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Estimating causal effects of time-
dependent exposures on a binary
endpoint in a high-dimensional setting
Vahé Asvatourian1,2*, Clélia Coutzac3,4, Nathalie Chaput3,5, Caroline Robert4,6, Stefan Michiels1,2 and Emilie Lanoy1,2

Abstract

Background: Recently, the intervention calculus when the DAG is absent (IDA) method was developed to estimate
lower bounds of causal effects from observational high-dimensional data. Originally it was introduced to assess the
effect of baseline biomarkers which do not vary over time. However, in many clinical settings, measurements of
biomarkers are repeated at fixed time points during treatment and, therefore, this method needs to be extended.
The purpose of this paper is to extend the first step of the IDA, the Peter Clarks (PC)-algorithm, to a time-dependent
exposure in the context of a binary outcome.

Methods: We generalised the so-called “PC-algorithm” to take into account the chronological order of repeated
measurements of the exposure and proposed to apply the IDA with our new version, the chronologically ordered
PC-algorithm (COPC-algorithm). The extension includes Firth’s correction. A simulation study has been performed
before applying the method for estimating causal effects of time-dependent immunological biomarkers on toxicity,
death and progression in patients with metastatic melanoma.

Results: The simulation study showed that the completed partially directed acyclic graphs (CPDAGs) obtained using
COPC-algorithm were structurally closer to the true CPDAG than CPDAGs obtained using PC-algorithm. Also, causal
effects were more accurate when they were estimated based on CPDAGs obtained using COPC-algorithm. Moreover,
CPDAGs obtained by COPC-algorithm allowed removing non-chronological arrows with a variable measured at a time
t pointing to a variable measured at a time t´ where t´ < t. Bidirected edges were less present in CPDAGs obtained with
the COPC-algorithm, supporting the fact that there was less variability in causal effects estimated from these CPDAGs.
In the example, a threshold of the per-comparison error rate of 0.5% led to the selection of an interpretable set of
biomarkers.

Conclusions: The COPC-algorithm provided CPDAGs that keep the chronological structure present in the data and
thus allowed to estimate lower bounds of the causal effect of time-dependent immunological biomarkers on early
toxicity, premature death and progression.

Keywords: Repeated measures, Immunotherapy, PC-algorithm, IDA, High dimensional setting, Causal inference,
Observational data
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Background
The Intervention calculus when the directed acyclic
graph (DAG) is absent (IDA) method was recently
developed to estimate lower bound of total causal effects
from observational data in high-dimensional settings [1].
It was originally introduced to evaluate the effect of
time-fixed exposure (gene expression). This method is a
combination of Peter Clarks (PC)-algorithm [2] and Pearl’s
do calculus [3]. The PC-algorithm is a constraint-based
method for causal structure learning, meaning that it
learns the causal structure based on the conditional
dependencies of the observational distribution. The out-
put of the PC-algorithm results in a CPDAG (completed
partially DAG) that encodes conditional dependencies of
the data in a class of DAGs (Directed acyclic graphs)
called Markov Equivalent. Then, based on the DAGs in
the Markov Equivalence Class, causal effects are estimated
using Pearl’s do calculus (see section Causal effect estima-
tion in high dimensional settings). However, in many clin-
ical settings, time-dependent biomarker values under
treatment or changes in biomarkers from baseline are of
interest. If the true DAG was known, the commonly used
marginal structural model (MSM) approach could be used
to estimate causal effects in the case of time-dependent
covariates and outcome [4, 5]. In our setting, the true
DAG being unknown, causal effects could not be identi-
fied using MSM.
In the 2010s, new anti-cancer treatments targeting im-

mune checkpoints were introduced: the wave of these im-
munotherapies began with the anti CTLA-4 treatment
which showed a survival benefit in patients with meta-
static melanoma [6, 7]. More recently, promising results
in lung and kidney cancers have also been obtained [8].
Nevertheless, only a subgroup of patients seem to benefit
from this treatment: about 20% of patients with metastatic
melanoma treated with ipilimumab were long-term survi-
vors (3 years) [9]. Moreover, immune-related toxicity such
as colitis occurs in 8 to 22% of treated patients [10]. The
goal of immunotherapy is to amplify the immune system
response against cancer cells. Thus, one can observe the
evolution of the treatment by looking at the immune
system. Predictive and/or prognostic markers are ideally
validated through clinical trials including randomized
studies, which are the gold standard [11, 12]. Before being
evaluated in randomized trial, candidate immunological
biomarkers can be identified from high-dimensional data,
collected in an observational or non-randomized setting.
Our objective was to develop methods to identify the

