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available cases or data imputed using
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Abstract

Background: Informative attrition occurs when the reason participants drop out from a study is associated with
the study outcome. Analysing data with informative attrition can bias longitudinal study inferences. Approaches
exist to reduce bias when analysing longitudinal data with monotone missingness (once participants drop out they
do not return). However, findings may differ when using these approaches to analyse longitudinal data with non-
monotone missingness.

Methods: Different approaches to reduce bias due to informative attrition in non-monotone longitudinal data were
compared. To achieve this aim, we simulated data from a Whitehall II cohort epidemiological study, which used the
slope coefficients from a linear mixed effects model to investigate the association between smoking status at
baseline and subsequent decline in cognition scores. Participants with lower cognitive scores were thought to be
more likely to drop out. By using a simulation study, a range of scenarios using distributions of variables which exist
in real data were compared.
Informative attrition that would introduce a known bias to the simulated data was specified and the estimates from
a mixed effects model with random intercept and slopes when fitted to: available cases; data imputed using
multiple imputation (MI); imputed data adjusted using pattern mixture modelling (PMM) were compared. The two-
fold fully conditional specification MI approach, previously validated for non-monotone longitudinal data under
ignorable missing data assumption, was used. However, MI may not reduce bias because informative attrition is
non-ignorable missing. Therefore, PMM was applied to reduce the bias, usually unknown, by adjusting the values
imputed with MI by a fixed value equal to the introduced bias.

Results: With highly correlated repeated outcome measures, the slope coefficients from a mixed effects model
were found to have least bias when fitted to available cases. However, for moderately correlated outcome
measurements, the slope coefficients from fitting a mixed effects model to data adjusted using PMM were least
biased but still underestimated the true coefficients.

Conclusions: PMM may potentially reduce bias in studies analysing longitudinal data with suspected informative
attrition and moderately correlated repeated outcome measurements. Including additional auxiliary variables in the
imputation model may also reduce any remaining bias.
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Background
Informative attrition is a potential source of bias in longi-
tudinal data analysis, which occurs when participants drop
out of a study and the reason for drop out is associated
with the study outcome [1]. Analysing longitudinal data
ignoring informative attrition may bias findings due to se-
lection bias. For example, if lower cognitive functioning,
the outcome, is associated with drop out, participants with
lower cognitive function are more likely to be missing. In-
formative attrition can only be assumed to exist from our
knowledge of the data; but this association cannot be de-
termined since the required data are missing.
A few different approaches can reduce bias due to

missing data in longitudinal studies. Firstly, fitting a
mixed effects model (with random intercept and slope)
to the available cases (AC) will exclude participants with
missing outcome or exposure values at all data collec-
tion phases but will analyse participants who have values
missing only at some phases by allowing for the missing
data using the within and between participant correla-
tions. However, the mixed effects model may not reduce
all the bias due to informative attrition if not enough in-
formation exists in the data.
The second approach for handling missing data is mul-

tiple imputation (MI) [2]. MI repeatedly selects random
values from the missing data distribution, given the observed
data, defined using an imputation model. The repeated
draws generate many imputed datasets and the mixed
effects model is fitted to each dataset separately and these
results combined using Rubin's rules [3]. An approach, vali-
dated to impute missing values in non-monotone, longitu-
dinal data is the two-fold fully conditional specification
(FCS) algorithm, which imputes missing values at each
phase sequentially, conditional on the observed information
at adjacent phases [4, 5]. One benefit of MI compared to the
AC analysis is that MI can use additional information, as
auxiliary variables, in the imputation model to reduce bias.
However, to achieve unbiased results from imputed data,
the data needs to have a plausible ignorable missingness
mechanism, that is, the probability of the data being missing
is not associated with the missing values, conditional on the
observed data [2]. If informative attrition is present, the
missingness mechanism is non-ignorable and MI alone can-
not completely reduce the bias.
A third approach is pattern mixture modelling (PMM)

