Graded
color-scaled parametric analysis applied in reconstructed coronal PET image shows most active tumor
in upper abdomen. (B) Transverse PET image with a higher scale reveals celiac tumor (T) with activity
profile crossing the hottest point (red spot). (C) Corresponding activity profile in counts-per-pixel.
Isocontours are drawn with lower autocontour threshold of 4500 counts-per-pixel (red isocontour at
inset in B). (D) Normal background tissue (N): two large ROIs are manually selected on gluteal muscles,
avoiding iliac bone marrow activity. This research was originally published in JNM [76]. © SNMMI.

This approach was also recently reported in multiple myeloma patients [78]. In this pathology,
multi-clonal heterogeneity remains one of the main challenges in developing effective strategies.
Multiple myeloma is indeed characterized by spatial differences in the clonal architecture, with
potential non-homogeneous distribution of high-risk disease for which multi-region investigations
appear critical [79–81]. Yet, in a study by our team, the percentage difference of SUVmax between
baseline and interim FDG-PET was a powerful tool to predict long-term outcomes in patients with
FDG-avid multiple myeloma [78]. There again, similar to previous work in lymphomas or in solid
tumors, the hottest lesion in any region was used for comparison even if its location differed from the
initial hottest lesion on PET at diagnosis, to assess the most aggressive portion of the disease on each
PET examination, to free oneself from intrapatient heterogeneity.

4. Intratumor Heterogeneity Exploration through Quantitative Analysis of PET Imaging

In addition to conventional measurements of SUV, a new class of metrics has recently emerged in
PET imaging and is currently being clinically investigated [61]. A simple visual analysis of the FDG
uptake in PET images indeed suggests that the spatial distribution of voxels of different intensities in a
selected region and thus the spatial distribution of the radiotracer can be extremely heterogeneous. And
one can assume that this localized heterogeneity in medical images “partly” reflects heterogeneity on a
lower scale and underlying variations in metabolism, cellular proliferation or necrosis [82]. Advanced
image analysis of a tumor could then capture additional information and some researchers suggested
that genomic, proteomics, and other -omics patterns could be expressed in terms of macroscopic
image-based features [83]. This concept requiring the extraction of a large number of quantitative data
from medical multimodal images has become popular under the term “radiomics” [3,84,85]. In recent
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years, considerable efforts have been made by the medical imaging community to obtain correlations
between these image characteristics and tumor heterogeneity. Those metrics are often referred to
as “textural features” and belong to “high order parameters” (Table 2) along with shape-descriptors
or other descriptors based on fractal analysis or wavelet decomposition [61,86]. They measure the
relationships between groups of two or more voxels in the image (Figure 4). Numerous textural
features can be extracted from medical images, yet only a handful are sufficiently reliable, robust, and
reproducible. Texture analysis remains limited and biased by many methodological and technical
factors inherent to PET images’ acquisition, reconstruction algorithms, or segmentation technique
that can affect the quantification of image heterogeneity [86]. A number of recommendations are
available to help and guide researchers in making the right choices in the calculation and selection of
parameters [86–89].
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Table 2. Common imaging heterogeneity parameters. (Based on [61,91]). 

Order Matrix Name of the Parameter Description of the Parameter 

First 
Order 

 
SUVmax 

SUV value of the maximum intensity voxel 
within a region of interest (ROI) 

SUVpeak 
Average SUV within a small ROI (usually, a 

1-cm3 spherical volume) 

Second 
Order 

 

SUVmean 
Average measure of SUV within a defined 

ROI 
Metabolic tumor volume 

(MTV) 
Volume of a defined ROI 

Total lesion glycolysis 
(TLG) 

Product of SUVmean × MTV 

Grey-Level Co-Occurrence 
Matrix (GLCM) 

Contrast Local variations in the GLCM 

Correlation 
Joint probability occurrence of the specified 

pixel pairs 
Entropy Texture randomness or irregularity 
Energy Sum of squared elements in the GLCM 

Homogeneity 
Closeness of the distribution of elements to 

the diagonal 

High 
Order 

Gray-Level Run-Length Matrix 
(GLRLM) 
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Figure 4. Whole-body 18F-FDG PET scan (A) tumor segmentation (B) and voxel-intensity resampling
(C) allowing extraction of different features (D) by analysis of consecutive voxels in a direction (for
cooccurrence matrices) (a), alignment of voxels with same intensity (b), difference between voxels and
their neighbors (c), and zones of voxels with same intensity (d). This research was originally published
in JNM [90]. © SNMMI.

Table 2. Common imaging heterogeneity parameters. (Based on [61,91]).

