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Abstract : 

MicroRNAs (miRNAs) are small regulatory RNAs participating to several biological 

processes and known to be involved in various pathologies. Measurable in body fluids, 

miRNAs have been proposed to serve as efficient biomarkers for diseases and/or associated 

traits. We here performed a next-generation-sequencing based profiling of plasma miRNAs in 

344 patients with venous thrombosis (VT) and assessed the association of plasma miRNA 

levels with several haemostatic traits and the risk of VT recurrence. Among the most 

significant findings, we detected an association between hsa-miR-199b-3p and hematocrit 
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levels (p = 0.0016), these two markers having both been independently reported to associate 

with VT risk. We also observed suggestive evidence for association of hsa-miR-370-3p (p = 

0.019), hsa-miR-27b-3p (p = 0.016) and hsa-miR-222-3p (p = 0.049) with VT recurrence, the 

observations at the latter two miRNAs confirming the recent findings of Wang et al. (Clin 

Epigenetics 2019). Besides, by conducting Genome Wide Association Studies on miRNA 

levels and meta-analyzing our results with some publicly available, we identified 21 new 

associations of SNP with plasma miRNA levels at the statistical significance threshold of p < 

5 × 10
-8

, some of these associations pertaining to thrombosis associated mechanisms. 

In conclusion, this study provides novel data about the impact of miRNAs’ variability in 

haemostasis and new arguments supporting the association of few miRNAs with the risk of 

recurrence in patients with venous thrombosis. 

 

 

 

1. Introduction 

Venous thrombosis (VT), including deep vein thrombosis (DVT) and pulmonary embolism 

(PE), affects about 1,200,000 individuals each year in Europe and is thus the third most 

common cardiovascular disease after coronary artery disease and stroke.
1
 It is a severe 

disorder that leaves many patients (25 to 50%) with a debilitating post-thrombotic syndrome
2
 

and whose PE manifestation kills many of them (6% acute, 20% after one year).
3
 About 50% 

of VT are unprovoked, i.e., they occur without clear external factors like surgery, trauma, 

immobilization, hormone use or cancer. The annual recurrent rate is ~6% and about 25% of 
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patients with unprovoked VT will face a recurrent event after a six-month course of 

anticoagulant treatment.
4
 Thus, the secondary prevention of VT in this specific population 

group of patients with a first unprovoked VT is a major health issue. 

There is an urgent need to better understand the pathophysiological mechanisms leading to 

VT in order to develop targeted therapeutic and preventative strategies to save lives, improve 

quality of life and reduce health care costs. Effective preventative options are available in the 

form of anticoagulant treatments, but these are associated with major bleeding complications. 

There are unmet needs to develop predictive biomarkers with high sensitivity and specificity 

for accurate identification of patients who will develop a recurrence, to avoid unacceptably 

high risk of bleeding complications in patients at low risk of recurrence. Indeed, preventing 

thrombosis without inducing bleeding is the holy grail of anticoagulant therapy. Currently, 

there are no commercially available anticoagulants that achieve this.  

Predicting the risk of recurrence as well as discriminating between fatal (PE) and non fatal 

(DVT) events in unprovoked VT patients remain challenging. There is so far no established 

biomarkers that serve these aims, even if D-dimers measurement has been proposed
5
 but lacks 

specificity. We here propose a comprehensive microRNA profiling from plasma samples of 

VT patients aimed at discovering microRNA derived biomarkers discriminating between PE 

and DVT, and associated with VT recurrence. MicroRNAs (miRNAs) represent a class of 

small (~22 nucleotides) noncoding RNAs that participate in genes post-transcriptional 

regulation.
6
 It is now well established that miRNAs are involved in the development of human 

diseases, in particular cardiovascular ones.
7
 Several genes participating to thrombosis 

associated mechanisms have already been suspected to be subject to miRNA regulation.
8–11

 

So far, epidemiological studies looking for association of plasma miRNAs with VT outcomes 

are still sparse. Using plasma samples of 20 VT cases and 20 healthy individuals, Starikova et 
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al. assessed the association of 97 miRNAs with VT risk among which 9 were found 

significantly (p < 0.05) associated with the outcome.
12

 As for Wang et al.,
13

 by looking for the 

association of 110 miRNAs with the risk of VT recurrence in plasma samples of 39 cases and 

39 controls, twelve miRNAs were identified. None of these observations, that were obtained 

on miRNA data profiled using RT-qPCR techniques, have yet been replicated.  

Briefly, we here performed plasma miRNA profiling in 391 VT patients using a next-

generation sequencing technology and assessed the association of identified miRNAs with 

several haemostatic traits and VT associated clinical outcomes. Association analyses were 

conducted using an original Bayesian Network inference strategy aimed at identifying 

miRNAs with the highest abilities to serve as relevant biomarkers. In addition, we integrated 

genome wide genotype data with miRNA expression levels in order to identify miRNAs that 

are under a strong genetic control.  