[3], which can be used as a sensitivity analysis if the
missingness mechanism is thought to be non-ignorable.
The procedure first assumes an ignorable missingness
mechanism and uses MI to impute missing values, gen-
erating multiple datasets. Next, to use the PMM ap-
proach, adjust the imputed values by a fixed value.
Larger adjustment values suggest greater ignorable miss-
ing assumption violation. Finally, the mixed effects
model is fitted using these adjusted values in each

dataset and the results combined using Rubin's rules.
Other sensitivity analyses exist, for example selection
modelling, which specifies a selection distribution for
those who drop out [3] or inverse probability weighting
[6] which can correct for the bias due to missing data.
However, we will focus on PMM since we can begin by
assuming an ignorable missingness mechanism and then
incorporate non-ignorable assumptions into the model.
Many clinical trial studies with longitudinal data recom-

mend using PMM as a sensitivity analysis [7–10]. In gen-
eral, clinical trial data have a monotone missingness
pattern (non-response at a given phase will be missing at
all later phases), which simplifies MI and, therefore,
PMM. However, in observational longitudinal studies, data
are often missing due to non-response as well as attrition,
giving the data a non-monotone missingness pattern. In
addition, the missingness mechanism for participants with
repeated non-response status, who have not officially
withdrawn from the study, may be more similar to partici-
pants with attrition status compared to participants who
alternate between response and non-response. In this con-
text, using MI to impute missing values may be more
complex compared to clinical trials.
For this analysis, a simulation study was designed to

evaluate these different approaches by comparing PMM
to an available case mixed effects model and multiple
imputation. Fully observed datasets, with known distri-
butions and associations are generated, and a mixed ef-
fects model fitted to these datasets to obtain ‘true’
coefficients and standard errors (SE). Then, informative
attrition is defined in the dataset using a non-ignorable
missingness mechanism of our choice.
By replacing selected values with missing values, each

approach can be used to account for bias due to inform-
ative attrition by analysing the data and comparing the
coefficients and SE to ‘true’ estimates to assess bias and
precision [11]. For this simulation study, we used distri-
butions and associations in the Whitehall II study [12].
Data were first collected for over 10,000 civil servants in
1985 and data collection phases were repeated every 2-3
years. Participants completed a health and lifestyle ques-
tionnaire and, at alternate phases, attended a screening
clinic. Over 30 years, analyses of the Whitehall II study
have resulted in many publications. One investigated the
association between smoking status at baseline (Phase 5)
and 10-year cognitive decline using a mixed effects
model with random intercept and slope [13]. This ana-
lysis was used as the basis for our simulation study to in-
vestigate whether informative attrition of participants
with reduced cognitive function, who may have been
unable to continue participation in the study, could give
rise to bias in the estimates of association.
The aim of our study was to compare bias and preci-

sion of fitting the mixed effects model to the AC with an
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analysis which imputes data using the two-fold FCS al-
gorithm and uses PMM to reduce bias due to inform-
ative attrition. With informative attrition, we expect
least biased results when we apply methods which as-
sume non-ignorable missingness such as PMM. How-
ever, by using a simulation study, we can assess whether
the results are as expected and also quantify the differ-
ence in bias for PMM compared to approaches which
assume ignorable missingness. In addition, simulation al-
lows the effects of different percentages of informative
attrition and different types of covariates with missing
data to be assessed.
For our study, 1,000 fully observed datasets were simu-

lated, each with 10,000 participants, having the same distri-
butions and associations as observed in the Whitehall II
study. From the missing data distributions observed in the
Whitehall II study, an ignorable missingness mechanism for
participants without attrition status and a non-ignorable
missingness mechanism for participants with attrition status
were first created. As it is not known how many with
non-response status have a non-ignorable missingness
mechanism, the analysis was repeated, generating a
non-ignorable missingness mechanism for all participants
with attrition or non-response status. We used a sensitivity
analysis to investigate how results change if missing values
are imputed for the time-independent covariate education at
Phase 5 instead of time-dependent covariate smoking status.