causal effects of time-dependent exposures on a binary
endpoint in a high-dimensional setting, with an application
of time-dependent immunological biomarkers in a
non-randomized prospective study in oncology. However,
the PC-algorithm has never been applied on data measured
repeatedly at a fixed time points, and the chronological

order among data is not respected when using
PC-algorithm. The first step was then to find the true
CPDAG by extending the PC-algorithm to chronologically
ordered measures and then to estimate robust causal effects
based on the CPDAG estimated using our version of the
PC-algorithm. To ensure the accuracy and the efficiency of
our method, we made a simulation study where we com-
pared the CPDAGs’ structure obtained using PC-algorithm
and our method. Then we compared the estimation of true
causal effects calculated based on CPDAGs obtained from
both methods. Due to collinearity among time-dependent
biomarkers, we added for the first time the Firth’s correc-
tion while estimating causal effects to avoid instability of
the maximum likelihood estimates. After the simulation
study, we applied both PC-algorithm and our method to
real dataset of time-dependent immunological biomarkers.

Methods
Graph definitions and notations
Let G (N, E) be a graph consisting of nodes N and edges E.
Nodes represent random variables N = {X1,…, Xp} and
edges represent the links between them. An edge can be
either directed Xi→Xj (in this case, Xi is a parent of Xj

and Xj is a descendant of Xi) or undirected Xi −Xj. A
graph with only undirected edges is said to be an undir-
ected graph whereas a directed graph is made of only
directed edges. A partially directed graph contains both
directed and undirected edges.
Two nodes are said to be adjacent if they are connected

by an edge (either directed or undirected). A path is a
sequence of nodes in which all pairs are adjacent. A path
can be either open or closed. A path is open when there is
no collision between two arrows pointing to the same
node on the path (i.e. the path from Xi to Xm in (1) is
open).

Xi→X j→Xk→Xm←Xl ð1Þ

A path is closed when there is a collision between two
arrows which point to the same node of the path, this
variable is a collider (i.e, the path from Xi to Xl in (1) is
closed). We denote Xk as a descendent of Xi (and Xi an
ancestor of Xk) if there is a path that starts from Xi and
ends to Xk by following the direction of the arrows (1).
We also denote pa(Xi,G) as the parents of Xi in G by
the set of variables pointing to Xi. A graph is called
acyclic when no path starts and ends at the same node.
A graph which is acyclic and has directed edges is called
a directed acyclic graph (DAG). A DAG is complete or
statistical when all pairs of nodes are adjacent, whereas a
DAG is causal when all common causes of any variable
are on the graph, i.e. any parent is a cause of its descen-
dants. Therefore, a causal DAG is informative whereas a
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complete DAG is non-informative because a lack of
arrow means an absence of a direct causal effect.
A graph encodes (conditional) independence relation-

ships through the concept of d-separation [13]. If two
nodes are d-separated by a set of nodes, then the variables
corresponding to the nodes are conditionally independent
given this set of variables. The set of these given variables
is then called separation set S. Multiple DAGs can be
compatible with a same set of underlying conditional
independences. Let a skeleton be the graph obtained by
removing all arrowheads from the DAG and the v-struc-
tures a subgraph of 3 nodes filling two conditions: 1) both
arrows are not pointed on Xj (Xj is not a collider) and 2)
where Xi and Xk are not adjacent.
The DAGs Xi→Xj→Xk, Xi←Xj←Xk and Xi←Xj→

Xk in which the two conditions hold, belong to the same
Markov equivalence class and are called Markov equiva-
lent. A whole equivalence class can be summarised in a
graph that has the same skeleton and includes the directed
arrows of all DAGs in the equivalence class. Edges which
are directed differently across the DAGs in the equiva-
lence class are represented with bidirected arrows (or sim-
ply edges). This graph with both undirected and directed
edges is called a Completed Partially DAG (CPDAG).

