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Abstract
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Background: Multiple imputation by chained equations (MICE) requires specifying a suitable conditional imputation
model for each incomplete variable and then iteratively imputes the missing values. In the presence of missing not at
random (MNAR) outcomes, valid statistical inference often requires joint models for missing observations and their
indicators of missingness. In this study, we derived an imputation model for missing binary data with MNAR mechanism
from Heckman'’s model using a one-step maximum likelihood estimator. We applied this approach to improve a
previously developed approach for MNAR continuous outcomes using Heckman’s model and a two-step estimator.
These models allow us to use a MICE process and can thus also handle missing at random (MAR) predictors in the

Methods: We simulated 1000 datasets of 500 cases. We generated the following missing data mechanisms on 30%
of the outcomes: MAR mechanism, weak MNAR mechanism, and strong MNAR mechanism. We then resimulated the
first three cases and added an additional 30% of MAR data on a predictor, resulting in 50% of complete cases. We
evaluated and compared the performance of the developed approach to that of a complete case approach and

Results: With MNAR outcomes, only methods using Heckman's model were unbiased, and with a MAR predictor, the
developed imputation approach outperformed all the other approaches.

Conclusions: In the presence of MAR predictors, we proposed a simple approach to address MNAR binary or
continuous outcomes under a Heckman assumption in a MICE procedure.

Keywords: Heckman's model, Missing data, Missing not at random (MNAR), Multiple imputation by chained

Background

In clinical epidemiology, missing data are generally clas-
sified as (i) missing completely at random (MCAR); (ii)
missing at random (MAR) when, conditional on the
observed data, the probability of data being missing does
not depend on unobserved data; or (iii) missing not at
random (MNAR) when, conditional on the observed data,
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the probability of data being missing still depends on
unobserved data, i.e., neither MCAR nor MAR [1, 2].
Unfortunately, the missing data mechanisms of MNAR,
MAR and MCAR are generally not testable unless there
are direct modelisations of the missing data mechanisms.
Although methods for handling MCAR or MAR data
in clinical epidemiology have been widely described and
studied, methods adapted for MNAR mechanisms are less
studied.

In the presence of MNAR missing outcomes, valid
statistical inference implies describing the missing data
mechanism [1, 3]. Hence, it often requires joint models
for missing outcomes and their indicators of missingness
[4]. Two principal factorisations of these joint models
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have been proposed: pattern-mixture models and selec-
tion models [1, 5-7]. The first consists of using different
distributions to model individuals with and without miss-
ing observations [8, 9]. The second directly models the
relationship between the risk of a variable being missing
and its unseen value. It involves defining an analysis model
for the outcome and a selection model (i.e. the missing
data mechanism). It generally relies on a bivariate dis-
tribution to model the outcome and its missing binary
indicator simultaneously [10]. This approach, called sam-
ple selection model, Tobit type-2 model [11] or Heckman’s
model, was first introduced by Heckman for continu-
ous outcomes [12, 13]. For continuous outcomes, two
approaches have been proposed to estimate the model
parameters: a one-step process that directly estimates all
parameters of the joint model using the maximum likeli-
hood estimator [11] and a two-step process [12, 13]. The
first step of the latter consists of estimating the parameters
of the selection model. The second step consists of fitting
the outcome model adjusted on a correction term named
“inverse Mills ratio” (IMR), which is obtained via the first
step. IMR corresponds to the mean of the conditional
distribution of the outcome within the bivariate normal
distribution knowing that the outcome has been observed
[14]. This allows unbiased estimates of the parameters of
the outcome model to be calculated.

For binary outcomes, sample selection methods rely on
a different model. This model is not simply an adapta-
tion of the continuous case and notably is not simply an
adaptation of the two-step estimator with a different out-
come model as a generalised linear model. In the setting of
binary outcomes, the use of a bivariate probit model and
a one-step maximum likelihood estimator is mandatory
[10]. Indeed, the use of a Heckman’s model implies linking
the outcome model and the selection model by their error
terms. Some authors, through analogy with Heckman’s
two-step estimator, proposed modelling binary outcomes
using a probit model adjusted on the IMR [15]. Despite
the misuse of such approaches, it has been specifically
demonstrated that the use of a two-step approach includ-
ing the IMR in a probit model for binary outcomes
is not valid [10, 16]. More generally, Heckman’s two-
step estimator could not be extended straightforwardly
to general linear outcome models by plugging /MR into
the linear predictor. It relies on the fact that outcome
expectation in non-linear models subject to selection
does not involve a simple corrector term in the linear
predictor [16].

If Heckman’s model handles MNAR missing binary out-
comes well using a bivariate probit model, then in the
presence of additional missing data on predictors, there is
no process that can address all the missing data simulta-
neously. In this setting, missing data on predictors are typ-
ically treated using a non-satisfactory complete-predictors
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approach, i.e., cases with at least one missing predictor are
removed from the analysis. In the presence of missing data
on more than one variable (including the outcome), multi-
ple imputation (MI) appears to be one of the most flexible
and easiest method to apply due to the numerous types
of variables handled and the extensive development of
statistical packages dedicated to its implementation [17].
Galimard et al. [18] previously developed an approach
based on a conditional imputation model for an MNAR
mechanism using a Heckman’s model and a two-step esti-
mator to impute MNAR missing continuous outcomes.
This approach allows imputing MAR missing covariates
and MNAR missing outcomes within a multiple imputa-
tion by chained equations (MICE) procedure [18]. MICE
specifies a suitable conditional imputation model for each
incomplete variable and iteratively imputes the missing
values until convergence. The key concept of MI pro-
cedures is to use the distribution of the observed data
to draw a set of plausible values for the missing data.
Thus, imputing missing MNAR binary outcomes implies
developing valid methods to obtain a valid distribution of
missing binary outcomes. As mentioned above, the direct
extension of the work of Galimard et al. [18] on contin-
uous outcomes cannot be considered because it involves
a two-step estimator which is not compatible with Heck-
man’s model with binary outcomes.