Methods
Study design
Longitudinal records exist for i = 1,...,N independent
participants with Yi,t the outcome values for participant i
at phase t (a time period when data collection occurs). It
is assumed that explanatory variable X exists with values
at t = 1,...,T (typically equally spaced) phases. Let Xi,t de-
note the value of variable X for individual i at phase t.
The substantive model (model of interest) is a linear

mixed effects model adjusted for the explanatory variables'
main effect and their interaction with data collection
phase, together with random intercept β0i and slope β1i:

Y i; t ¼ β0 þ β1Xi; t þ β2tXi; t þ β0i þ β1i t þ εi; t ð1Þ

The two-fold fully conditional specification algorithm
Historically, to impute missing data for more than one
variable, random draws were selected from a multivari-
ate normal conditional distribution for the variables with
missing values, conditional on the observed data, to ob-
tain a complete dataset of observed and imputed values
[14]. The approach generated multiple datasets, each
analysed separately and the results combined using
Rubin's rules [2]. In many cases, the multivariate normal
model is difficult to define, for example if the rows or

columns are ordered (such as with longitudinal data), or
are not multivariate normally distributed, for example
with different variable types (such as categorical). A
more flexible approach, fully conditional specification
(FCS) [15], selects random draws from separate condi-
tional, univariate imputation models for each variable
with missing data, repeatedly cycling through each vari-
able in turn. Compared to fitting a multivariate normal
model, FCS is computationally convenient and, despite a
lack of theoretical justification, simulation studies found
using FCS to impute missing values achieves similar re-
sults compared to using a multivariate model [16, 17].
For longitudinal data with t = 1,...,T phases and j = 1,...,J

variables measured at each phase, FCS imputes missing
values for the J variables at each phase t. FCS repeats these
imputations at each phase and the J T imputations consti-
tute one iteration. However, the imputed data may lose
the correlation structure between phases and biased esti-
mates may be observed from analysing data imputed using
FCS by not conditioning on measurements at other
phases. The J T variables could be imputed simultaneously
but, with many highly correlated repeated measurements,
this may cause convergence problems due to collinearity,
particularly for categorical variables [18].
Collinearity issues can be avoided and the correlation

structure maintained in the longitudinal data by imputing
using the two-fold FCS algorithm [4], which imputes
missing values at phase t using FCS conditional on values
at phase t and adjacent phases; a within-time iteration.
The two-fold FCS algorithm repeats bW within-time itera-
tions at each phase, generally in time order, and completes
one among-time iteration when all phases are imputed.
This is repeated for bA among-time iterations. Once the
specified within-time and among-time iterations are
complete, the first imputed dataset consists of current im-
puted and observed values. This is repeated M times to
create M imputed datasets, which are each analysed separ-
ately and the results combined using Rubin's rules [2]. By
conditioning on only adjacent phases, the two-fold FCS al-
gorithm is more efficient compared to approaches which
do not use information at other phases and can impute
missing values in large datasets with many participants,
phases and variables [5].
Missing outcome (Y) and covariate (X) values were im-

puted using the two-fold FCS algorithm, each imputed
dataset analysed using substantive model (Eq. 1) and the re-
sults combined using Rubin's rules. The imputation model
included all variables specified in Eq. 1, including the out-
come, but no additional auxiliary variables were included
to simplify the interpretation of the results. No interac-
tions with time were specified since the two-fold FCS al-
gorithm includes interactions with time by imputing each
time point separately. The two-fold FCS algorithm was
used, with 5 within-time iterations and 20 among-time
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iterations, to impute missing values at Phases 3, 5, 7, 9
and 11. Smoking status was conditioned on, at baseline
only (no other phases), when smoking status was not
missing, in order to avoid convergence issues due to col-
linearity. Twenty imputed datasets were generated, the
substantive model fitted to each dataset, and the results
combined using Rubin's rules.