 

2. Materials and Methods 

2.1 The MARTHA miRNA sequencing study  

The MARseille THrombosis Association project refers to a collection of VT patients recruited 

at the La Timone Hospital in Marseille, France, initially between 1994 and 2005 and further 

extended over the 2010-2012 period. Detailed description of this collection has already been 

previously provided.
14 

The present study relies on a subsample of 391 VT patients that had been previously 

genotyped for genome-wide polymorphisms using dedicated genotyping array
15,16 

and with 

available plasma samples. For each sample, total RNA was extracted from 400 µL citrate 

plasma sample using miRNeasy Serum/Plasma kit from Qiagen. From 6 µL of total RNA, 
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plasma miRNA libraries were then prepared with NEBNext Multiplex Small RNA Library 

Prep Set for Illumina. The manufacturer's protocol was followed, with an optimized size 

selection method via Ampure XP beads, a specific dilution of adapters to 1/10, and 15 cycles 

of PCR amplification, using adapter sequences 

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC and 

CGACAGGTTCAGAGTTCTACAGTCCGACGATC for 3' and 5' ends respectively. 

Detailed characteristics of the experimental protocol for libraries preparation and sequencing 

have already been described.
17

 

 

2.2 miRNA alignment and quantification processes. 

Sequenced data were processed with the bioinformatic OptimiR pipeline
17 

in order to detect 

and quantify miRNAs. Briefly, OptimiR aligned miRNAs to a library composed of mature 

miRNA references sequences from miRBase 21.
18

 For miRNA integrating genetic variants in 

their sequence (called polymiRs), the reference library was upgraded by OptimiR with 

sequences integrating alternative alleles. Ambiguous alignments were resolved using a 

scoring algorithm that keeps only the most likely alignment while considering the frequent 

post transcriptional modifications that miRNAs can undergo.
19 

Reads aligned on polymiRs 

were kept if they were consistent with the sample's genotype, otherwise they were 

discarded.
17 

From the resulting miRNA abundances, we performed several quality assessments in order to 

discard unreliable data. First, samples that were poorly sequenced, i.e with less than 100,000 

reads aligned, were discarded (n = 3) as well as samples identified to be hemolyzed (n = 34). 

The degree of hemolysis was determined based on the optical density at 414nm, and values 
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exceeding 0.2 were defined as hemolyzed samples.
20 

Finally, in order to retain only highly 

expressed miRNAs, we kept only those with at least 5 counts in at least 75% of the remaining 

samples.  

Abundances were then normalized using the rlog method from the DESeq2 R library.
21 

This 

normalization process takes into account differences in library sizes due to library preparation 

and sequencing protocols, and stabilize variance across miRNAs and samples to respect 

homoscedasticity constraints for further analysis. Principal component analysis (PCA) was 

applied to normalized abundances in order to identify individuals with outliers miRNA 

profiles. Individuals deviating by 3 standard deviation from the centers of the first four PCAs 

(n = 10) were further excluded from downstream analyzes, leaving 344 individuals for 

Bayesian network and association analyses. 

 

2.3 Bayesian Network analysis 

A Bayesian Network (BN) is a probabilistic directed acyclic graphical model that represents 

relationships among a large number of variables (here mainly miRNAs) with the aim of 

modeling the dependencies/interactions and conditional independencies between 

variables
22,23

. Generally, any BN is defined by a directed acyclic graph structure G = (V,E) 

where V is the set of variables and E the set of edges representing the directional relationships 

between variables and P a joint probability distribution of the variables in the network. Three 

types of nodes can be identified in a given BN: the root nodes that are variables found to 

influence several other variables but are not themselves influenced by any other variables, the 

internal nodes that are both influenced by and modulate other variables, and finally terminal 

nodes that are variables that are not identified as influencing others (see Figure 1). Any 
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variable influencing another variable in the network is referred to as a parental node for this 

later variable. In the following, we will mainly focus on terminal nodes assuming that such 

nodes, as integrating the cumulative upstream effects of other variables, would serve as more 

relevant and powerful endophenotypes to be tested in relation to some outcomes of interest. In 

that context, BN analysis can also be viewed as a data reduction technique since, instead of 

testing the association of all initial variables with a given outcome, only the terminal nodes 

will be tested for association, reducing then the multiple testing burden. In this work, BNs 

will be constructed with the «bnlearn» package
24 

that implements the relatively fast tabu 

search algorithm handling both discrete and continuous variables. In the current application, 

BNs will be created from all expressed miRNAs but also with the age and sex variables. 

These two latter variables have been shown to have strong influence on circulating miRNA 

levels
25,26

 and their integration in the BN analysis can then add information to more efficiently 

model the dependencies and conditional independence between some miRNAs. 

Because tabu search is a greedy search algorithm, it may end up into a local optimum. To 

overcome such situation and to assess the stability of the BN analysis in identifying robust 

terminal nodes, we generated 2,000 bootstrapped datasets composed of 95% of the initial 

samples and for each boostrapped datasets, we randomly shuffled the way the input variables 

were ordered in the initial dataset. For each shuffled bootstrapped dataset, a BN was 

constructed and the terminal nodes identified. After 2,000 bootstrap, we calculated the 

number of times a given variable was identified as terminal node.  

