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Online atlasing using an iterative centroid ?
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Abstract. Online atlasing, i.e. incrementing an atlas with new images
as they are acquired, is key when performing studies on databases very
large or still being gathered. We propose to this end a new diffeomor-
phic online atlasing method without having to perform again the atlasing
process from scratch. New subjects are integrated following an iterative
procedure gradually shifting the centroid of the images to its final po-
sition, making it computationally cheap to update regularly an atlas as
new images are acquired (only needing a number of registrations equal
to the number of new subjects). We evaluate this iterative centroid ap-
proach through the analysis of the sharpness and variance of the resulting
atlases, and the transformations of images, comparing their deviations
from a conventional method. We demonstrate that the transformations
divergence between the two approaches is small and stable and that both
atlases reach equivalent levels of image quality.

1 Introduction

An atlas is a generic term covering several uses. Overall, it corresponds to an
average model of the brain both in terms of shape and intensity. It is therefore
a powerful tool to understand brain variability, to compute statistics on popula-
tions [14] or to segment regions [3]. Ideally, atlases are made from a large number
of subjects by combining their images through registration and transformation
composition which can be computationally quite costly.

Among the many available atlas construction methods, Guimond et al. [8]
proposed to register the subjects onto an arbitrary image, followed by an unbias-
ing and averaging step, leading to an atlas that becomes the new reference image.
By iterating the process, the atlas becomes less and less biased by the initial ref-
erence image. Joshi et al. and Rohlfing et al. [9,12] among others focused on
another atlas construction class, called template free approaches, working with
groupwise registration. Although those methods have the advantage of being
unbiased by construction, their computational cost can be prohibitive.
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Historically databases used for atlas construction were small (about 50 to
100 subjects at most). However, there is a recent trend for the creation of large
databases, out of which great atlases depicting the variability of the population
across the life span could be inferred. Among these databases, the human con-
nectome project (HCP, now completed) is made of around 1200 subjects of the
same age range [7]. Even bigger databases are currently being constituted from
more subjects (up to 100,000 in the UK biobank [11]) or across the life span
(HCP lifespan) on which researchers already wish to start studies. This causes a
problem as the databases are still being gathered and thus the atlas needs to be
updated. With current methods, the atlas needs to be recomputed each time new
acquisitions are added which is very costly. New methods are therefore needed to
allow online atlasing, i.e. the capacity of incrementing atlases with new images
as they come without having to perform again the whole atlas construction, as
opposed to the above-mentioned direct atlasing.

We propose a new method that considers atlasing from a different angle.
Inspired by the notion of centroid for a set of points in a Euclidean space and the
way it can be constructed following an iterative procedure, Cury et al. [6] derived
a diffeomorphic atlas construction method working on surfaces. We propose here
a generalization of this iterative centroid method for image atlasing where the
centroid (atlas) is updated gradually as new images are incorporated. The online
aspect of this technique has several advantages: when a new images arrives, its
integration does not necessitate to restart the atlasing process from scratch. Also,
it only requires one registration per new image making it computationally cheap.
Benefitting from the log-Euclidean framework for diffeomorphisms from Arsigny
et al. [1], the method allows the production of a diffeomorphic atlas unbiased up
to a linear transformation (rigid or affine at the choosing of the user).

We first introduce the iterative centroid method and its specificities for im-
age atlasing in Section 2. Then in Section 3, we present experiments compar-
ing how the atlases built using direct atlasing (here a modified Guimond et al.
method [10]) and with our method differ from each other as they include more
and more subjects. We demonstrate with three different metrics that the iter-
ative centroid and direct atlases diverge only by a small amount in terms of
transformations and that their intensity based features do not vary.