Causal effect estimation in high dimensional settings
IDA
When the relationships between variables are not oriented,
the DAG cannot be identified. With many variables in a
high-dimensional setting, it is not possible to determine
which nodes are ancestors and which are descendants. The
only possible initial graph that can be drawn based on
high-dimensional data is a complete undirected graph
which is non-informative (Fig. 1). The intervention calculus
when the DAG is absent (IDA) method has been intro-
duced to determine the CPDAG from the observational
data and to estimate lower bounds of the absolute values of
the total causal effects in the case where all variables
(including outcome) are continuous [1]; and has been
extended to the case where all variables are binary [14].
The first objective of the IDA is to estimate the CPDAG
and its Markov equivalence class that contain the true
causal DAG from the observational data by using a causal
learning algorithm such as the PC-algorithm [2]. Then the
intervention calculus [3, 15] is used on the m DAGsj of the
Markov equivalence class j = 1, …, m, to estimate the p ×m
matrix Θ of causal effects θij of each covariate Xi (i = 1,…,
p) on Y.
However, estimating the true causal effect is impossible

when a unique DAG is not identifiable. To determine
whether or not a covariate has a potential causal effect,
the minimum absolute causal effect of a covariate is

defined ascβi ¼ min jðjθ̂ijjÞ. Then a ranking of covariates’

causal effects is made based on these lower bounds, where

β̂i1 is the lower bound of the covariate i with the rank 1:

β̂i1 ≥ β̂i2 ≥…≥ β̂ip : ð2Þ

Determining all the DAGs that are present in the
Markov equivalence class can be highly computationally
intensive in a high-dimensional setting. Nevertheless,
rather than computing all the DAGs, it is still possible to
determine the set of parents used for adjusting by
extracting them from the CPDAG. The local algorithm
used by Maathuis et al. [1] checks if the parents are
locally valid (if they create or not a new collider) in the
CPDAG and all causal estimates for a single covariate Xi

on Y are in the multiset Θi = {θij}j ∈ {1,…,m} and i ∈ {1,…, p}.
Contrary to a set, in a multiset the replication of an
element matters. For instance, the multisets {a, a, b} and
{a, b} are not equal while the sets {a, a, b} and {a, b} are.
The multiset allows the multiplicity of an element.
Finally, the assumptions made in the IDA are:
(A1) There are no hidden variables.
(A2) The joint distribution of covariates Xi, …, Xp is

normal and faithful to the true (unknown) DAG.
(A3) Covariates Xi, …, Xp have equal variance.
The IDA method developed by Maathuis et al. is

implemented in the R-package pcalg [16].

PC-algorithm
The PC-algorithm is a constraint based method for causal
structure learning [2, 17], meaning that it learns the causal
structure based on the conditional dependencies between

Fig. 1 A complete undirected graph
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variables. A sketch of the PC-algorithm is given in
algorithm 1.

First, it estimates the skeleton of the underlying structure
by checking all given conditional dependencies between
each variable at a significance level α. If no information on
dependencies is given, then the graph used as input is an
undirected graph such as in Fig. 1. Once the skeleton is ob-
tained, edges are oriented in the v-structures to meet the
conditional dependencies and finally the CPDAG is ob-
tained by directing as many remaining edges as possible ac-
cording to three rules (see section 3.1 of [18]):
R1: When there is a directed edge Xi→ Xj, Xj − Xk is

oriented into Xj→ Xk with Xi and Xk not adjacent;
R2: When there is a chain Xi→ Xk→ Xj, Xi − Xj is

oriented into Xi→ Xj;
R3: When there are two chains Xi − Xl→ Xj and Xi −

Xk→ Xj, Xi − Xj is oriented into Xi→ Xj with Xk and
Xl not adjacent.
Even though the PC-algorithm has been shown to be

consistent in high-dimensional settings [19], one of its
issues remains the effect of the set of ordered variables
O in the final output. In fact, the order of the variables
determines which pair of nodes is tested first,
determining which edges are removed first and so
affecting which tests are considered later on. This order
dependence impacts robustness of the results in
high-dimensional settings. Two different solutions have
been suggested: the stability ranking and the PC-stable,
which will be outlined below. Before running the
algorithm, the multiple testing requires to specify the
significance level (cut-off ) α for the conditional
independence tests. In fact, setting α to a certain value
means that only conditional dependencies with a
p-value under α are kept. Thus, running PC-algorithm
with a small value of alpha leads to obtaining sparser
graphs.