In order to assess whether the observed distribution of the number of terminal node’s 

occurrences deviates from the null hypothesis of no correlation structure between miRNAs, a 

permutation strategy was adopted. For each permutation, we randomly selected at least 40 

variables whose values were permuted between individuals in order to break down the 
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original data correlation structure. We generated 2,000 of such permuted datasets and 

constructed a BN on each of them. From these permuted BNs, we counted the maximum 

number of times a given variable (that could be any miRNA, age or sex) was identified as a 

terminal node and used this maximum value as a cut off to identify robust terminal miRNAs 

in the unpermuted analysis above.  

 

2.4 Association analysis with haemostatic traits and clinical outcomes 

Identified terminal miRNAs were tested for association with several haemostatic traits 

available in MARTHA participants (see Table 1). Association analyses were performed using 

linear regression model and adjusted for age, sex, anticoagulant therapy and combined plasma 

levels  of hsa-let-7d-5p, hsa-let-7g-5p and let-7i-5p measured by qPCR, which serve as a 

control reference of miRNA levels.
27

 Individuals under anticoagulant therapy at the time of 

blood sampling were excluded for the analysis on protein C, protein S and prothrombin time. 

For association testing, log-transformation was applied to the following variables : Activated 

Thrombin Generation Potential biomarkers (Endogenous Thrombin Potential, Lagtime), 

Partial Thromboplastin Time, Factor VIII, Homocystein, Plasminogen Activator Inhibitor-1, 

Tissue Factor Principal Inhibitor and von Willebrand Factor. 

Terminal miRNAs were also tested for association with the DVT vs PE outcome using a 

logistic regression model while a Cox model was used to assess their association with VT 

recurrence whose information was available in 228 patients only. For the latter analysis, we 

applied the Cox survival model with left truncature
28 

and adjusted for age, sex, body mass 

index and smoking. To address the multiple testing issue associated with the number of 

terminal miRNAs that will be tested for association with the phenotypes, we applied a 
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Bonferroni correction based on the effective number of independent variables.
29

 

 

2.5 Genome Wide miR-eQTL analysis 

As MARTHA participants have been typed for high-density genotyping arrays and imputed 

for common polymorphisms available in the 1000G reference panel, we performed genome-

wide association study (GWAS) on each expressed miRNA for identifying miRNA 

expression quantitative trait loci (miR-eQTL) using the mach2QTL program.
30

 Analyses were 

performed under the assumption of additive genetic effects and adjusting for the following 

covariates: sex, age of blood collection, anticoagulant prescription, RT-qPCR measured hsa-

let-7 combination,
27

 and the 4 first principal genetic components retrieved from PCA analysis 

as previously described.
15,16

 GWAS results were filtered out for variants with minor allele 

frequency lower than 0.05 and with imputation criterion r
2
 below 0.4. Finally, we combined 

the results of our miR-eQTL analysis with those previously described by Nikpay et al.
31 

and 

available at https://zenodo.org/record/2560974 in order to identify additional SNP × miRNA 

associations. For this, a random-effect model based meta-analysis was adopted as 

implemented in the GWAMA software.
32 

SNP × miRNA associations were considered as cis 

effects when the SNP maps ± 1 Mb from the mature miRNA position. Otherwise, they were 

considered as trans. Any association with p-value < 3.2 × 10
-10

 corresponding to the 

Bonferroni threshold corrected for the number of tested SNP × miRNA associations was 

considered as genome-wide significant. We also used a miRNA-wide threshold of p < 5 × 10
-

8
, the standard statistical threshold generally advocated in the context of a single GWAS, to 

identify additional suggestive associations. 

 

https://zenodo.org/record/2560974


10 

3. Results  

3.1 The MARTHA miRNA cohort 

Detailed description of the clinical and biological characteristics of the 344 participants is 

shown in Table 1. Of note, 228 patients have been followed for the risk of recurrence for a 

mean time period of 11.4 ± 4.3 years. During this period, 41 patients experienced a new VT 

event.  

After the application of the OptimiR workflow, 162 miRNAs were found expressed in the 344 

MARTHA participants. Full miRNA data are provided in Supplementary Table 1. The most 

expressed miRNA was the hsa-miR-122-5p (Supplementary Figure 1), a miRNA known to be 

mainly expressed in liver and that was previously shown to be amongst the most abundant 

plasma miRNAs.
33 

Additional highly expressed miRNAs were hsa-miR-486-5p, hsa-miR-

92a-3p and hsa-miR-451a (Supplementary Figure 1). Of note, the 25 most expressed miRNAs 

accounted for more than 90% of all sequenced reads that were aligned to miRNA mature 

sequences.  

 

3.2 BN analysis of miRNA data 

Under the null hypothesis of no specific structure in the miRNA data, all miRNAs were 

identified as a terminal node at least once and, on average, a miRNA was found as a terminal 

node in 6.3% ± 3.5 of the permuted BNs, with a maximum of 18.3%. Using the latter 

threshold, the bootstrap BN analysis identified 15 terminal miRNAs and the number of times 

each of them was found as a terminal node in boostrapped BNs is shown in Figure 2.  
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3.3 Association of miRNAs’ levels with VT associated biological and clinical traits 

The application of the Li and Ji multiple testing procedure
29 

estimated the number of effective 

independent terminal miRNAs as 14, leading to an adapted Bonferroni threshold of 3.6 × 10
-3

. 