2 Method

2.1 Theoretical background

Considering the registration of an image J onto an image I, we denote by J̃
the registered image and T the transformation operating on coordinates x used
to resample J onto I: I(x) ∼ J̃(x) = J ◦ T (x). Assuming that T lives in a
connected Riemannian manifold, we consider γ(t) the geodesic between Id and
T such that γ(0) = Id and γ(1) = T . In this framework (named large deformation
diffeomorphic metric mapping - LDDMM), the deformation T is parameterized
by a time varying vector field integrated over time (the geodesic γ).
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Diffeomorphisms are widely used in non linear registration because of their
interesting properties: differentiability, bijectivity and differentiability of the in-
verse map. As the LDDMM is a computationally intensive framework, Arsigny et
al. [1] presented a log-Euclidean framework to compute statistics on diffeomor-
phisms parameterized by a time independent i.e. stationary velocity field (SVF).
For such diffeomorphisms, operations are defined as their Euclidean counter-
parts on the SVFs. One of interest is the power of a diffeomorphism defined as
Tα = γ(α) = exp (α log(T )). In the following, all non linear transformations are
assumed to be diffeomorphisms parameterized with SVFs.

Additionally, given 2 SVFs v and w, it is possible to compute the logarithm
of their composition while avoiding a very costly logarithm computation. This
is made possible by the Baker-Campbell-Hausdorff (BCH) formula stating that
in a BCH-Lie group, for v and w small enough, log(exp(v) ◦ exp(w)) can be
approximated as a series of Lie brackets:

log(exp(v) ◦ exp(w)) ≈ BCH(v, w) = v + w +
1

2
[v, w] + . . . (1)

Where [v, w](x) = Jac(v)(x).w(x)− Jac(w)(x).v(x). It has been shown in [2,13]
that the use of the BCH formula is well suited for diffeomorphisms parameterized
as SVFs. To simplify notations, unless specified otherwise, the composition of
two transformations associated to two SVFs v and w is performed via the BCH:
exp(v) ◦ exp(w) = exp(BCH(v, w)).

2.2 Iterative centroid atlas construction

In a Euclidean space Ω, the centroid bn of a set of points {x1, . . . , xn} is defined
as bn = argminy∈Ω

∑n
i=1 ‖y−xi‖2. A direct solution is 1

n

∑n
i=1 xi but an iterative

approach is also imaginable. Starting from b1 = x1, we can use the recursion:

bk+1 =
k

k + 1
bk +

1

k + 1
xk+1 (2)

As depicted in [6], one can extend this formulation to the Riemannian case
for surfaces by using the generalization of the notion of straight line through
geodesics. The updated centroid bk+1, in that case, is on the geodesic linking bk
and xk+1, at 1

k+1 times the distance from bk.
We define our iterative centroid atlasing, following the same spirit, on images

and diffeomorphisms parameterized by SVFs. Thereafter we assume that the
registration of an image I onto an atlas A provides two transformations L and
T , where L is linear and T is a diffeomorphism, so that A ∼ I◦L◦T . Generalizing
Eq. 2 to a set of images {I1, . . . , In}, we start from A1 = I1 and get:

Ak+1 =
k

k + 1
Ak ◦ T

− 1
k+1

k+1 +
1

k + 1
Ik+1 ◦ Lk+1 ◦ T

k
k+1

k+1 (3)

The atlasing scheme is illustrated Fig. 1. We apply to Ak a transformation
situated at 1

k+1 of the distance from the identity to T−1k+1 along the geodesic. We
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also apply to Ik+1, in addition to the linear transformation, a transformation
situated at k

k+1 of the distance from the identity to Tk+1 along the geodesic.

Also, Ak is made from k images so a weight k
k+1 is affected to its intensities while

Ik+1 intensities get a weight 1
k+1 . At the end, those two images are transformed

and weighted according to their contribution to the atlas.

...

Fig. 1. Shift of the centroid as new images are incorporated.

Unlike [6], we are dealing with images and therefore interpolations on a voxel
grid to reconstruct a new image after a transformation. This resampling step has
to be avoided as much as possible to keep a maximum of details. To this end it is
preferable not to use Ak (already a resampled image) when constructing Ak+1,
but instead to operate on the initial images using transformation compositions
such that each image undergoes only one resampling. This is achieved by ex-
pressing the sequence (Ak)k∈N using only the initial images {Ij , j = 1, . . . , k}.
Rearranging Eq. 3, the following formulation emerges:

Ak+1 =
1

k + 1

 k∑
j=1

(
Ij ◦ Lj ◦Θj,k ◦ T

− 1
k+1

k+1

)
+ Ik+1 ◦ Lk+1 ◦ T

k
k+1

k+1

 (4)

Where θj,k is the non linear part of the transformation bringing Ij onto Ak.
There are k compositions using BCH to perform at iteration k which correspond
to the update of the transformations θj,k for j ≤ k.