Aims of this work

The first aim of this work is to propose an approach
to handle MNAR binary outcomes. To our knowledge,
the use of sample selection models as imputation mod-
els has never been proposed for missing binary outcomes,
which is a current framework in clinical research. Thus,
we propose developing an imputation method for binary
outcomes based on a bivariate probit model associated
with a one-step maximum likelihood estimator.

The second aim is to extend this approach for contin-
uous outcomes proposing a new approach for the issue
raised by Galimard et al. [18]. Indeed, for continuous
outcomes, one of the main drawbacks of Heckman’s two-
step estimator is that the uncertainties of the first step
estimates are not taken into account in the second step.
Indeed, IMR is considered as known observed values in
the second step, whereas they have been estimated in the
first step. Thus, the uncertainties around the final esti-
mates are not fully assessed using a two-step estimator
[19]. This point could impact the quality of the imputa-
tion. This is the reason why we hypothesised that the use
of a one-step estimator could also improve the perfor-
mance of Heckman’s model as an imputation model for
continuous outcomes. Therefore, we also proposed a new
approach for continuous missing outcomes.

The final aim is to integrate the current developed
MNAR model into a MICE procedure. It will handle
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both MNAR outcomes and MAR predictors in the same
process.

In what follows, we introduce the study that moti-
vated this work. Then, the “Methods” section section
develops our proposed imputation model using one-step
ML estimation for binary and continuous outcomes. The
“Results” section section presents the evaluation of its
performance using a simulation study and an illustrative
example using data from our motivating example. Finally,
a discussion and some conclusions are provided.

Motivating example: the BIVIR study

The BIVIR study was a three-arm, parallel, ran-
domised clinical trial that aimed to assess the efficacy
of the Oseltamivir-Zanamivir combination relative to
each monotherapy in patients with seasonal influenza.
This study was conducted by 145 general practition-
ers throughout France during the 2008-2009 seasonal
influenza epidemic and included 541 patients. Pri-
mary analyses of the trial showed that the Oseltamivir-
Zanamivir combination is less effective than Oseltamivir
monotherapy and not significantly more effective than
Zanamivir monotherapy based on the proportion of
patients with nasal influenza reverse transcription (RT)-
PCR below 200 copies genome equivalent (cgeq)/ul at day
2 after randomisation [20]. We focused our work on eval-
uating the impact of the treatment group on adherence
adjusted on the first day severity score of flu symptoms.
Adherence was defined as completing the full treatment
between day 1 and day 5 and was self-reported by the
patient. Unfortunately, adherence was missing for 115
(21%) patients. It was reasonable to suspect that patients
who decided to stop treatment might be more likely
to not record data on their adherence, resulting in an
MNAR mechanism. The severity score corresponding to
flu symptoms was measured as a weighted sum (ranging
from O to 78) of 13 intensity symptoms [21]. The score was
missing for 114 (21%) patients, and a MAR mechanism
was suspected.

Methods

Heckman’s model

Let Y; be a binary outcome and X; be a p-vector of covari-
ates for individual i = 1, ..., n. Adopt the following probit
regression model as the outcome model:

P(Y; = 1|1X;) = ®(X;B) (1)

where @ is the standard normal cumulative distribution
function and B is a p-vector of fixed effects. Assuming an
underlying MNAR mechanism for Y, introduce a selec-
tion model that represents the non-random sampling of
the missingness process:

P (Ryi =11X]) = @ (X;B°) )
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where Ry; is an indicator of ¥; missingness (equal to 1 if
Y; is observed and 0 if Y; is missing), X7 is a g-vector of
observed covariates potentially associated with the miss-
ingness mechanism, and $° is an unknown g-vector of
coefficients.

According to the bivariate probit model, define Y’ and
R;, as two latent normally distributed variables associated
with ¥ and Ry, respectively, such that for individual i,
Y; = 1if Y/ > 0and ¥; = 0 otherwise and R); = 1 if
R, > 0and Ry; = 0 otherwise. Heckman’s model con-
siders that the two latent formulations of the selection
and outcome models are linked through their error terms,
which follow a bivariate normal distribution. The joint
model of the outcome and selection models is defined as:

R. =Xp*+¢f & 0 1p
yi i i ith ~N ,
Y, =XB+e <€) ((0) (P 1)) )

where p corresponds to the correlation coefficient
between the error terms of the selection model (ef) and
outcome model (g;). When p equals 0, the selection and
outcome models are independent, E (R;l-| Yi,Xi,Xf> does
not depend on Y;, and the mechanism is MAR. When p
is not equal to 0, E (R;ilY,',Xi,Xf> depends on Y}, and the
mechanism is MNAR. The larger p is, the stronger the
MNAR mechanism is.

For a continuous outcome, Heckman’s model given in
Eq. (3) is simplified as Y;, the non-latent outcome instead
of Y/, is directly inserted in the joined model. The joint
model for continuous outcomes is presented below:

/
o () ()
Y =XiB+e € 0 POe O¢

(4)

where o, is the variance of error terms (g;).

Model estimation

Maximum likelihood estimator

The parameters of the Heckman’s model (ﬂ,ﬁs, p) are
directly obtained by maximising the following log-
likelihood of the joint bivariate probit model [10, 15, 19]:

I= ) log®(—X{p*)

{i:Ry=0}

+ ) log®y (XiB, X(B' p)
{i:Ry=1,Y;=1}

+ > log®y (—XiB, X;B,—p)
{i:Ry=1,Y;=0}

where ®; corresponds to the binormal cumulative density
function.