At this statistical level, only one association between terminal miRNAs and haemostatic traits 

was detected. Plasma levels of hsa-miR-199b-3p was negatively correlated (ρ = -0.17, p = 

0.0016) with hematocrit levels. Interestingly, this miRNA has recently been reported to 

associate with VT risk
12 

whose association with hematocrit levels have already been 

described.
34,35

 The full results of the scan for association between miRNAs and haemostatic 

traits are given in Supplementary Table 2.  

Of note, the strongest association of terminal miRNAs with recurrence risk was observed for 

hsa-miR-370-3p (HR = 1.77 [1.09-2.88], p = 0.019), this miRNA being also the terminal 

miRNA that discriminated the most between DVT and PE (OR for PE = 0.72 [0.49 - 1.05], p 

= 0.090) (Table 2). Of interest, one of our terminal miRNAs, hsa-miR-197-3, was reported to 

associate with VT recurrence in Wang et al.
13

 However, we did not observe here such trend 

for association (HR =  0.78 [0.35 – 1.76], p = 0.55). Nevertheless, among the 9 additional 

miRNAs reported in Wang et al. and also expressed in MARTHA, we found two with a 

suggestive association with VT recurrence: hsa-miR-27b-3p (HR = 0.4 [0.2 - 0.79], p = 0.016) 

and hsa-miR-222-3p (HR = 1.76 [1.01 - 3.08], p = 0.049) (Supplementary table 3). 

 

3.4 miR-eQTL analyses  

At the pre-specified genome-wide statistical level of 3.2 × 10
-10

, 3 SNP × miRNA 

associations, all cis, were identified in the MARTHA study (Table 3). These were observed 

for rs12473206 with hsa-miR-4433b-3p (p = 8.12 × 10
-35

), rs2127870 with hsa-miR-625-3p (p 



12 

= 9.57 × 10
-26

) and rs140930133 with hsa-miR-941 (p = 5.07 × 10
-15

). The latter two have 

already been observed in whole blood
36

 and adipose tissue.
37 

Using a more liberal miRNA-

wide threshold of p = 5 × 10
-8

, 10 additional suggestive associations, 1 in cis and 9 in trans, 

were observed (Table 3). Regional association plots and boxplot summarizing the genotype × 

miRNA associations at these 13 main candidates are shown in supplementary materials. 

Of note, the most significant association was observed between hsa-miR-4433b-3p and 

rs12473206, a variant located within the mature miRNA sequence. It can be speculated that 

this variant impacts the maturation process of the miRNA or its target spectrum, and thus 

influences its plasma expression levels. In addition, two SNPs with cis effects on miRNA 

levels (thereafter referred to as cis miSNPs) have been previously found to associate with 

levels of the protein encoded by the miRNA host gene. In whole blood, the miSNP rs2127870 

was reported to influence FUT8 levels,
38 

FUT8 being the host gene for hsa-miR-625-3p. 

Similarly, the DNAJC5 rs2427555 that is in very strong linkage disequilibrium with the 

miSNP rs140930133 we here found associated with plasma hsa-miR-941 levels, has been 

reported to influence the expression of DNAJC5 in lymphoblastoid cells.
39 

These observations 

are supportive elements for the observed miSNP associations and would suggest a joint 

regulation of hsa-miR-625-3p and hsa-miR-941 expressions with those of their host genes as 

already documented for several miRNAs.
40 

One trans-eQTL located in the long non-coding RNA (lncRNA) LINC01849 was associated 

with hsa-miR-330-3p. The identified trans miSNP, rs1554362, is also an eQTL for the 

PDCL3 transcript levels in different tissues according to the GTeX database.
41 

Another 

intronic miSNP located in the NELL1 gene was associated with hsa-miR-320d levels. The 

seven other trans eQTL are located in intergenic regions. 

We sought to in silico replicate these miSNP associations using the results from Nikpay et 
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al.
31 

who scanned for genetic polymorphisms associated with miRNA levels in 710 plasma 

samples. Unfortunately, as the Nikpay et al. study relied on a genotyping array focusing 

mainly on coding regions and used a very stringent imputation quality criterion (r
2 

> 0.9), it 

was not possible to assess all our candidate associations. Only 4 were testable (hsa-miR-941 × 

rs140930133, hsa-miR-432-5p × rs201969986, hsa-miR-654-5p × rs11109171, hsa-miR-320c 

× rs10151482) among which only the association of rs140930133 with hsa-miR-941 levels 

replicated (p = 6.3 × 10
-11

).  

 

Conversely, we looked into the MARTHA results to replicate the 223 miSNP associations 

that were significantly (p < 5 × 10
-8

) detected in the Nipkay et al. study. We were able to test 

92 of them among which 37 replicated at the nominal level of p = 0.05 in MARTHA (Table 

4). These involved 29 cis and 8 trans miSNP associations. 