Order Matrix Name of the Parameter Description of the Parameter

First Order
SUVmax SUV value of the maximum intensity voxel within a

region of interest (ROI)

SUVpeak Average SUV within a small ROI (usually, a 1-cm3

spherical volume)

Second Order

SUVmean Average measure of SUV within a defined ROI

Metabolic tumor volume
(MTV) Volume of a defined ROI

Total lesion glycolysis (TLG) Product of SUVmean×MTV

Grey-Level
Co-Occurrence Matrix

(GLCM)

Contrast Local variations in the GLCM

Correlation Joint probability occurrence of the specified pixel
pairs

Entropy Texture randomness or irregularity

Energy Sum of squared elements in the GLCM

Homogeneity Closeness of the distribution of elements to the
diagonal

High Order
Gray-Level Run-Length

Matrix (GLRLM)

Short run emphasis (SRE) Distribution of short runs

Long run emphasis (LRE) Distribution of long runs

High gray level run emphasis
(HGRE) Distribution of high grey level values runs

Grey-level non-uniformity
(GLNU) Similarity of grey level values throughout the image

Run percentage (RP) Homogeneity and distribution of runs of an image in
a specific direction
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Table 2. Cont.

Order Matrix Name of the Parameter Description of the Parameter

Gray-Level Zone Size
Encoding Method

(GLZSM)

High gray-level zone
emphasis (HGZE) Distribution of high grey level values zones

Zone length non uniformity
(ZLNU) Similarity of zone length throughout the image

Zone percentage (ZP) Homogeneity and distribution of zones of an image
in a specific direction

Short zone emphasis (SZE) Distribution of small zones

Neighborhood Grey
Tone Difference Matrix

(NGTDM)
Coarseness Granularity within an image.

To date, numerous studies explored the potential value of textural features in PET imaging
with encouraging results in a number of cancers [86,92]. However, only a limited number adopted
rigorous methodological choices with particularly large cohorts of patients and robust statistical
analysis [93,94]. Keeping in mind these limitations, the evidence supporting the additional value of
advanced image features from FDG-PET continues to expand year after year. Several of the most recent
studies have used techniques such as external cohort validation [95–97], or even machine-learning
technique [98,99] and concluded in the usefulness of textural analysis regarding patient management.
Several method were also proposed to minimize the effect of inter-center variability related to textural
features computation [95,100,101] with encouraging results both on a methodological and prognostic
level. One should keep in mind that several hundred, if not thousands of handcrafted features can be
extracted, when the number of patients used to construct the predictive model is often several order of
magnitude lower than the number of features analyzed. The use of machine learning approaches in
this context is thus very useful but opens other issues related to the choice of suitable algorithm for
selecting features and subsequent classifier which were shown to be not unique [102] The use of more
complex approaches relying on deep learning (especially convolutional neural networks) may alleviate
most of the difficulties raised by handcrafted features even if other challenges arise like the number
of data used for training and tuning hyper-parameters of the model. A very good overview of the
available technique that may be potentially clinically efficient in a near future can be found in [103].

Finally, a few studies have investigated the potential combination of image-derived features
from multimodal imaging or associated to clinical data [95,104–106]. One example of a nomogram
construction, published by Desseroit et al. [104], combining tumor and heterogeneity features extracted
from both PET and CT components of routinely acquired FDG-PET scans in non-small cell lung cancers
is shown in Figure 5. Reports in patients with mantle cell lymphoma also successfully applied this
approach [107–109]. In this pathology, as demonstrated in a prospective study [107,108] and confirmed
in a recent work by Mayerhoefer et al. [109], the combination of radiomic features with bio-clinical
scores may possibly improve risk stratification. All these approaches form the basis for future works
investigating the value of textural features in PET imaging and combining these methods will only
reinforce the validity of the studies. In this regard, a recent study focused on this topic and successfully
applied some of these approaches. In this work [95], Lucia et al. validated in two independent external
cohorts of patients previously developed textural features-based models [110] relying on FDG PET
and MRI for prediction of disease-free survival and locoregional control in locally advanced cervical
cancer. Moreover, to adjust for the multicenter effects, they used the ComBat method, derived from
genomic data analysis. They were able to identify two radiomics features indeed associated with worse
outcome, confirming that more heterogeneous tumors have a poorer prognosis [95].
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allowing for better stratification among patients with stage II–III, compared to stage I. This research
was originally published in EJNMMI [104]. © Springer.

Radiomic is a promising field. Unlike histological biomarkers derived from invasive biopsy
which sample only a small limited tumor region, as described above, radiomics non-invasively
interrogate the whole tumor. Visualization of tumor heterogeneity is essential in the assessment of
tumor aggressiveness and prognosis. Radiomic has an exceptional potential and may prove critical
toward personalized medicine [83].

5. Conclusions

Nuclear medicine is one of the most dynamic medical fields. Advances in cancer biology
knowledge together with the rise of new imaging techniques (new detection system and progress
in imaging analysis) make this discipline a domain of tremendous and growing evolution. This
dynamism is a real asset as personalized medicine has never been so relevant today. Indeed, PET
imaging appears as an essential tool for non-invasive exploration of intratumoral and interlesional
heterogeneity through the exploration of the distribution and uptake of a tracer or by using multiple
radiopharmaceuticals, each providing different information. There is convincing evidence that the
integration of PET imaging “profiling,” combining these approaches, associated to clinical, biological,
or genomic data could improve tumor characterization and prognosis prediction to allow adequate
patients stratification to therapeutic regimens. By combining at least one metabolic tracer with a
phenotypic one, and by quoting Mankoff et Dehdashti [31], “it may then be possible to show that when
it comes to molecular imaging, 1 plus 1 is greater than 2.”
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