For a continuous outcome, the one-step estimator con-
sists of estimating the parameters of the joint model
(ﬁ B, p, (Tg) via the following log-likelihood [14]:
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= Z log ® (—X;B°)

{i:Ry=0}
XiB* + LY — Xip)
+ Z |:logd>(l e LZ !
(iR, =1} I-p
L oen 1 1 (Y — XiB)*
——log2m —logoy — ————
2 %8 80 T 5T 52

Two-step estimator

For a continuous outcome, Heckman proposed a two-
step approach to estimate the parameters of the joint
model given in Eq. (4). His development comes from the
expression of the following conditional expectation of the
outcome [10]:

E(YilXi, Xj, Ryi = 1) = Xip + poehi 5)

where A; = ¢ (Xf,BS) /P (Xfﬁs) is called the “inverse Mills
ratio” (IMR); ¢ corresponds to the probability density
function of the normal distribution. As the IMR of each
individual corresponds to an error term resulting from
the probit selection model [22], Heckman proposed the
following two-step procedure:

1 Estimate selection model parameters (ﬁ) by

maximum likelihood R e
2 For each observed i, compute A; using Bs
3 Estimate § from Eq. (5)

Exclusion-restriction rule

In practice, Heckman’s model must avoid collinearity
between the two linear predictors of the outcome model
and the selection model. Indeed, if the variables included
in the selection and outcome models are exactly the same,
then E[Y;|X;,R); = 1]= X;B + pogA; is only identified
through the IMR (A) producing collinearity issues and
possibly erroneous estimation. To avoid this concern, it
has been recommended to include at least a supplemen-
tary variable in the selection equation [14, 22, 23]. Ideally,
this supplementary variable should be linked to the indi-
cator of missingness and linked to the outcome [24].

Imputation model using Heckman’s model

Under the MAR mechanism, imputation approaches use
the conditional distribution of observed Y given the other
covariates to impute the missing Y. However, in Heck-
man’s model, the conditional expectations of the observed
and missing Y are different. For a binary outcome
([10], p. 921):

D) (Xiﬁ¢ _X;ﬂs’ _IO)
® (=X;p°)

We propose using Eq. (6) to define the imputation model
for binary outcomes.

P(YL = 1|Xi)Xeryi = 0) = (6)
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Imputation algorithm

For a binary outcome, consider Heckman’s model param-
eters & = (B, B°, p). The imputation algorithm consists of
the following steps:

1 Use the one-step estimator to obtain Heckman’s
model parameters (5, ‘3) where U is the
variance-covariance matrix of 8

2 Draw 6* from N (5@)

3 Draw Y/ from a Bernoulli distribution with
parameter p} from:

* _ D, (Xiﬂ*l —Xfﬂs*, _,0*)
BT e ()

For a continuous outcome, Eq. (6) becomes ([10], p. 913):

—¢ (Xi8°)

E (VX X7, Ry = 0) = Xif + poe i e py

(7)

With model parameters 0 = (8, 8%, o¢, p), in the third step
of the imputation algorithm:

3 Draw Y* from:

o (135")

Y* = X;B 4 pror i/
i lﬂ 10 & <I>(—Xf,35*)

+&* with &* ~ N (0, 0;?)

Multiple imputation by chained equations using
Heckman'’s imputation model

The final aim of this work is to provide a global frame-
work to impute MNAR outcomes and MAR predictors
through a MICE procedure. This procedure requires spec-
ifying conditional imputation models for each variable
with missing data. The global procedure starts with an
initial fill of all missing data using random draws from
observed values. The posterior predictive distribution of
the first incomplete variable is obtained using all observed
values. Then, for a given observation with a missing value
of the first variable, imputations are generated given all the
other variables. Following variables with missing values
are similarly repeatedly imputed in an iterated sequence.
The key point of chained equation is that consecutive iter-
ations use imputed values of the previous. Then missing
value are iteratively imputed until convergence (at least 10
cycles) [17]. The theoretical properties of MICE are not
well understood: except in simple cases, conditional impu-
tation models do not correspond to any joint model [25, 26].
However, it performs well in practice [27, 28]. This pro-
cedure is realised in parallel to obtain several imputed
datasets. Analyses and Rubin’s rules are then applied to
obtain the final estimations of the parameters of interest.
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We propose using Heckman’s imputation model for
MNAR outcomes and standard imputation regression
models for missing predictors, such as linear models
for continuous covariates and logistic models for binary
covariates. In this framework, Galimard et al. [18] proved
that the missing data indicator of MNAR outcomes should
be included in the imputation models of all other vari-
ables. The MICE algorithm involves defining conditional
imputation models. In our case the definition of such
imputation models will depend on the type of the missing
mechanism:

e Heckman’s imputation model for MNAR outcome,
specifying outcome and selection models

e General linear imputation models for MAR predictors
as described by van Buuren et al. [2] adding Ry and
the outcome to other variables in the linear predictors

Simulation study

Data-generating process

We generated three normally independent and identically
distributed variables, X1, X and X3, with X; ~ N (0, 62).
Two error terms, ¢ and &°, were generated using p fixed
at 0, 0.3 and 0.6 to simulate MAR, light MNAR and
heavy MNAR settings from a bivariate normal distribu-
tion according to the model given in Eq. (3).

For binary outcomes, Y was generated as follows: if
Bo + B1X1 + BaXy + € > 0, then Y = 1; otherwise, Y = 0.
The missing indicator R, of Y was generated according to
the following algorithm: if B3+ 8] X1+85X2+p5X3+¢° > 0,
then R, = 1; otherwise, Ry = 0.

For continuous outcomes, Y was generated according to
Y = Bo + B1X1 + B2Xy + . Note that in that case and
according to the model given in Eq. (4), o, = 1.