Among these 8 trans miSNP associations, three deserve to be highlighted. First, plasma levels 

of hsa-miR-143-3p were influenced by the intronic ZFPM2 rs4734879, ZFPM2 being a locus 

reported to associate with venous thrombosis risk
42 

and platelet function.
43 

In MARTHA, 

plasma levels of hsa-miR-143-3p were negatively significantly correlated with BMI (ρ = -

0.24, p = 3.6 × 10
-4

) and borderline significant with PAI-1 activity levels (ρ = -0.21, p = 5.3 × 

10
-3

) (Supplementary Table 2). Second, hsa-miR-126-3p plasma levels were associated with 

the rs600038 located in the promoter region of the ABO gene. This polymorphism is in strong 

linkage disequilibrium (LD) with several other ABO polymorphisms that are known to 

associate with VT risk, including the rs579459 (r
2
 = 0.99) tagging for the A1 ABO blood 

group. In MARTHA, plasma levels of hsa-miR-126-3p were strongly and positively 

correlated (ρ ~ 0.20) with red cells (p = 1.73 × 10
-5

), lymphocytes (p = 2.5 × 10
-4

), platelets (p 

= 5.9 × 10
-4

) and polynuclear (p = 6.0 × 10
-4

) (Supplementary Table 2). Third, polymorphisms 
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(rs970280, rs11070216) in the promoter region of the THBS1 gene were found associated 

with plasma levels of hsa-miR-222-3p. This miRNA has been previously reported to associate 

with the risk of VT recurrence
13 

and has a suggestive association (p = 0.049) in our study 

(Supplementary Table 3), where it positively correlated with antithrombin levels (ρ = 0.21, p 

= 8.8 × 10
-4

) (Supplementary Table 2). THBS1 encodes Thrombospondin-1 and is known to 

be involved in angiogenesis and platelet aggregation.
44,45

 

 

Finally, we performed a random effect meta-analysis of both datasets in order to discover 

additional miSNPs. At the 5 × 10
-8

 statistical threshold, we identified 7 new cis and 5 new 

trans miSNP associations (Table 5). None of these miSNP associations appeared to involve 

loci with documented link with thrombosis related traits.  

 

4. Discussion & Conclusion 

In this study, we reported the largest investigation to date of miRNA plasma profiling in a 

cohort of VT patients. Capitalizing on the application of a next generation sequencing 

technology, known to be more efficient and sensitive to detect and quantify miRNAs 

compared to microarray or RT-qPCR techniques, we were able to detect 162 highly expressed 

miRNAs. These miRNAs were then tested for association with several VT related phenotypes 

including 38 haematological traits and VT recurrence. In order to deal with the correlation 

between miRNA levels and reduce the multiple testing burden associated with the number of 

tested miRNAs, we deployed an original Bayesian Network analysis aimed at identifying 

miRNAs that could serve as more powerful biomarkers for the investigated traits. In addition, 

as our studied VT patients had been previously typed for genome-wide genotypes, we were 
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able to perform GWAS on each of the 162 miRNAs, and combined our results with some 

previously obtained in disease-free individuals in order to identify novel associations of 

common SNPs with plasma miRNA levels.  

 

Several conclusions could be derived from this work. First, we did not identify any miRNA 

that significantly associated with the risk of VT recurrence. In our study, the miRNA that 

discriminated the most between patients with or without recurrence, but also between DVT vs 

PE patients, was the hsa-miR-370-3p. Several works have already reported the involvement of 

has-miR-370-3p in lipids metabolism
46–49

 and one of the most robust target gene for hsa-miR-

370-3p is CPT1A
50

 whose role in lipid metabolism is also very documented.
51–53

 Hsa-miR-

370-3p is also predicted to target drug-metabolism genes such CYP2D6 and VKORC1L1
50

 

that are related to the warfarin anticoagulant pharmacotherapy. Aside this miRNA, we 

observed a trend of association with VT recurrence for the hsa-mir-27b-3p and hsa-miR-222-

3p that had been previously identified in Wang et al.
13 

but these associations (p = 0.016 and p 

= 0.0495, respectively) did not survive any multiple testing correction (Supplementary Table 

3). Larger studies would be mandatory to confirm these observations and increase our chance 

to identify other miRNAs associated with the risk of recurrence in VT patients. Second, we 

observed several significant associations of miRNAs with haematological traits that deserve 

further replication in independent studies. One can highlight the significant correlation 

between hematocrit levels and plasma levels of hsa-miR-199b-3p, a miRNA that has been 

reported to be associated with VT risk.
12 

Third, our miR-QTL study identified about 25 

significant (p < 5 ×10
-8

) associations of SNPs with plasma miRNA levels, of which, to the 

best of our knowledge, 21 have never been reported, including a dozen of trans associations. 

These associations could help deciphering the genomic architecture of complex diseases 



16 

where miRNAs are involved. For example, plasma levels of hsa-miR-143-3p were found to be 

associated with the rs4734879 mapping to ZFPM2, a gene known to associate with platelet 

function
43 

and VT risk.
42

 We also observed a strong association of rs12473206 with plasma 

levels of hsa-miR-4433b-3p, a miRNA whose serum levels have recently shown to be 

associated with stroke.
54 

The impact of this SNP on stroke risk deserves to be further and 

deeply investigated. The results of our GWAS on miRNA levels were combined with those 

obtained by Nipkay et al.
31 

and freely available at https://zenodo.org/. However, only SNPs 

with imputation quality greater than 0.90 are available at this resource, which has hampered 

our ability to replicate some of the main associations observed in the MARTHA miRNA 

study. To facilitate future studies aimed at disentangling the genetic regulation of miRNAs, 

the results of the 162 GWAS performed on miRNA levels in MARTHA will be available for 

download at https://zenodo.org/. 