Stability selection
To deal with the order dependence issue of the
PC-algorithm in the IDA which can lead to poor robust-
ness, Stekhoven et al. proposed to add a stability selec-
tion step [20] to IDA. This method, called Causal
Stability Ranking (CStaR) [21], is based on a re-sampling

approach. The IDA is run over 100 independent random
subsamples and then in each subsampling run, the vari-
ables are ranked according to Eq. (2). At the end of all
runs, the relative frequencies Πi of covariates appearing
among the top of q variables are used to define a stable
ranking:

Π̂1≥Π̂2≥…≥Π̂p: ð3Þ

For a given q, a bound for the per-comparison error rate
(PCER), which can be seen as the false positive error rate, is
given by:

1

2cΠ j−1

q2

p2
: ð4Þ

PC-stable
Another approach that considers the order dependence
issue of the PC-algorithm was explored by Colombo
and Maathuis by introducing an order-independent
version of the PC-algorithm called PC-stable [18]. In
step 1 of the PC-stable version, the adjacency set of all
variables are stored after each change in the size of the
separation set (see section “Discussion”.1 of [18]); re-
moving an edge will not affect which conditional inde-
pendencies are checked for other pairs of variables. In
addition, they also showed that the combination of the
stability selection with PC-stable gave more reliable edges
than PC-stable alone on yeast gene expression data [18].

Extension to a time-dependent exposure
We aimed to extend the IDA by integrating
time-dependent exposures in the PC-stable step. Based
on chronologically ordered data, the resulting CPDAG
should not contain arrow from a descendant to a
parent X1, t′→ X1, t where t < t' since the value of a
variable at time t' cannot influence a past value of the
same variable. This means also that in the first step,
when looking at conditional dependencies between two
variables measured at time t and t∗ where t ≥ t∗,
variables measured at a time t' where t' > t and t' > t∗

should not be tested for the separation set S.
This can be done by adding chronological order in-

formation among the variables in addition to the condi-
tional independence information as input of the
PC-stable algorithm. The result of combining these two
types of information can be viewed as a partially
directed graph. In the partially directed graph, all edges
between variables measured at different times should
be directed chronologically, from parents to descendants,
and edges between variables measured at the same time
remained undirected. Differences between the two initial
graphs with 2 variables measured at 3 time points are

Algorithm 1 The PC-algorithm

Input: Conditional independence information between the variables
with O the set of ordered variables, significance parameter α.
1:Determine the skeleton
2: Determine the v-structures
3: Orient as many of the remaining edges as possible
Output: CPDAG Ĝ, separation set S
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shown in Fig. 2. A global sketch of the chronologically
ordered PC-stable is shown in algorithm 2.

The modified step 1 leads to determine a partially di-
rected skeleton at the end of step 1. We will call this exten-
sion of PC-algorithm chronologically ordered PC-stable
(COPC-stable) when using the order-dependent version
or the COPC- algorithm when not. The R code of this ver-
sion is available on request.

Estimation of the causal effect of repeated continuous
covariates on a binary outcome
The estimation of causal effects for data with only con-
tinuous or only discrete data has been largely discussed
[3, 22]. In estimate causal effect of repeated continuous
covariates on a binary outcome, the collinearity may ad-
dress the issue of unstable maximum likelihood esti-
mates. Therefore we used the Firth’s correction to
address this problem [23, 24]. Our model is detailed in
the Additional file 1.

Simulations
To compare our algorithm COPC to the PC-stable
algorithm, we used simulations. We generated random
weighted DAGs with a given number of variables p per
visit, a given number of visits nvisits(corresponding to
measurements of these variables) and a single binary

outcome. To simulate collinearity between repeated
measures, we generated the repeated covariates data
from a multivariate distribution that uses an autoregres-
sive model for the correlation between biomarkers:

X∼N

 
μ ¼

 μ1
⋮

μnvisits

!
;Σ ¼

 ρ0σ2 ⋯ ρnvisitsσ2

⋮ ⋱ ⋮

ρnvisitsσ2 ⋯ ρ0σ2

!!
;

where ρ is the correlation between biomarkers. We
choose to set μ = 0, σ2 = 1 and vary ρ from 0.5 to 0.7. We
also tried different number of visits and observations from
3 to 6 and 50 to 1000 respectively. To evaluate the two
methods, we compared the capacity of recovering the true
CPDAG through the sensibility and the specificity which
determine the capacity of detecting the true presence of
an arrow and the true absence of an arrow respectively.
We also calculated the Structural Hamming distance
(SHD) described by Tsamardinos [25] which is a score to
evaluate the structural distance from an estimated graph
to a true graph. The SHD was calculated as follows: SHD
was incremented when there was a wrong connection (i.e.
there was an arrow in the estimated CPDAG that was ab-
sent in the true CPDAG), and a missed edge (i.e. there
was no arrow in the estimated CPDAG that was present
in the true CPDAG). The accuracy of the causal effects es-
timation was explored by calculating the mean squared er-
rors (MSE). The full details of the simulations set-up are
available in Additional file 2.