We fixed o2 to 0.5 and (Bo,fB1,B2) to (0,1,1).
(ﬁ(s), B B ,3;) were fixed to (0.75,1,-0.5,1), which resulted
in approximately 30% missing data for the outcome.

To evaluate the robustness of our approach, we
also generated a non-Heckman MNAR mechanism by
directly including Y in the following selection equation:
PR, = 1) = logit (ﬁgl £ X1 =05 % Xy + X3 + ﬁSYlY).
Two sets of parameters were considered. To obtain
approximately 30% missing data on Y, we fixed ,Bf)l to 0.60
and 0.20 for binary outcomes and to 1.31 and 1.86 for
continuous outcomes, with ﬁi,l equalto 0,1 and 2.

We first simulated scenarios with only missing out-
comes to validate our approach in a simple setting. Then,
to evaluate the performance of the MICE process, we gen-
erated missing data on X3 using two MAR mechanisms
depending on either (X3,Y) or (X1,X3). Thus, Ry, the
indicator of X, missingness, was defined by either:

o P(Ry = 11X, X3) = ®(0.25 + X7 + X3)
o« P(Ry=11X1,Y) = & (B + X1 +Y)
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,Bg % was fixed to 1.10 and 0.25 for binary and continuous
outcomes, respectively. We obtained approximately 30%
missing data for X,.

A total of N = 1000 independent datasets of size 500
were generated for each setting. The sample size was
chosen to be similar to our motivating example.

Analysis methods

The analysis models were probit models and linear models
for binary and continuous outcomes, respectively, includ-
ing X; and X; as predictors. The simulated data were
first analysed prior to data deletion as a benchmark. The
incomplete data were then analysed using the following
methods:

e Complete case analysis (CCA).

e Heckman’s model (HEmI) consisting of one-step ML
estimation, as described in the “Methods” section for
binary and continuous outcomes.

e Multiple imputation using Heckman’s one-step ML
estimation (MIHEmI), as described in the
“Methods” section.

For continuous outcomes exclusively,
approaches have also been performed.

two-step

e Heckman’s two-step estimation (HE2steps)
consisting of Heckman'’s two-step estimator for
continuous outcomes as described in the
“Methods” section for continuous outcomes.

e Multiple imputation using Heckman’s two-step
model estimation (MIHE2steps) for continuous
outcomes, as described in Galimard et al. [18].

For HEml, MIHEmIl, HE2steps, and MIHE2steps, the
selection equation included X, X> and X3. For MIHEml
and MIHE?2steps, the incomplete data were imputed
50 times, and final estimates were obtained by
applying Rubin’s rules for small samples [29].

For scenarios with missing Xy: (1) for the HEml and
HE?2steps approaches, observations with missing X, were
deleted from the analyses as previously described in
the complete-predictors approach; (2) for MIHEm! and
MIHE?2steps, a MICE procedure was applied. Xy was
imputed using a linear regression model and an approxi-
mate proper imputation algorithm [2]. As recommended,
we included R, and Y in its imputation model [2, 18].
Twenty iterations of the chained equation process were
applied.

In each data-generating scenario, the performance of
each method was assessed by computing the percent rela-
tive bias (%Rbias), the root mean square of the estimated
standard error (SE.;), the empirical Monte Carlo stan-
dard error (SE.up), the root mean square error (RMSE)
and the percent of the coverage of nominal 95% confi-
dence intervals (Cover) of 81 and fs.

mwm =
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Computational settings

Simulations and analyses were performed using R sta-
tistical software, version 3.3.0 [30]. We computed the
imputation procedure within the mice R package version
2.25 [31]. Heckman’s One-step model estimator was sup-
plied by functions semiParBIV() and copulaSampleSel() of
the GJRM R package version 0.1-1, for binary and contin-
uous cases respectively [19, 32]. Our code is available in
the supplementary materials (S1 for binary outcomes and
S2 for continuous outcomes). Heckman'’s two-step model
estimator was performed using the function heckit() of
package sampleSelection version 1.0-4 [14].

Results
In this section, only the results of 8; estimations are pre-
sented. By estimations are presented in Additional file 1.

Only missing data on outcome Y

Table 1 (Fig. 1) presents the results of the simulation
study based on a scenario with missing binary outcome
Y and complete predictors X. When Y is missing due to
a MAR mechanism (p = 0), all methods provide unbi-
ased estimates of B; (relative biases less than 2%). The
standard errors of the approaches using Heckman’s model
are greater than those of CCA. Nevertheless, all coverages
are close to their nominal values. In the presence of an
MNAR mechanism, CCA is biased 6.1% with p = 0.3 and
11.9% with p = 0.6. HEml and MIHEml are unbiased. The
results for B, are similar (Additional file 1: Table S8).

Table 1 Binary Y: Simulation results for 81 = 1 with p =0,
representing a MAR mechanism, and p = 0.3 and 0.6,
representing an MNAR mechanism

Methods p %Rbias SEcal SEemp RMSE Cover
Before 0 0.7 0.108 0.109 0.109 949
deletion 03 1.1 0.109 0.109 0.110 95.9
0.6 09 0.109 0.109 0.109 95.2
CCA 0 1.2 0.137 0.137 0.137 954
03 -6.1 0.135 0.135 0.148 92.0
0.6 -11.9 0.135 0.134 0.179 835
HEmI 0 -0.3 0.161 0.163 0.163 95.0
03 -0.1 0.148 0.151 0.150 948
06 -0.1 0.134 0.132 0.132 96.1
MIHEmI 0 -1.0 0.159 0.161 0.162 94.2
03 -1.0 0.148 0.150 0.150 95.5
06 -0.9 0.135 0.132 0.133 954

%Rbias: % relative bias; SE.q: Root mean square of the estimated standard error;
SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover:
9% coverage of the nominal 95% confidence interval; CCA: Complete case analysis;
HEmI: Heckman's one-step ML estimation; MIHEmI: Multiple imputation using
Heckman's one-step ML estimation
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The results of the simulations that considered missing
data on a continuous outcome are presented in Table 2
(Fig. 2). Compared to a binary outcome, similar results are
observed. HEml, HE2steps, MIHEm! and MIHE2steps pre-
sented similar results concerning biases; nevertheless, the
standard errors obtained with HEm/ and MIHEml with
p # 0 are smaller than those observed with HE2steps
and MIHE2steps, while the confidence intervals remain
near 95%. The results for f; are similar (Additional file 1:
Table S9).