Altogether, this study produced a rich source of information relating plasma miRNAs and 

biological/clinical traits associated with VT that could be of great use to generate and/or 

validate new hypothesis. 
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Table 1 Characteristics of the MARTHA miRNA cohort 

 

Variables N Mean±SD
1
 

Gender (Male / Female) 344 144 / 200 

Age (years) 344 52.1 ± 14.5 

Smoking (Yes/No) 343 94 / 249 

BMI (kg/m
2
) 331 25.86 ± 4.62 

Deep Vein Thrombosis / Pulmonary Embolism 344 259 / 85 

Anticoagulant therapy (Yes/No) 344 122 / 222 

Antithrombin (IU/ml) 313 102.41 ± 11.59 

Activated Partial Thromboplastin Time (sec) 341 33.42 ± 6.02 

Ddimers (µg/mL) 184 0.39 ± 0.33
2
 

FV (IU/ml) 150 109.21 ± 22.26 
FVIII (IU/dl) 294 135.07 ± 48.31 

FXI (IU/ml) 336 130.78 ± 31.99 
Fibrinogen (g/L) 342 3.42 ± 0.66 

Hematocrit (L/L) 343 0.42 ± 0.03 

Homocysteine (µmol/L) 304 12.26 ± 5.65 

Platelet count (G/L) 344 254.62 ± 64.91 

Mean platelet volume (fL) 344 7.90 ± 0.77 

Hemoglobin (g/dL) 344 140.42 ± 13.19 

PAI-1 (UI/ml) 272 12.25 ± 13.44 

Protein C (IU/ml) 318 99.55 ± 40.56 

Protein S (IU/ml) 322 81.3 ± 27.49 

TAFI (µg/mL) 336 15.27 ± 4.72 

TFPI (ng/ml) 336 14.17 ± 6.84 

vWF (IU/dl) 308 154.34 ± 67.74 

Prothrombin Time (%) 344 87.63 ± 27.95 

Thrombin Generation 193  

 Endogeneous Thrombin Potential (nM.min)  1761.44 ± 280.31 

 Peak (nM)  340.35 ± 57.51 

 Lagtime (min)  3.34 ± 1.17 

VT recurrence during follow-up (Yes/No) 228 41 / 187 
1 Count data are shown for categorical variables, other reported values were mean ± standard 

deviation. 2 In about 50% participants, D-dimers values were below the detection limit (0.22) and 

thus discarded. Mean and SD were then computed over all Ddimer values >0.22. 

 



Table 2 Association of terminal miRNAs with VT outcomes in the MARTHA miRNA study 

miRNA 
VT recurrence 

Pulmonary Embolism vs  
Deep Vein Thrombosis 

HR [95%CI] p(1) OR [95%CI] p(2) 

hsa-miR-370-3p 1.77 [1.09 – 2.88] p = 0.019 0.72 [0.49 - 1.05] p = 0.090 

hsa-miR-184 0.53 [0.30 – 0.95] p = 0.024 1.23 [0.92 - 1.66] p = 0.153 

hsa-miR-4732-5p 0.41 [0.18 – 0.92] p = 0.024 0.70 [0.39 - 1.22] p = 0.218 

hsa-miR-4433b-3p 1.54 [1.04 – 2.29] p = 0.033 1.01 [0.75 - 1.36] p = 0.930 

hsa-miR-215-5p 0.63 [0.37 – 1.09] p = 0.091 1.11 [0.73 - 1.67] p = 0.633 

hsa-miR-134-5p 1.58 [0.85 – 2.91] p = 0.142 0.89 [0.57 - 1.39] p = 0.601 

hsa-miR-381-3p 1.45 [0.83 – 2.56] p = 0.194 0.81 [0.53 - 1.23] p = 0.327 

hsa-miR-145-3p 0.51 [0.15 – 1.76] p = 0.278 0.62 [0.24 - 1.56] p = 0.311 

hsa-miR-23a-3p 0.67 [0.26 – 1.70] p = 0.393 1.00 [0.51 - 1.93] p = 0.999 

hsa-miR-197-3p 0.78 [0.35 – 1.76] p = 0.555 1.41 [0.79 - 2.56] p = 0.251 

hsa-miR-150-3p 1.23 [0.53 – 2.83] p = 0.629 0.90 [0.49 - 1.66] p = 0.743 

hsa-miR-484 1.20 [0.56 – 2.59] p = 0.637 1.27 [0.69 - 2.38] p = 0.447 

hsa-miR-199a-3p 0.80 [0.22 – 2.86] p = 0.726 1.17 [0.46 - 2.97] p = 0.746 

hsa-miR-378d 0.81 [0.15 – 4.56] p = 0.812 0.41 [0.10 - 1.46] p = 0.184 

hsa-miR-20a-5p 1.09 [0.40 – 2.95] p = 0.863 0.74 [0.36 - 1.52] p = 0.411 
(1) P-values were obtained from the Likelihood Ratio Test statistic associated with a Cox survival 

model adjusted for age, sex, BMI and smoking. 