Application
The method described above was applied to observational
data of repeated immunological biomarkers from patients
treated with ipilimumab for metastatic melanoma. The
objective was to highlight immunologic biomarkers that
had a causal effect on early toxicity, premature death and
progression.

Fig. 2 Initial graphs used as input for the IDA (Intervention calculus when the DAG is absent) without (a) and with (b) chronological a priori
information for 2 variables Xi,Xj measured at 3 time points t1,t2 and t3.

Algorithm 2 Chronologically ordered PC-stable

Input: Partially directed graph (conditional independence and
chronological information) with O the set of ordered variables,
significance parameter α.
1:Determine the partially directed skeleton
2: Determine the v-structures
3: Orient as many of the remaining edges as possible
Output: CPDAG Ĝ, separation set S
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Patients
Patients with metastatic melanoma treated with ipilimu-
mab were prospectively enrolled at the Gustave Roussy
Cancer Campus. Ipilimumab was administered intraven-
ously every 3 weeks. Immunological biomarkers were
measured at each visit prior each ipilimumab infusion
(V1, V2, V3, and V4).

Outcomes
Three binary outcomes were investigated: toxicity, prema-
ture death and progression. Early toxicity was defined as
occurrence of colitis during the first 12 weeks of treat-
ment. Premature death referred to death during the first
12 weeks of treatment. Progression was defined as an in-
crease of at least 20% in tumor size or occurrence of new
lesions during the first 6 months of treatment.

Immunological biomarkers
Several biological models were used representing differ-
ent level of immunological expression (Table 1). Model
1 represents adaptive T cells in a global way while model
3 represents subgroup of adaptive T cells. In all three
models biomarkers with a potentially known effect were
incorporated. For convenience, all biomarkers have been
anonymised in the main text of this page but are fully
detailed in Additional file 3.

Representation
To identify the dependency structure of the data, CPDAGs
were estimated using the PC-algorithm. To resume the
(conditional) dependencies present in all CPDAGs, Kalisch
et al. [14] proposed to aggregate edges in a present in
CPDAGs from a resampled dataset rather than showing a
single estimate of the CPDAG. Only edges present in 20%
of the CPDAGs are drawn and their thickness is propor-
tional to the number of CPDAGs in which the edge was
present.

Missing data
In our melanoma application, around 15% of missing
data were imputed using multivariate imputation by
chained equations (MICE) [26]. Missingness graphs [27]
are substantives tools that have been developed to study
the missingness mechanisms and the recoverability of a

missing variable. We applied missingness graphs on our
data in order in to identify the missingness mechanisms
and the recoverability. In missing at random (MAR)
case, the missing values can be recovered without bias;
while in the missing not at random (MNAR) case, the
missing values could be recovered with some little bias.
Full details are provided in the Additional file 4.

Results
Simulations
The results of the simulations are presented in Table 2.
Overall, COPC-stable outperformed PC-stable in

terms of sensibility, meaning that the percentage of false
positive was lower in the CPDAGs estimated with
COPC-stable rather than the CPDAGs estimated with
PC-stable. In terms of specificity, both algorithms
showed excellent results. In scenarios with a greater
alpha level regarding other parameters, sensibility rose
while specificity decreased. By reducing the number of
observations from 1000 to 50 we underestimated slightly
the sensitivity and specificity.
The COPC-stable SHD was lower than the PC-stable in

all scenarios, meaning that, as compared with CPDAGs
estimated with PC-stable, CPDAGs estimated with
COPC-stable had a structure closer to the true CPDAG
(see Table 2).
In terms of accuracy, the estimations of causal effects

based on CPDAGs estimated with COPC-stable were more
accurate than the ones using CPDAGs estimated with
PC-stable (see Additional file 5 for results of all scenarios).

Application
Both IDA and our extension have been applied to our ob-
servational data of repeated immunological biomarkers
from patients treated with immunotherapy for metastatic
melanoma. They have been repeatedly run 300 times on
subsamples of size n = 30. The tuning parameter α was set
to 0.02.
As expected, CPDAGs obtained using a naive

PC-stable from unordered repeated measures led to
non-chronological ordered paths in all three models
(Fig. 3) as compared with paths identified through
COPC.