Pattern mixture modelling
Analysing data imputed using the two-fold FCS algo-
rithm can achieve unbiased findings if an ignorable
missingness mechanism can be assumed for the data.
However, in longitudinal observational studies, attrition
is often associated with the missing outcome values Y
(informative) and non-ignorable missingness [19]. If an
ignorable missingness mechanism cannot be assumed,
fitting a mixed effects model (Eq. 1) to the AC or data
imputed using the two-fold FCS algorithm may still pro-
duce biased results. An approach that reduces the bias
due to informative attrition is required.
In this situation, the outcome distributions may differ,

depending on the missing data patterns. For example,
there may be different patterns of missing observations,
each potentially with a different joint distribution of par-
tially observed and fully observed data with the overall
density being the average of these patterns [3]. For each
pattern, the joint distribution of the partially and fully
observed variables is specified, which implies, within
each pattern, a conditional distribution exists for the
partially observed data given the fully observed data. To
apply PMM, an ignorable missingness is assumed ini-
tially and missing values imputed using the two-fold
FCS algorithm. These imputed values are then changed
to reflect explicit assumptions about the difference be-
tween the observed and conditional distribution when
the variables are unobserved [3].
In our data we have two missing data patterns, ob-

served outcomes and missing outcomes. The distribu-
tion of the observed outcome pattern is given by Eq. 1.
For the missing outcome pattern, we define an attrition
indicator Ri,t for participant i who leaves the study at
phase t and add this to the observed outcome pattern:

Y i; t ¼ β0 þ β1Xi; t þ β2tXi; t þ β0i þ β1i t þ εi;t þ kRi; t

ð2Þ

where k is the assumed mean difference between the im-
puted outcome distribution and the unknown true dis-
tribution which cannot be estimated from the observed
data. If k = 0, the missingness mechanism is ignorable,
otherwise for k ≠ 0 the mechanism is non-ignorable.
Larger k suggests a greater violation of the ignorability
assumption.

The PMM steps are; first, use the two-fold FCS algo-
rithm to impute the missing data and generate M imputed
datasets. For each imputed dataset, change the already im-
puted outcome values Yi,t, missing due to attrition Ri,t, by
k. Finally, fit the substantive model (Eq. 1) to the imputed
dataset with updated outcome values.

Data generation and simulation process
A simulation study was designed using the Whitehall II
study data. Exposure-outcome relationships were simulated
using an existing epidemiological investigation of the asso-
ciation between smoking status at baseline (Phase 5) and
10-year cognitive decline using cognitive function measured
at Phases 5, 7 and 9, each 5 years apart [13]. In the original
study, Sabia, et al., stratified by sex and derived a 4 category
smoking status variable. To simplify the analysis for the
simulation study, only male participants and 3 smoking sta-
tus categories (current smokers, ex-smokers and never
smokers) were used. The distribution and associations of
the variables and missing data were replicated.
For each of the 1,000 simulations, the following steps

were used and are described in detail later in this section:

1. Generate samples of N = 10,000 male participants.
2. Fit substantive model to simulated data (with no

missing values), record parameter estimates and SE.
3. Replace outcome and explanatory variable values

with missing values:

if not missing due to attrition - change observations to
missing using an ignorable missingness mechanism at
each phase.
if missing due to attrition - change observations to
missing using a non-ignorable missingness mechanism
at each phase.

4. Fit substantive model to AC, record parameter
coefficients and SE.

5. Impute missing data using the two-fold FCS algo-
rithm and fit the model of interest to each imputed
dataset, combine the results using Rubin’s rules [2]
and record the imputation-based parameter coeffi-
cients and SE.

6. Apply PMM to the imputed datasets from step 5,
adjust imputed values by a fixed value, re-analyse
and record the imputation-based parameter coeffi-
cients and SE.