The results of the simulations with data created using a
logit selection model including Y as a covariate (i.e., anon-
Heckman MNAR mechanism) are presented in Table 3
(Fig. 1) for binary outcomes and in Table 4 (Fig. 2) for con-
tinuous outcomes. CCA is not biased for ,8?1 = 0 and is
biased for ,3“;1 # 0. The biases increase with the effect of
Y. For MNAR binary outcomes, HEml and MIHEml are
biased from 2.5 to 4.2% but are less biased than CCA.
For continuous outcomes, HEml, HE2steps, MIHEm!I and
MIHE2steps are slightly biased for 3/ # 0, and lower stan-
dard errors are obtained using HEml and MIHEml, while
biases appear to be very slightly greater.

Missing data on outcome Y and covariate X>

The results of the simulations that considered missing
data on a binary outcome Y and on X; depending on
X1 and X3 are presented in Table 5 (Fig. 1). Approxi-
mately 50% of the cases were analysed with CCA, while
70% were analysed with HEml and the entire dataset with
MIHEmI. Under a MAR mechanism for the missing out-
come (p = 0), the biases for CCA, HEml and MIHEm!
range from 1.0 to 2.1%. The smallest standard error is
obtained using CCA. If the missing mechanism is MNAR,
then CCA is biased from 3.8 to 8.4%, whereas the biases of
HEml and MIHEmI remain less than 2.5%. MIHEm! pro-
vides lower standard errors than HEml notably because
HEml uses only approximately 70% of the observa-
tions. The results for By are similar (Additional file 1:
Table S10).

The results of the simulations that considered missing
data on binary outcome Y and on X, depending on X;
and Y are presented in Table 5 (Fig. 1). Regardless of p,
CCA and HEml are biased from 20% to more than 33%.
Regardless of p, MIHEm! is almost unbiased (relative bias
of less than 2.5%). The results for B are similar excepted
for unbiased HEm! (Additional file 1: Table S10).

The results of the simulation studies with missing con-
tinuous outcomes Y and missing X, depending on X; and
X3 are presented for 81 in Table 6 (Fig. 2). When p = 0, all
methods are unbiased (relative biases of less than 1%). The
smallest standard error is obtained with CCA. When p # 0,
CCA is biased from 6.3 to 13.3%. The other methods are
almost unbiased (relative biases of less than 2.2%). The
results for B, are similar (Additional file 1: Table S11).
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Fig. 1 Binary outcome Boxplot of 81 estimates on the 1000 simulations associated to Table 1 (plot a), Table 3 (plot b), Table 5 left (plot €) and Table 5

The results of the simulations with missing continu-
ous outcomes Y and missingness of X, depending on X;
and Y are presented for f; in Table 6 (Fig. 2). Regard-
less of p, CCA, HEml and HE2steps are biased from 27.7%
to more than 37.7%. CCA presents the smallest standard
error. Regardless of p, MIHEm! and MIHE?2steps are unbi-
ased (relative biases of less than 2%). The standard errors
observed for MIHEm! are smaller than those observed for
MIHE2steps, while the coverage remains close to 95%. The
results for By are similar (Additional file 1: Table S11).
However, when p = 0.6, MIHEm! and MIHE2steps are
slightly biased for 82 (3.4% and 4.5%, respectively).

Similar results are observed when the sample size
decreased down to 200, although biases ans SEs slightly
increased (Additional file 1: Tables S12, S13, S14 and S15).

Application to illustrative examples

The impact of treatment group on adherence has been
assessed using a probit model adjusted on severity score.
Adherence presented 115 (21%) missing data. There were
51 and 375 non-adherent and adherent patients, respec-
tively. The missing data mechanism of adherence was
strongly suspected to be MNAR. The severity score was

missing for 114 (21%) patients, and its missing data mech-
anism was suspected to be MAR. Four methods were
applied: CCA, HEml, MIHEml and MI. A standard MI
approach was added using a MICE procedure with a
linear imputation model for severity score and a probit
imputation model for adherence. The aim of the latter
model was to assess the performance of an available mis-
specified but widely used approach. The missing data
mechanisms assumed by each method are presented in
Table 7. The HEml and MIHEmI selection equations for
adherence included treatment group, severity score and
antibiotic treatment. The latter binary variable was cho-
sen to fulfill the exclusion-restriction criterion. The MAR
variables were imputed using linear and probit regression
models for continuous and binary variables, respectively.
Using MIHEml, the indicator of adherence missingness
was included in the severity score imputation model.
The MICE procedure was applied for 20 iterations, and
m = 100 datasets were generated. Finally, Rubin’s rules for
small samples were applied.