Table 1 Biological models representing different level of immunological expression

Model Common biomarkers (n) Adaptive T cells immunity biomarkers (n) Total number of covariates

Model 1 Non-immunologic and innate immunological
biomarkers (29)

CD4 and CD8 (8) 37

Model 2 Non-immunologic and innate immunological
biomarkers (29)

CD4\CD8 expressing polarization and
domiciliation markers (148)

177

Model 3 Non-immunologic and innate immunological
biomarkers (29)

Subgroup of CD4\CD8 expressing
polarization and domiciliation markers (232)

261
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Table 3 shows the average number of edges according
to the version of the PC-algorithm and the model. As
compared with PC-stable, the percentage of bidirected
edges among all edges using COPC-stable was on aver-
age smaller in all three models, 100% vs 28% for model
1, 98% vs 40% for model 2 and 97% vs 52% for model 3.
Moreover, Table 3 shows the number of wrongly
defined edges into the final CPDAG. For instance, in
model 1, when using a naive approach of the PC-stable,
the resulting CPDAG had on average 14 bidirected
edges that were between two variables measured at
different times. When looking at Table 4, the number
of values in each multiset Θi also called ambiguity (â)
of the multiset [1] was smaller when using
COPC-stable rather than PC-stable for a same value of
alpha (α = 0.02). The maximum ambiguity reached in
our application was 3.

Estimating time-dependent causal effects in the melanoma
example
After estimating the CPDAG using COPC-stable, causal
effects were estimated using Pearl’s do-calculus. To
determine which biomarker had a robust causal effect,
we intended to select biomarkers with PCER threshold
≤0.5%. In model 1, there were no biomarkers with a
PCER < 0.005. Figures 4 and 5 show histograms of causal
effects on our three outcomes death, progression and
toxicity based on model 2 and 3. The causal effects seem
almost uniformly distributed between 0 and 1 in our
example for models 2 and 3. However, immunological
biomarkers with a PCER under 0.5% had a causal effect
concentrated between 0.6 and 0.8 for models 2 and 3 for
all outcomes. On the other hand, causal effects sizes of
immunological biomarker with PCER > 0.5% were
spread in a wide range from 0 to 1.

Table 2 Average sensibility, specificity and SHD according PC-stable and COPC-stable over 500 replicates simulated based on 2
DAGs with different number of visits

nvisits nobs alpha Se PC-stable (sd)
%

Se COPC-stable (sd)
%

Sp PC-stable (sd)
%

Sp COPC-stable (sd)
%

SHD PC-stable
(sd)

SHD COPC-stable
(sd)

4 1000 0.02 58.1(0.6) 63.2 (0.5) 98.7 (0.1) 98.8 (0.1) 333 (9) 279 (7)

0.2 58.1(0.5) 64.1(0.5) 98.6 (0.1) 98.5 (0.1) 340 (9) 288 (8)

50 0.02 54.9 (0.5) 57.0 (0.6) 99.2 (0.1) 99.4 (0.1) 338 (8) 299 (9)

0.2 56.3 (0.6) 59.0 (0.6) 98.9 (0.1) 99.1(0.1) 339 (9) 296 (8)

6 1000 0.02 56.6 (0.4) 60.7 (0.4) 99.0 (0.1) 98.9 (0.1) 504 (10) 466 (8)

0.2 56.6 (0.4) 61.6 (0.4) 98.9 (0.1) 98.6 (0.1) 521 (9) 491 (10)

50 0.02 54.1(0.3) 55.6 (0.4) 99.4 (0.1) 99.5 (0.1) 484 (9) 455 (11)

0.2 55.2 (0.4) 57.5 (0.5) 99.2 (0.1) 99.3 (0.1) 494 (11) 454 (12)

Fig. 3 Subset of the summary CPDAGs (Completed partially DAGs) of the model 3 in the metastatic melanoma example using naive PC-stable
over 300 runs. Only edges with a frequency > 0.20 are present. The thickness of edges is proportional to their frequency
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Tables 5 shows the top effect biomarkers among
those selected for models 2 (see Additional file 6 for
the list of all selected immunological biomarkers).
We see that some of the biomarkers are present in all

top 10 but differ with the time of measurement. We see
that BM30 is present in the top 10 for toxicity at visit 1,
in the top 10 for progression at visit 3 and in the top
ten for death at visit 4. Other biomarkers are present in
2 of the top 3 but differ with the visit such as BM26,
BM45, BM39 and BM9.