Data generation mechanism
We generated data at Phases 3, 5, 7, 9 and 11 because
smoking status and cognitive function were recorded at
these clinic phases. The substantive model was fitted to
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data collected at Phases 5, 7 and 9 but we also generate
data at Phases 3 and 11 to inform the imputation of missing
values at the phases in between. We generated the follow-
ing time-independent categorical variables at baseline: age
in years (5 categories); and socioeconomic status measured
using occupational grade (high [administrative], intermedi-
ate [professional or executive] and low [clerical or support])
and education (primary school [until age 11 years], second-
ary school [until age 18 years] or university). Finally, we
generated time-dependent categorical smoking status
(current smoker, ex-smoker and never smoker).
Cognitive function was assessed using 5 tests.

1. Short term verbal memory - 20 one- or two-syllable
words presented at 2 sec intervals that the partici-
pants had 2 min to recall in writing.

2. Vocabulary - Mill Hill Vocabulary Test [20] in its
multiple-choice format consisting of a list of 33
stimulus words ordered by increasing difficulty and
6 response choices.

3. Reasoning - Alice Heim 4-I test, total verbal and
mathematical reasoning tasks completed in 10 min
(out of 65) [21].

4. Phonemic fluency - total words beginning with ‘S’
recalled verbally in 1 min [22].

5. Semantic fluency - total animals recalled verbally in
1 min [22].

A global cognitive score using all 5 cognitive function
tests was created to minimize problems due to measure-
ment error [23, 24]. The scores on each test for the en-
tire cohort were standardised to z scores (mean [SD] = 0
[1]) using the mean and standard deviation at Phase 5
(baseline). To calculate the global cognitive function, the z
scores were averaged to create a global cognitive score and
standardised again using the mean and standard deviation
at Phase 5.
We compared results for two time-dependent outcome

measures with different size correlations among repeated
measurements; standardised memory score (correlations
0.45) and standardised global score (correlations 0.97).
Each outcome was generated using two different mixed
effects models with random intercept and slope fitted to
data collected at Phases 5, 7 and 9, conditional on variable
measurements at baseline (Phase 5): smoking status, age,
occupational position and education. The models also in-
cluded an interaction between each variable and time.
The data generation details are described in the

Additional file 1: Appendix.

Parameters used for data generation
To derive the model parameters used for each data gen-
eration step, the mixed effects models were fitted to data
from the cohort of Whitehall II study participants to

obtain coefficients, considered to be the ‘true’ estimates
in the simulation study. Any phases with missing smok-
ing status were replaced with ‘never smoker’ if partici-
pants only had ‘never smoker’ smoking status recorded
and, otherwise, were imputed as either ‘current smokers’
or ‘ex-smokers’. Welch, et al., found using this approach
reduced the missing data, ensured consistent smoking
status recording and simplified MI using the two-fold
FCS algorithm [5]. Any male participants who died or
withdrew from the study before Phase 5 or those with
missing cognitive function score or smoking status at
Phases 5, 7 or 9 were excluded.

Missingness mechanism
Two different missingness mechanisms were investigated
to compare results from imputing missing values for
time-independent and time-dependent covariates. For
the first missingness mechanism, a fixed percentage of
the cognitive function measures (outcome) and smoking
status (exposure) at each phase were changed to missing.
For the second missingness mechanism, a percentage of
the cognitive function measures (outcome) at each phase
and education at baseline (covariate) were changed to
missing. For these variables, the percentage of values
changed to missing was similar to the percentage miss-
ing observed in the Whitehall II study.
One of the following participation statuses was gener-

ated for each participant at each phase:

� Response - participated at a given phase, but may
have missing values for some variables (item non-
response).

� Non-response - does not participate at a given phase so
all variables have missing values (unit non-response).

� Death - before phase, confirmed by death certificate.
� Attrition - informed Whitehall II study they no

longer wish to participate before the phase.