Initialization: One can start at iteration 1 by initiating A1 = I1 and θ1,1 = Id.
However, a very interesting point of the method is the possibility to complement
an already existing atlas Ap constituted of p images as long as it can be written
as Ap = 1

p

∑p
j=1 Ij ◦ Lj ◦ Tj . To do so, we simply assign θj,p = Tj , ∀j ≤ p.

Iterative procedure: At the end of iteration k, we have, for each j ≤ k,
transformations θj,k that map images Ij onto the atlas Ak: Ak ∼ Ij ◦ Lj ◦ θj,k.
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To build Ak+1 from these, we do the following: 1- we register Ik+1 onto Ak:
Ak ∼ Ik+1◦Lk+1◦Tk+1 (one registration) ; 2- for j ≤ k, we compute the updated

θj,k+1 as θj,k+1 = θj,k ◦ T
− 1

k+1

k+1 (k BCH) ; 3- we assign θk+1,k+1 = T
k

k+1

k+1 ; and

finally 4- we build Ak+1 = 1
k+1

∑k+1
j=1 Ij ◦ Lj ◦ θj,k+1.

2.3 Unbiased atlas construction

So far, we have only assumed that the registration produced a linear and a non
linear part. Going in more details, let us now assume that this registration can be
written A ∼ I◦R◦S◦D where: R◦S is an affine transformation decomposed into
a rigid part R and a stretching part S, and D is a diffeomorphism. Herebefore, by
taking L = R ◦ S and T = D i.e. L encapsulating all the linear transformations
and T only local displacements, the method will lead - similarly to [8] - to an
atlas unbiased up to an affine transformation. On the other hand, if we take
L = R and T = S ◦D i.e. L only considering rigid motion while T encapsulating
both growth and local displacements, the method will lead to an atlas unbiased
up to a rigid transformation (useful typically for longitudinal studies).

3 Experiments and results

3.1 MRI database

For our experiments, we have used T1 weighted preprocessed images (brain
extracted) from 100 subjects randomly chosen among the Human Connectome
Project (HCP) database (for more details, see Van Essen et al. [7]). The size of
the images is 260× 311× 260 with a voxel size of 0.7 mm isotropic.

3.2 Implementation details

Registration Our method is agnostic to the registration used. We performed
registrations in two steps using symmetric block matching algorithms [5,4] avail-
able in Anima 1:

1. An affine registration that outputs a transformation matrix B which is de-
composed through polar decomposition into a rigid part R and a stretching
part S as depicted in Legouhy et al. [10].

2. A diffeomorphic registration that directly outputs the SVF of the diffeomor-
phism log(D) linking the two images. This allows to take advantage of the
log-Euclidean framework without logarithm computation [13,2].

We chose to compute atlases up to a rigid transformation. Therefore, the lin-
ear transformation L is rigid: L = R and the non linear transformation is the
combination of stretching and local displacements: T = S ◦D.

1 Anima: Open source software for medical image processing from the Empenn team.
https://github.com/Inria-Visages/Anima-Public - RRID:SCR 017017

https://github.com/Inria-Visages/Anima-Public
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Transformation composition Compositions of two diffeomorphisms are per-
formed on their SVFs using order 2 BCH. To compose a linear transformation
L and a SVF, we first apply log(L) to the real coordinates of an image grid to
transform it into an SVF and then compose using order 2 BCH.

3.3 Comparison between iterative centroid and direct atlasing

In the following experiments, we evaluate the quality of the iterative centroid
atlas and its divergence with respect to direct atlasing, here a method developed
in Legouhy et al. [10] available in Anima-Scripts 2 based on Guimond et al. [8].
For both methods, we used the same registration and composition tools with
the same parameters. Starting from an atlas built with 50 images using direct
atlasing, we added one by one the 50 other images using our online atlasing. We
then compared the direct atlases computed at several steps with the online ones
using three metrics.