Discussion
We extended in this paper the IDA method to repeated
measures by introducing a chronologically ordered (CO)
version of the so called PC-algorithm. Our proposed
algorithm COPC-algorithm takes a priori chronological
information, such as repeated measure, into account in
the input graph. We then applied PC-stable and our new
method COPC-stable to simulated data sets and obser-
vational data of repeated immunological biomarkers
from patients treated repeatedly with immunotherapy
for metastatic melanoma. When comparing CPDAGs
obtained with PC-stable and those with COPC-stable,
the simulation study showed that PC-stable had a lower
sensitivity than the COPC-stable leading to a better
learning of the true structure. On the application,
CPDAGs based on PC-stable had indeed
non-chronological ordered paths while those based on
COPC-stable could not have any. CPDAGs obtained
with COPC-stable had on average more total and
directed edges than those obtained with PC-stable but
less bidirected edges. The lower the number of directed

edges, the lower the number of possible ways to direct
edges, hence the lower the number of DAGs in the
Markov equivalence class. Moreover Table 4 showed that
when using COPC-stable, the proportion of values
obtained in the multiset Θi was on average lower when
using PC-stable. Smaller the Markov equivalence class,
higher the power of the study to identify causal effects.
In the COPC-stable, the number of tested conditional

dependencies is considerably smaller than with PC-stable.
Since it takes chronological order information into account,
the COPC-algorithm does not test dependencies of two
variables conditioning on a variable measured at a time
after those two variables. In contrary, the original
PC-algorithm tests non-realistic conditional dependences
and thus raises the number of global tests. Testing those
non-realistic conditional dependences could lead to identi-
fying false positive causal effects.
Finding the true causal DAG has always been the

principle interest of causal inference studies, knowing
the true causal DAG allows the estimating of the true
causal effect. However, in high-dimensional setting, the
true causal DAG is generally unknown and it is difficult
to check whether or not all possible confounders are
measured. Therefore IDA was developed to estimate
lower bounds of the causal effects of Xi on Y and deter-
mine the importance of these effects. This is a different
approach where instead of searching one true causal
effect, a range of causal effects are estimated in each
DAG from a Markov equivalence class. Consequently,
when an effect of large numbers of markers is identified,
those which have causal effects could be selected by
different approaches. In fact, we could either keep a

Table 3 Average number of edges (standard deviation) in the CPDAG according to the version of the PC-algorithm and the model
over 300 runs with alpha = 0.02

Directed edges (sd) Bidirected edges (sd) Total (sd) Non-chronologically ordered edges (sd)

Naïve PC-stable (model 1) 0 (0.1) 19 (0.1) 19 (0.1) 14 (0.1)

COPC-stable (model 1) 18 (0.1) 7 (0.1) 25 (0.1) 0 (0)

Naïve PC-stable (model 2) 1 (0.1) 94 (0.1) 95 (0.1) 53 (0.1)

COPC-stable (model 2) 78 (0.1) 52 (0.1) 130 (0.1) 0 (0)

Naïve PC-stable (model 3) 5 (0.2) 155 (0.1) 160 (0.2) 64 (0.1)

COPC-stable (model 3) 92 (0.2) 100 (0.1) 192 (0.2) 0 (0)

Table 4 Probability of having a certain ambiguity â for biomarkers with an alpha level at 0.02 according to the version of the PC-
algorithm (PC-Stable/ COPC-stable) over 300 with alpha = 0.02

Model 1 Model 2 Model 3

Ambiguity PC-stable COPC-stable PC-stable COPC-stable PC-stable COPC-stable

â=1 0.243 0.676 0.153 0.599 0.061 0.437

â=2 0.568 0.297 0.655 0.356 0.693 0.494

â =3 0.189 0.027 0.192 0.045 0.245 0.069
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small range of biomarkers that are in the top effects as
in [21] or a larger range of those with a limited but
slightly higher probability of being false positive. In the
high-dimensional setting, the first approach will keep
biomarkers with the strongest causal effect but not
necessarily all biomarkers with a small causal effect. The
second approach assures to select a larger list of bio-
markers that have a robust causal effect and will suggest
to clinicians which immunological biomarkers they
should investigate deeper in a follow-up study. Also,
controlling for type 1 error can be done by different
methods. We chose in our application the PCER because
it is less restrictive compared to methods such as FDR
(False discovery rate) or FWER (Family-wise error rate).
The choice of the selecting approach depends on the