At Phases 3 and 5, only response or non-response status
levels were generated, since all participants who died or
dropped out before phase 5 were excluded. All four partici-
pation statuses were assigned at Phases 7, 9 and 11. For
the first missingness mechanism (missing cognitive func-
tion and smoking status), a probability, pi, of non-response
at Phase t= 3 was generated to be ignorable conditional on
age, occupational grade and education, by choosing values
for β0, β1, β2 and β3 so the proportion with non-response
status was the same as in the Whitehall II study data:

logit pið Þ ¼ β0 þ β1agei þ β2occupationi þ β3educationi

ð3Þ

From exploring the associations between participation
statuses at adjacent phases, we found participants with
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non-response status at the phase before were more likely
to non-respond at the next phase, and participants with
response status at the phase before were more likely to
respond at the next phase. Therefore, the probability of
non-response at Phase 5 was generated separately for re-
sponse and non-response status at Phase 3, using Eq. 3.
At Phase t=7, separately for response and non-response

status at Phase 5, a probability of each participation status
(s= response, non-response, death or attrition) was gener-
ated to be ignorable, conditional on age, occupational
grade and education, again choosing values for β0ts, β1ts,
β2ts and β3ts so the proportion with each participation sta-
tus was the same as Whitehall II study data:

logit pitsð Þ ¼ β0ts þ β1tsagei þ β2tsoccupationi þ β3tseducationi

ð4Þ

Any participants with died or attrition status at Phase
7 were assigned these statuses at later phases because,
by definition, they do not return to the study (a mono-
tone missingness pattern). This approach using Eq. 4
was repeated at Phases 9 and 11. Some participants sta-
tus alternates between response and non-response; a
non-monotone missingness pattern. Some missing
values were also assigned to participants with response
status at each phase with an ignorable missingness
mechanism conditional on age (item non-response).
Next, the mean cognitive function score for partici-

pants with attrition status at Phases 7, 9 and 11 was ex-
amined. Currently, attrition status was generated with
an ignorable missingness mechanism. To create a
non-ignorable missingness mechanism, the probability
of attrition pi,j was generated by conditioning on the
cognitive function values at the same phase yi,j:

logitðpi; jÞ ¼ λm0 þ λm1Y i; j ð5Þ

Values for λm0 and λm1 were chosen so that the mean
cognitive function scores were 0.5 less than the mean
scores for an ignorable missingness mechanism, but
ensured the proportion of participants with attrition
status remained similar to the proportion observed in
the Whitehall II study. Using this approach, k, from
Eq. 2 was assigned the value -0.5. For the first missing-
ness mechanism (missing cognitive function and miss-
ing smoking status), we changed cognitive function
and smoking status values to missing for participants
assigned attrition status at Phases 7, 9 and 11.
For the second missingness mechanism (missing

cognitive function and missing education) the same
method described above was used, except, to ensure an
ignorable missingness mechanism, smoking status at
baseline, instead of education, was conditioned on in
Eqs. 3 and 4.

As a sensitivity analysis, the effect of increasing the
percentage of participants with non-ignorable missing-
ness mechanism was investigated by changing
non-response and attrition status to non-ignorable
missing at Phases 7, 9 and 11.
In summary, PMM in eight different settings was in-

vestigated, defined by the following criteria:

a. Outcome.

(i) Global cognitive function.
(ii) Memory cognitive function.

b. Missing mechanism.

(i) Cognitive function and smoking status.
(ii) Cognitive function and education.

c. Groups assigned missing values using non-ignorable
missingness mechanism.

(i) Attrition.
(ii) Attrition or non-response.

Statistics used in the evaluation

Let θ̂m denote the parameter estimate for each simu-
lation m = 1,...,M. From Rubin’s conditions for proper

imputation [2], θ̂m is normally distributed with mean
θ and variance σ2. For θ, the true parameter value
used in the data generation mechanism, the following
statistics were calculated:

1. Bias(θ̂;θ), the average of the difference between
simulated mean and ‘true’ parameter across the
simulations

1
M

XM
m¼1

θ̂m−θ
� �

2. Empirical variance Var(θ̂):

1
M−1

XM
m¼1

ðθ̂m− �̂θÞ
2

where the average imputed mean across simulations is
given by:
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θ̂ ¼ 1
M

XM
m¼1

θ̂m

Smaller variance suggests greater precision (more ac-
curate result).