Divergence Both methods output linear and non linear transformations (de-
noted Tj for online atlasing and T̃j for direct atlasing) mapping each image
onto the atlas. We first propose to evaluate the divergence between the two

atlases A and Ã by an image δ defined from the transformations: δ
(
A, Ã

)
=

1
n

∑n
j=1

√∑3
d=1

(
Tj,d − T̃j,d

)2
where d indexes the three components in space.

This measure has the advantage of being agnostic to edge issues that can happen
in intensities comparisons.

Fig. 2 presents a qualitative view of the evolution of the differences between
the direct and online atlases with respect to the number of subjects. We observe
that most of the differences increase with the number of added subjects and
occur in the cortical areas while central structures of the brain are spared. Fig. 3
gives quantitative plots over the brain of the divergence measures. It suggests
that the divergence tends to grow (from a median of 0.777 mm for 60 images,
to 1.095 mm for 100) but at a slow pace that decreases (+0.153 mm between 60
and 70 images but only +0.025 mm between 90 and 100).

Iconic evaluations The second part of the evaluation assesses the quality of the
atlases based on image intensities. We evaluate first the atlas standard deviation
across subject images after transformation on the atlas, the transformations
being constructed differently upon the atlasing method. This measure allows
to quantify how well the images are aligned after atlas construction (the lower

the standard deviation, the better): sdis(A) =
√

1
n

∑n
i=j (Ij ◦ Lj ◦ Tj −A)

2
. For

better interpretation, we normalized sdis by the average of the intensities of the
atlases from the two methods to create sdisn.

2 Anima-Scripts: Open source scripts using Anima software for medical im-
age processing from the Empenn team. https://github.com/Inria-Visages/
Anima-Scripts-Public - RRID:SCR 017072

https://github.com/Inria-Visages/Anima-Scripts-Public
https://github.com/Inria-Visages/Anima-Scripts-Public
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In addition, we propose a measure of the sharpness of the atlases. Given N(i),
a patch around a voxel i of an image A, we define a local measure of the sharpness
at voxel i, sha(A(i)), as the standard deviation of the patch normalized by its
average: sha(A(i)) = sdN(i)(A)/meanN(i)(A). In our experiments, we chose a
patch of diameter 5 voxels. We present in Fig. 4 a quantitative view over voxels
inside the brain mask of these two iconic measures with respect to the number
of images in the atlas. These results show that both methods output atlases that
are very similar in terms of image quality. The sharpness remains equivalent for
both methods independently of the number of images added. sdisn increases only
between 60 and 70 images and is then stable, but the evolution and values are
the same for both atlas construction methods.

4 Conclusion

We have presented an online atlasing method that allows the incorporation of
new images into an existing atlas without having to restart the atlasing process
from the beginning. Based on an iterative centroid process, this approach only
necessitates one registration per new image. We observed that the divergence be-
tween our method and direct atlasing using the same tools is localized in cortical
areas and tends to grow but at a slow and decreasing pace. Also, the obtained
atlases from both approaches have shown no differences in terms of image qual-
ity. The trend being at large, growing databases, the proposed online atlasing

Fig. 2. From left to right atlases with 60, 70, 80 and 100 images. Top: intensity dif-
ferences between iterative centroid and direct atlases. Bottom: atlases from iterative
centroid method overlaid with divergence measure δ.
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Fig. 3. Boxplots and violin plots of the divergence δ between the atlases (restrained to
the union of the masks) with 60, 70, 80, 90 and 100 images.
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Fig. 4. Boxplots and violin plots of inter-subjects normalized standard deviations sdisn
(a) and sharpness sha (b) for atlases (restrained to the union of the masks) with 60,
70, 80, 90 and 100 images. Blue: iterative centroid. Red: direct atlasing.

method offers an interesting tool to update an atlas at reasonable computational
cost as new images arrive. Finally, we derived a construction method up to either
an affine or a rigid transformation. This makes the method especially eligible for
longitudinal atlasing as a future work, simply by adapting the weight of each
image in Eq. 4.
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