objective: selecting a small list of biomarker that have
the highest effect on the outcome or identifying all the
biomarkers that have an effect regardless of the size ef-
fect. For instance, if only the measure of a marker at
visit 2 belongs to the top causal effects, should we only
consider the marker at visit 2 or should the marker be
measured at all visits? Usually, in a causal DAG, all true
causal effects have to be reported, not only the stron-
gest. Nevertheless, the interpretation of the top causal

biomarker is challenging. Having a biomarker at a cer-
tain visit with a PCER below the selected threshold
does not mean that the biomarker has a causal effect
only at this visit but rather its maximum and more ro-
bust effect at this visit.
One of the main assumptions made in this study is

that the true DAG is not dynamic like other exten-
sions of the PC-algorithm on time-series data [28,
29]. So we did not constrain the arrows to be the
same within each visit. In fact, the context of bio-
logical biomarkers can be much more complex than a
simple repetition of a pattern. Originally, the IDA
made the assumption that all variables including the
outcome were Gaussian, then it has been extended in
a case where all variables (including outcome) are
discrete [14]. In this study we made the assumption
that all covariates X = {X1,…, Xp} are Gaussian and
that the outcome is binary because it is a situation
that is quite common in oncology. Also, the covari-
ates need to be measured at uniform set of time
points (i.e. balanced data).
Our work aimed to find causal effects among re-

peated immunological biomarkers on death and tox-
icity of patients treated with immunotherapy for

Fig. 4 Histogram of the causal effect for the biomarkers on death (a), progression (b) and toxicity (c) based on model 2 over 300 runs. Solid and
dashed lines represent the kernel density of biomarkers with a PCER > 0.5% and PCER ≤0.5% respectively
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metastatic melanoma. Based on our observational
data, using the IDA with our new version of the
PC-algorithm, the COPC-algorithm, we found a con-
sistent list of immunological biomarkers with causal
effects. But one should be attentive not to overinter-
pret these results. It is in fact impossible to accurately

check whether or not our assumptions hold; having
no unmeasured confounders is a strong assumption
but may be reasonable in our application.
Further work will investigate the addition of expert

knowledge as input of the COPC-algorithm based on
high-dimensional graphs. Also we will explore

Fig. 5 Histogram of the causal effect for the biomarkers on death (a), progression (b) and toxicity (c) based on model 3 over 300 runs. Solid and
dashed lines represent the kernel density of biomarkers with a PCER > 0.5% and PCER ≤0.5% respectively

Table 5 Top 10 of immunological biomarkers with a PCER < 0.5% in model 2. The number following “v” stands for the visit number.
Superscript indicate biomarkers in common. See Additional file 3 for the complete description of the biomarkers

Death (12 weeks) Progression (6 months) Toxicity 12 weeks

Rank Biomarker Median effect PCER Biomarker Median effect PCER Biomarker Median effect PCER

1 BM16v2a 0.81 0.0035 BM8v1d 0.77 0.0031 BM7v4 0.79 0.0028

2 BM5v1 0.81 0.0035 BM44v4 0.72 0.0036 BM8v4d 0.76 0.0034

3 BM42v3 0.80 0.0037 BM26v2 0.71 0.0041 BM16v3a 0.75 0.0036

4 BM48v1 0.86 0.0037 BM30v3b 0.71 0.0041 BM26v4 0.75 0.0036

5 BM42v2 0.80 0.0038 BM44v3 0.68 0.0042 BM7v3 0.76 0.0037

6 BM14v4 0.79 0.0039 BM45v1e 0.70 0.0047 BM9v4c 0.72 0.0039

7 BM30v4b 0.80 0.0039 BM39v4f 0.66 0.0049 BM39v3f 0.72 0.0039

8 BM11v4 0.83 0.0040 BM40v4 0.66 0.0049 BM32v3 0.71 0.0042

9 BM11v1 0.76 0.0042 BM14v2 0.66 0.0050 BM30v1b 0.67 0.0045

10 BM9v4c 0.81 0.0043 – – – BM45v1e 0.71 0.0046
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extensions that can deal with longitudinal and time to
event outcomes.

Conclusions
In this paper, we presented an extension of the
PC-algorithm called COPC-algorithm. It provides CPDAGs
that keep the chronological structure present in the data
and allow us to estimate reliable lower bounds of the causal
effect of repeated covariates or biomarkers. In the immuno-
therapy example, immunological biomarkers on early
toxicity, premature death and progression were identified
and will be further investigated by clinicians.
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