(2) p values obtained from a logistic model ajusted for age, sex, BMI and smoking 



Table 3: Significant associations at the 5 10-8 statistical level between SNPs and plasma miRNA levels in the MARTHA miRNA study 

 

miRNA 
miRNA 

host gene 
Top SNP 

Associated 
MAF r

2
 Chr 

Distance to 5’ 
miRNA 

Effect (SD) P-value 
SNP Genomic 

Context 

Cis associations 

hsa-miR-4433b-3p intergenic rs12473206 0.23 0.99 2 -13 0.979 (0.080) 8.12 10
-35

 
exonic_ncRNA 

(hsa-miR-4433b) 

hsa-miR-625-3p FUT8 rs2127870 0.27 0.99 14 141025 0.533 (0.051) 9.57 10
-26

 intergenic 

hsa-miR-941 DNAJC5 rs140930133 0.19 0.97 20 8822 -0.349 (0.045) 5.07 10
-15

 
Intronic 

(DNAJC5) 

hsa-miR-432-5p RTL1 rs201969986 0.29 0.95 14 177423 -0.346 (0.063) 3.31 10
-8

 intergenic 

Trans associations 

hsa-miR-184 
 

rs144867605 0.07 0.82 11 75957983 0.804 (0.134) 2.02 10
-9

 intergenic 

hsa-miR-654-5p 
 

rs11109171 0.44 0.99 12 98098091 -0.246 (0.042) 3.28 10
-9

 intergenic 

hsa-miR-320c 
 

rs10151482 0.06 0.93 14 41934917 0.427 (0.074) 6.47 10
-9

 intergenic 

hsa-miR-184 
 

rs143007764 0.06 0.65 3 142899139 0.916 (0.161) 1.14 10
-8

 intergenic 

hsa-miR-1-3p 
 

rs73245753 0.12 0.79 4 26292392 0.589 (0.105) 2.31 10
-8

 intergenic 

hsa-miR-330-3p 
 

rs1554362 0.45 0.82 2 101221457 -0.227 (0.041) 2.81 10
-8

 
intronic 

(LINC01849) 

hsa-miR-582-3p 
 

rs4522365 0.13 0.83 15 29964742 0.314 (0.057) 2.91 10
-8

 intergenic 

hsa-miR-4446-3p 
 

chr12:95274192:I 0.09 0.61 12 95274192 -0.492 (0.089) 3.07 10
-8

 intergenic 

hsa-miR-320d 
 

rs12800249 0.05 0.63 11 21240436 0.481 (0.088) 4.33 10
-8

 
Intronic 
(NELL1) 

MAF :  minor allele frequency 

r2 : imputation quality criterion 

 



Table 4: Association of SNPs with plasma miRNA levels identified in Nikpay et al (Cardiovasc Res 2019) that nominally replicated (p < 0.05) in MARTHA miRNA 

study:  

 

     NIKPAY (N=710) MARTHA (n=344) 

miRNA SNP Chr Position(bp) EA EAF β SE P EAF R
2
 β SE P 

a
 

Cis associations 

miR-941 rs2427550 20 62547575 A 0.23 -0.157 0.023 3.96×10
-11

 0.19 0.99 -0.339 0.044 5.76×10
-15

 

miR-584-5p rs17795259 5 148416952 C 0.15 0.268 0.018 1.35×10
-45

 0.15 0.99 0.213 0.043 4.82×10
-7

 

miR-4433b-5p rs2059631 2 64574682 A 0.43 0.289 0.017 1.57×10
-56

 0.45 1.00 0.129 0.029 4.96×10
-6

 

miR-139-3p rs4944563 11 72316881 C 0.17 0.169 0.026 1.18×10
-10

 0.14 1.00 0.182 0.042 6.82×10
-6

 

miR-181a-5p rs74746864 1 199023240 G 0.11 0.175 0.025 4.12×10
-12

 0.13 0.95 0.221 0.066 4.27×10
-4

 

miR-425-5p rs7623513 3 142100428 C 0.15 -0.044 0.007 7.48×10
-10

 0.12 0.95 -0.166 0.054 1.04×10
-3

 

let-7e-5p rs2198171 19 52174483 G 0.27 -0.089 0.014 3.10×10
-10

 0.25 0.97 -0.124 0.043 1.83×10
-3

 

miR-197-3p rs7355073 1 110129740 T 0.16 -0.078 0.011 1.23×10
-12

 0.19 1.00 -0.118 0.041 2.10×10
-3

 

miR-26b-5p rs12623740 2 219665715 A 0.49 -0.060 0.007 3.37×10
-18

 0.51 0.99 -0.138 0.051 3.24×10
-3

 

miR-152-3p rs9910516 17 46183160 A 0.23 0.093 0.016 1.52×10
-08

 0.27 0.95 0.089 0.033 3.44×10
-3

 