The results are presented in Table 7. The reference
group for treatment is the combination group. The
Severity score coefficient corresponds to an increase of
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Table 2 Continuous Y: Simulation results for 81 = 1 with p =0,
representing a MAR mechanism, and p = 0.3 and 0.6,
representing an MNAR mechanism

Methods ) %Rbias SEcal SEemp RMSE Cover
Before 0 0.0 0.064 0.064 0.064 95.1
deletion 03 0.0 0.063 0.065 0.065 95.0
06 -0.2 0.064 0.064 0.064 943
CCA 0 0.1 0.083 0.084 0.084 95.1
03 -9.1 0.082 0.081 0.122 80.3
0.6 -17.8 0.078 0.079 0.194 382
HEmI 0 0.0 0.103 0.103 0.103 952
03 -0.4 0.101 0.101 0.101 94.6
06 -04 0.092 0.092 0.092 94.2
MIHEmI 0 0.0 0.105 0.103 0.103 94.7
03 -0.3 0.103 0.102 0.102 953
06 -03 0.096 0.094 0.094 94.8
HE2steps 0 0.0 0.103 0.102 0.102 954
03 -04 0.103 0.103 0.103 94.6
06 -0.2 0.100 0.099 0.099 954
MIHE2steps 0 0.0 0.105 0.103 0.103 95.2
03 -04 0.104 0.104 0.104 94.0
0.6 -0.2 0.103 0.100 0.099 952

%Rbias: % relative bias; SE.q: Root mean square of the estimated standard error;
SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover:
% coverage of the nominal 95% confidence interval; CCA: Complete case analysis;
HEmI: Heckman one-step ML estimation; MIHEmI: Multiple imputation using
Heckman's one-step ML estimation; HE2steps: Heckman'’s two-step estimation;
MIHE2steps: Multiple imputation using Heckman's two-step estimation

20 units. CCA includes only 359 cases, i.e., 66% of the
entire dataset. Observations with missing predictors are
ignored in the HEml analyses, i.e., only 427 (79%) cases
are retained. MI and MIHEm! consider all observations.
As expected, MI and MIHEm! have lower standard errors
than those of CCA and HEml. The coefficients estimated
for Oseltamivir-Placebo with MI and MIHEm! are similar
and higher than those obtained with CCA or HEml. The
effect of Oseltamivir-Placebo reached significance with
MIHEmI, thus enabling the assessment of the impact of
Oseltamivir-Placebo on adherence. The estimated coeffi-
cients of Zanamivir-Placebo and severity score are similar
for CCA and M, slightly higher for HEml and higher for
MIHEml. Not surprisingly, the proportion of imputed val-
ues corresponding to the non-adherent outcome are 13%
and 47% for MI and MIHEml, respectively, indicating that
missing values on self-reported adherence are more likely
to correspond to non-adherent patients.

We also challenged the MAR assumption concerning
the missing mechanism associated with the severity score.
Thus, we performed a new MICE procedure encoding two
Heckman’s imputation models for adherence and severity
score. It involves defining selection and outcome models
for severity score. The results for the effects were similar:
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0.376 (0.186) and 0.096 (0.179) for Oseltamivir-Placebo
and Zanamivir-Placebo, respectively. These results sug-
gest a weak impact of the MNAR mechanism for severity
score.

Discussion

The first aim of this work was to propose a unique
approach to address binary outcomes according to an
MNAR mechanism and missing predictors with a MAR
mechanism. According to our simulation results, for
MNAR outcomes, only MIHEm! and HEml were unbi-
ased. Our simulation studies were generated using a
real Heckman’s model. Thus, we generated MNAR out-
comes using a logistic selection model, directly including
Y as a predictor, i.e. an MNAR mechanism that is non-
compatible with Heckman’s model. Although our results
remain biased, the use of MIHEml reduced the biases
compared to CCA. Because it is not possible to con-
firm the validity of Heckman’s model from the observed
data alone [17, 33], the developed approach appears to at
least reduce the biases under an MNAR mechanism if the
Heckman’s hypotheses do not hold.

To thoroughly evaluate our approach in a MICE proce-
dure, we simulated missing data on predictors following
two scenarios: one where the MAR mechanism for X,
depended on the fully observed X; and X3, and one where
the mechanism depended on X and Y. For these two sce-
narios, Heckman’s model (HEml) used only cases with
complete predictors to estimate the model parameters, i.e,
did not use all available information. This loss of infor-
mation produced larger standard errors, particularly for
p1 and only slightly for B;. This result is not surpris-
ing because the information lost, resulting from ignoring
patients with missing X, primarily affected X;. In terms
of bias, the first scenario presented similar results to those
obtained without missing X data. In the second scenario,
where the missing mechanism for X also depended on Y,
MIHEm! out-performed all the other methods. The sec-
ond aim was to validate the proposition of Galimard et al.
[18] using a one-step ML estimator for continuous out-
come. Our simulations showed that MIHEml performs
slightly better than MIHE2steps in terms of standard
errors for the missing MNAR outcomes.

Although our method performs well in the presence of
a MAR mechanism, i.e., when p = 0, it is preferable to
determine whether the missing data mechanism is most
likely to be MNAR or MAR to avoid modelling a selec-
tion equation. Indeed, the standard errors are greater than
those of the standard approaches for p = 0. Unfortu-
nately, it is not possible to distinguish between MAR and
MNAR from the observed data alone [17, 33]. Hence,
sensitivity analyses are often performed to evaluate depar-
tures from MAR. Some authors have proposed a pattern
mixture model using § adjustment, i.e., systematically
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Table 6 right (plot d)

Table 3 Binary Y and logit selection model: Simulation results for

B1 = 1 estimates

Methods B %Rbias Sk SEemp RMSE  Cover
Before 0 0.9 0109 0110 0110 953
deletion 1 10 0109 0103 0.103 9.4
2 12 0109 0115 0.115 944
CCA 0 15 0135 0137 0138 958
1 7.2 0133 0131 0149 906
2 -154 0134  0.146 0212 74.0
Heml 0 24 0167 0170 0.171 935
1 25 0153 0152 0154 960
2 35 0.144 0152 0156 949
MIHEmI 0 -4.0 0163 0163 0168 939
1 37 0152 0152 0156 952
1 42 0.145  0.155 0160 949