3. Mean square error (MSE)

MSE θ̂
� �

¼ Var θ̂
� �

þ Bias θ̂; θ
� �2

Smaller MSE suggest less bias. We calculate a ratio of
each MSE and the AC analysis MSE for comparison.

4. Confidence interval coverage [25], i.e. the
proportion of the M confidence intervals

θ̂m � tδm;0:975

ffiffiffiffiffiffi
σ̂2
m

q

that include the true value, θ. δm is the degrees of free-
dom calculated using Rubin's rules. A 95% level of confi-
dence was used, so 95% of the confidence intervals were
expected to contain θ.
To aid understanding of the results, we also assessed the

correlations between variables in the simulated data, the
data with missing values, the data imputed using the
two-fold FCS algorithm and the imputed data adjusted using
PMM. We performed the analysis using Stata 14 (StatCorp
LP, Texas, USA) (www.stata.com) and the two-fold FCS al-
gorithm using the Stata command twofold [26].

Results
Table 1 shows the characteristics of the participants in the
simulated dataset at Phases 5, 7, and 9. The greatest propor-
tions of participants came from the two younger age cat-
egories, highest employment grades and education
categories. Due to the study design, 49.4% of participants
were never smokers at all phases, while the percentage of
smokers decreased between Phase 5 (7.2%) and Phase 9
(5.0%). The global and memory cognitive function scores
(standardised using mean and SD from Phase 5) decreased
between Phase 5 and Phase 9 by 0.42SD and by 0.26SD re-
spectively. The standardised SD for both cognitive function
scores was 1 in the Whitehall II study cohort used to gener-
ate the simulated data, but less than 1 in the simulated data.
Most responded at each phase but attrition (informed
Whitehall II they no longer wished to participate) increased
from 4.3% at Phase 7 to 6.0% at Phase 9. It was assumed
that those participants (approximately 5%) with missing data
due to attrition were informative. Approximately 17% were
missing due to non-response or death and it was assumed
that these were non-informative. In total, approximately
22% of participants had missing values. The analysis was

repeated assuming missing due to attrition or non-response
were informative, but the results were not reported here.
The bias and precision of the intercept coefficients

were similar across the three estimation methods and we
have, therefore, restricted our description to the slope
coefficients and SE from the mixed effects models. High
correlations among repeated global cognitive measures
(≈ 0.97) and repeated smoking status measures in the
simulated data (≈ 0.95) were observed (Table 2).
The correlations between repeated global cognitive mea-

sures and smoking status measures ranged from -0.0467
to -0.0978 and correlations between other variables had
similar low correlations (Table 2). The mixed effects sub-
stantive model was fitted to each full simulated dataset
and the slope coefficients and SE averaged to estimate glo-
bal cognitive function change over time. The slope coeffi-
cients from the full simulated data analysis closely
replicated the slope coefficients observed in the Whitehall
II study, and were precise due to high correlations among
repeated global cognitive function measures (Table 3).

Table 1 Characteristics of participants in each simulated dataset

Phase 5 7 9

Smoking status, n (%)

Non-smoker 4940 (49.4) 4940 (49.4) 4940 (49.4)

Ex-smoker 4343 (43.4) 4436 (44.4) 4557 (45.6)

Current smoker 717 (7.2) 624 (6.2) 503 (5.0)

Age Category (year), n (%)

< 50 2420 (24.2)

50 and < 55 2967 (29.7)

55 and < 60 2010 (20.1)

60 and < 65 1896 (19.0)

65 707 (7.1)

Employment Grade, n (%)

High 5812 (58.1)

Intermediate 3878 (38.8)

Low 310 (3.1)