miR-27b-3p rs10993381 9 97639463 T 0.07 0.170 0.016 2.00×10
-24

 0.06 0.99 0.148 0.055 3.86×10
-3

 

miR-182-5p rs2693738 7 129431977 G 0.32 0.115 0.020 2.36×10
-08

 0.37 0.82 0.166 0.063 4.30×10
-3

 

miR-181a-3p rs1434282 1 199010721 C 0.27 0.211 0.022 9.03×10
-21

 0.26 0.98 0.122 0.048 5.57×10
-3

 

miR-181a-5p rs12125200 1 198992043 A 0.27 0.340 0.013 1.13×10
-111

 0.24 0.96 0.124 0.049 5.79×10
-3

 

miR-584-5p rs4147470 5 148528107 T 0.49 -0.131 0.014 7.71×10
-20

 0.51 1.00 -0.081 0.032 6.15×10
-3

 

miR-26b-5p rs833083 2 219336959 T 0.41 -0.076 0.006 3.96×10
-30

 0.43 0.81 -0.137 0.057 7.96×10
-3

 

miR-181a-5p rs878254 1 199257141 A 0.48 -0.122 0.015 3.54×10
-15

 0.49 0.90 -0.104 0.045 0.010 

miR-181a-5p rs2360961 1 199000277 C 0.40 -0.151 0.016 4.39×10
-20

 0.40 0.94 -0.095 0.043 0.014 

miR-30d-5p rs13282464 8 135707922 T 0.15 0.092 0.007 2.02×10
-33

 0.17 1.00 0.047 0.023 0.020 

miR-4433b-5p rs6740438 2 64528086 C 0.13 0.163 0.029 1.78×10
-08

 0.15 0.98 0.083 0.041 0.022 



miR-30d-5p rs13268530 8 135727196 T 0.15 0.095 0.007 1.68×10
-35

 0.17 0.99 0.045 0.023 0.024 

miR-21-5p rs2665392 17 57809453 A 0.16 0.059 0.011 3.59×10
-08

 0.16 0.88 0.078 0.041 0.027 

miR-4433b-5p rs35503140 2 64539015 C 0.21 -0.130 0.022 9.86×10
-09

 0.19 0.95 -0.071 0.037 0.029 

miR-584-5p rs9325124 5 148248818 A 0.39 -0.085 0.015 7.62×10
-09

 0.45 1.00 -0.056 0.031 0.036 

miR-181a-5p rs3861924 1 199121330 A 0.18 0.137 0.020 2.06×10
-11

 0.20 0.96 0.097 0.054 0.037 

miR-1908-5p rs174561 11 61582708 C 0.30 0.151 0.012 4.76×10
-31

 0.26 1.00 0.052 0.030 0.040 

miR-151a-3p rs11167012 8 141968408 A 0.42 0.059 0.006 3.79×10
-24

 0.40 1.00 0.061 0.036 0.045 

miR-139-3p rs10898849 11 72269302 T 0.25 0.124 0.022 3.30×10
-08

 0.27 1.00 0.054 0.032 0.046 

let-7i-5p rs6581454 12 62934442 G 0.47 0.039 0.006 3.04×10
-11

 0.44 0.99 0.034 0.021 0.049 

Trans associations 

miR-222-3p rs11070216 15 39817245 T 0.19 -0.067 0.012 4.87×10
-08

 0.19 0.97 -0.198 0.051 5.06×10
-5

 

miR-222-3p rs970280 15 39864403 G 0.32 -0.064 0.010 8.79×10
-10

 0.32 0.94 -0.113 0.042 3.57×10
-3

 

miR-143-3p rs4734879 8 106583124 G 0.28 0.239 0.031 2.88×10
-14

 0.24 0.96 0.098 0.038 5.60×10
-3

 

miR-1-3p rs11906462 20 61158952 T 0.20 0.310 0.033 6.28×10
-20

 0.23 0.42 0.262 0.116 0.012 

miR-320a rs1443651 2 68569316 G 0.45 -0.036 0.006 7.12×10
-10

 0.44 1.00 -0.053 0.028 0.029 

miR-16-5p rs137214 22 35288857 T 0.28 0.041 0.007 1.76×10
-08

 0.29 0.97 0.088 0.050 0.040 

miR-126-3p rs600038 9 136151806 C 0.21 0.055 0.009 5.95×10
-09

 0.34 1.00 0.041 0.024 0.041 

miR-320c rs1443651 2 68569316 G 0.45 -0.031 0.005 2.77×10
-10

 0.44 1.00 -0.066 0.039 0.045 
 

a
 : One sided test p-value  

EA = Effect Allele 
EAF = Effect Allele Frequency 
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Figures and legends 

Figure 1: A bayesian network example 

In this illustrative BN example, variables V1, V2 and V3 are root nodes, V4 and V5 are internal nodes 

and V6 and V7 are terminal nodes. V3 is also a parental node for V4 which is itself a parental node for 

V7. 

 

 

Figure 2: Percentage of significant terminal miRNAs found in 2000 

bootstrapped bayesian networks 

The bootstrap BN analysis identified 15 terminal miRNAs with an occurrence percentage over the 

significance threshold (18.3%) determined by the permutation analysis.  

 

 