%Rbias: % relative bias; SE.q: Root mean square of the estimated standard error;

SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover:
% coverage of the nominal 95% confidence interval; CCA: Complete case analysis;
HEmI: Heckman's one-step ML estimation; MIHEmI: Multiple imputation using
Heckman’s one-step ML estimation

adding a certain increment § to the linear predictors of the
imputed values. Despite its simplicity, van Buuren consid-
ered this method to be a powerful approach for evaluating
the MAR mechanism by varying § [2, 8, 17]. This method
identifies two patterns: one for the observed data and one
for the unobserved data. Missing values are imputed con-
ditionally on the observed data with an additional shift
parameter §, which is the magnitude of departure from
MAR. Then, the model for the observed data is different
from the model for the missing data. Similarly, MIHEmI
can be viewed as a method that applies a shift term or
a correction term for the selection bias in the imputa-
tion model specific to each observation i. Precisely, as
E(Yi[Ry = 0) = Xip + poe (—¢ (XiB*)) /@ (—X;5°),
MIHEm! uses a selection correction term that can be con-
sidered as an individual §; for each patient (adjusted on
the parameters of the selection equation). In this sense, we
obtained a more precise §-adjustment approach.

The construction of the selection model follows strict
rules [14, 23]. In our experience, respect of the exclusion-
restriction criterion should be strict. Indeed, Heckman’s
model can inflate standard errors due to the collinear-
ity between the regressors and IMR, and this problem
is exacerbated when the exclusion-restriction criterion
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Table 4 Continuous Y and logit selection model: Simulation
results for By = 1 estimates

Methods ﬂj’ %Rbias SEcal SEemp RMSE Cover
Before 0 0.2 0.063 0.064 0.064 954
deletion 1 0.0 0.064 0.066 0.066 94.2
2 -0.2 0.063 0.061 0.061 96.2
CCA 0 0.3 0.079 0.078 0.078 958
1 -189 0.079 0.080 0.205 335
2 -30.1 0.075 0.076 0310 2.1
HEmI 0 0.3 0.105 0.108 0.108 936
1 -1.3 0.117 0.131 0.131 92.7
2 -1.5 0.098 0.111 0.112 943
MIHEmI 0 0.3 0.107 0.110 0.110 94.0
1 -1.2 0.121 0.133 0.134 926
2 -1.3 0.105 0.113 0.114 94.7
HE2steps 0 03 0.107 0.105 0.105 954
1 0.9 0.149 0.158 0.158 95.0
2 0.0 0.162 0.165 0.165 95.6
MIHE2steps 0 03 0.110 0.106 0.106 95.5
1 0.9 0.151 0.159 0.159 94.6
2 0.0 0.163 0.166 0.166 94.8

%Rbias: % relative bias; SE.q: Root mean square of the estimated standard error;
SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover:
% coverage of the nominal 95% confidence interval; CCA: Complete case analysis;
HEmI: Heckman one-step ML estimation; MIHEmI: Multiple imputation using
Heckman's one-step ML estimation; HE2steps: Heckman’s two-step estimation;
MIHE2steps: Multiple imputation using Heckman's two-step estimation
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does not hold [34]. Moreover, MICE (or full conditional
specification) follows certain rules. Each variable with
missing data requires a specific conditional imputation
model that is generally defined by a link function and a
linear predictor with its set of predictors. Theoretically,
imputation models should be derived from the global
joint distribution of the variables, including the outcome
[2, 35], and misspecification may result in biased parame-
ter estimates [36]. Despite recent work in simple cases, the
theoretical properties of MICE are not fully understood
[25, 26, 28, 37]. Nevertheless, it performs well in practice,
particularly when the conditional imputation models are
well accommodated to the substantive model. The effi-
ciency of the MICE approach is generally validated by
simulation studies, and the results appear robust even
when the compatibility between the full conditional dis-
tribution and the global joint distribution is not proven
[2]. Although simulation is never sufficiently complete,
these simulations suggest that our approach of multiple
imputation using Heckman’s model and its use in a MICE
process are valid and could be useful when the MNAR
mechanism on the outcome is compatible with Heckman’s
model. To avoid the bivariate normality assumption of
Heckman’s model, Marchenko and Genton [38] proposed
a Heckman’s model with a bivariate Student distribution
for error terms. Ogundimu and Collins [39] developed an
imputation model using this selection-t model. Unfortu-
nately, their imputation model is only available for con-
tinuous outcomes. We compare the proposition in the
current paper for continuous outcome to the propositions

Table 5 Binary Y: Simulation results for 8y = 1 with p = 0, representing a MAR mechanism, and p = 0.3 and 0.6, representing an

MNAR mechanism, in the presence of missing data on X>

R, depends on X; and X3

R, depends on X; and Y

Methods P %Rbias SEcal RMSE Cover %Rbias SEcal RMSE Cover
Before deletion 0 0.7 0.109 0.113 95.0 0.8 0.109 0.111 94.9
03 0.5 0.108 0.108 95.7 0.9 0.109 0.109 95.0
0.6 0.5 0.108 0.106 95.8 1.1 0.109 0.106 95.5
CCA 0 1.0 0.158 0.159 953 -20.3 0.165 0.262 739
03 -3.8 0.158 0.166 934 -26.9 0.164 0313 60.9
06 -84 0.158 0.178 90.9 -33.2 0.165 0.369 476
HEmI 0 -1.3 0.182 0.182 94.8 -21.1 0.190 0.287 785
03 -0.5 0.169 0.175 943 -21.2 0.178 0.274 76.3
06 -1.1 0.158 0.158 95.0 -22.5 0.165 0.277 738
MIHEmI 0 -2.1 0.167 0.167 95.2 -14 0.166 0.168 94.5
03 -1.8 0.155 0.153 95.6 -1.7 0.155 0.151 95.7
0.6 -2.5 0.146 0.140 96.6 -2.5 0.145 0.140 96.0

9%Rbias: % relative bias; SE4: Root mean square of the estimated standard error; SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover: %
coverage of the nominal 95% confidence interval; CCA: Complete case analysis; HEmI: Heckman's one-step ML estimation; MIHEmI: Multiple imputation using Heckman's

one-step ML estimation
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Table 6 Continuous Y: Simulation results for 81 = 1 with p = 0, representing a MAR mechanism, and p = 0.3 and 0.6, representing an

MNAR mechanism, in the presence of missing data on X>

R, depends on X; and X3

R, dependson X; and Y

Methods P %Rbias SEcal RMSE Cover %Rbias SEcal RMSE Cover
Before deletion 0 0.2 0.063 0.063 94.6 -0.1 0.063 0.064 95.8
0.3 0.1 0.064 0.065 94.8 0.0 0.063 0.064 94.7
0.6 -0.3 0.064 0.065 94.0 0.2 0.063 0.063 952
CCA 0 0.1 0.095 0.092 94.8 -289 0.097 0.307 159
0.3 -6.3 0.093 0.118 874 -33.8 0.094 0.351 4.7
0.6 -133 0.090 0.162 69.7 -37.7 0.090 0.388 16
HEmI 0 0.1 0113 0112 943 -27.7 0.118 0.306 346
03 -0.3 0.110 0.121 92.7 -26.9 0.110 0.294 344
0.6 -0.6 0.103 0.106 933 -27.5 0.099 0.293 209
MIHEmI 0 -0.1 0.107 0.103 95.0 1.2 0111 0.107 95.8
0.3 -0.9 0.105 0.109 94.1 -0.1 0.108 0.107 937
06 -2.2 0.101 0.099 949 -1.7 0.103 0.097 94.2
HE2steps 0 0.2 0114 0111 94.8 -28.1 0117 0.306 30.8
03 0.0 0114 0.123 92.7 -27.7 0111 0.300 29.2
06 -03 0.113 0.114 939 -28.0 0.104 0.299 237
MIHE2steps 0 -0.1 0.107 0.101 955 1.1 0.110 0.107 96.1
03 -0.6 0.106 0.112 93.1 0.0 0.108 0.110 94.7
06 -1.5 0.105 0.105 94.8 -13 0.105 0.102 94.5

9%Rbias: % relative bias; SE.4: Root mean square of the estimated standard error; SEemp: Empirical Monte Carlo standard error; RMSE: Root mean square error; Cover: %
coverage of the nominal 95% confidence interval; CCA: Complete case analysis; HEml: Heckman one-step ML estimation; MIHEmI: Multiple imputation using Heckman’s
one-step ML estimation; HE2steps: Heckman's two-step estimation; MIHE2steps: Multiple imputation using Heckman's two-step estimation

of Ogundimu and Collins [39] and Galimard et al. [18] in
Additional file 2. Not surprisingly, the results were similar.
Indeed, ¢-distributions are very close to a normal distribu-
tion for high degrees of freedom. In this paper, we focused
on frequentist sample selection approaches within a MICE
procedure. Nevertheless, Bayesian posterior distribution
of sample selection models can be obtained using Gibbs
sampling and data augmentation [40, 41]. Such a fully
Bayesian framework could improve the imputation when
based on small samples; this could be evaluated in further
research.

Finally, our simulation study does not explore MNAR
mechanisms on covariates and outcomes. Such a situa-
tion requires specifying a Heckman’s imputation model
for each MNAR variable (i.e. selection and outcome mod-
els). Nevertheless, we used this type of approach in our
example analysis to evaluate the departure from MAR for
the missing predictors.

Conclusion
In the presence of MAR predictors, we proposed a simple
approach to address MNAR binary or continuous missing

Table 7 Estimation of the predictive value of the randomisation group and severity score

Methods (% used) Assumed mechanisms Oseltamivir Placebo Zanamivir Placebo Severity score
Adh. Sev. Coeff SE Coeff SE Coeff SE
CCA (66%) MCAR MCAR 0.243 0217 0.061 0.206 0.021 0.163
MI (100%) MAR MAR 0.380 0.205 0.055 0.183 0.035 0.163
HEmI (79%) MNAR MCAR 0272 0.268 0.077 0223 0.048 0.223
MIHEmI (100%) MNAR MAR 0.396 0.188 0.105 0.182 0.123 0.181

Adh.: Adherence; Sev.: Severity score; Coeff: Coefficient; SE: Standard error; CCA: Complete case analysis; MI: Multiple imputation using classic imputation models; HEm:
Heckman’s one-step ML estimation; MIHEmI: Multiple imputation using Heckman's one-step ML estimation
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outcomes under a Heckman assumption in a MICE proce-
dure. This approach could be either directly used to han-
dle such a framework (MNAR outcomes and MAR predic-
tors) or to challenge the robustness of a suspected MAR
mechanism for missing outcomes, such as in a sensitivity
analysis. Finally, a R package, named “miceMNAR’, dedi-
cated to the proposed approaches has been implemented
and is available on the CRAN (https://CRAN.R-project.
org/package=miceMNAR).
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Additional file 2: Comparison to Ogundimu and Collins. (PDF 129 kb)
Additional file 3: BIVIR study group. (PDF 78 kb)

Additional file 4: R code to impute binary outcome. (R 1 kb)
Additional file 5: R code to impute continuous outcome. (R 1 kb)
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