Education, n (%)

None 555 (5.6)

School 4675 (46.8)

University 4770 (47.7)

Standardised cognitive function (SD), mean (SD)

Global 0.00 (0.78) −0.22 (0.78) − 0.42 (0.79)

Memory 0.05 (0.71) − 0.10 (0.71) − 0.26 (0.72)

Participation status, n (%)

Response 8709 (87.1) 7850 (78.5) 7549 (75.5)

Died 0 240 (2.4) 560 (5.6)

Non-response 1291 (12.9) 1485 (14.9) 1289 (12.9)

Attrition 0 425 (4.3) 602 (6.0)
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After global cognitive function and smoking status were
replaced with missing values, the slope coefficients were
slightly underestimated when the mixed effects model was
fitted to the AC, had greater underestimation when ana-
lysing data imputed using the two-fold FCS algorithm and

showed overestimation when analysing imputed data ad-
justed using PMM (Table 3). The slope coefficients from
the AC were less precise compared to full simulated data,
but more precise compared to fitting the mixed model to
data imputed using the two-fold FCS algorithm or

Table 2 Correlations among variables in full simulated global cognitive function data and differences compared to correlations among
variables in available case analyses data, data imputed using multiple imputation and after applying pattern mixture modelling

Global cognitive function Smoking status Age Grade Education

Phase 5 7 9 5 7 9 5 5 5

Full simulated data Global 5 1

Global 7 0.9686 1

Global 9 0.9629 0.9691 1

Smoke 5 −0.0721 − 0.0860 − 0.0978 1

Smoke 7 −0.0595 − 0.0721 − 0.0824 0.9561 1

Smoke 9 −0.0467 − 0.0587 − 0.0693 0.9233 0.9537 1

Age −0.2280 − 0.2780 − 0.3293 0.0356 0.0440 0.0538 1

Grade −0.4746 − 0.4462 − 0.4203 0.1134 0.0985 0.0905 −0.0516 1

Education 0.3794 0.3721 0.3664 −0.1144 − 0.1056 − 0.1053 − 0.0782 − 0.3666 1

Differencesa in correlations from those above

Available case Global 5 0

Global 7 0.0055 0

Global 9 0.0025 0.0067 0

Smoke 5 −0.0051 0.0035 0.0062 0

Smoke 7 − 0.0058 0.0011 0.0019 −0.0047 0

Smoke 9 −0.0106 − 0.0022 − 0.0025 − 0.0051 −0.0011 0

Age −0.1419 −0.1809 − 0.2112 −0.0332 − 0.0283 −0.0265 0

Grade −0.0142 − 0.0036 − 0.0020 0.0107 0.0099 0.0086 −0.0040 0

Education 0.0503 0.0535 0.0446 −0.0162 − 0.01520 − 0.0133 − 0.0351 −0.0342 0

Multiple imputation Global 5 0

Global 7 0.0028 0

Global 9 0.0198 0.0070 0

Smoke 5 0.0463 0.0485 0.0593 0

Smoke 7 0.0481 0.0505 0.0631 0.0073 0

Smoke 9 0.0389 0.0436 0.0564 0.0130 0.0076 0

Age −0.0160 −0.0205 0.0013 −0.1233 − 0.1276 − 0.1280 0

Grade 0.0078 0.0141 0.0063 −0.0173 − 0.0173 − 0.0122 0 0

Education 0.0009 −0.0010 −0.0008 0.0280 0.0260 0.0298 0 0 0

Pattern mixture modelling Global 5 0

Global 7 0.0102 0

Global 9 0.0275 0.0076 0

Smoke 5 0.0463 0.0568 0.0679 0

Smoke 7 0.0481 0.0581 0.0710 0.0073 0

Smoke 9 0.0389 0.0511 0.0637 0.0130 0.0076 0

Age −0.0160 − 0.0190 − 0.0021 − 0.1233 − 0.1276 − 0.1280 0

Grade 0.0078 0.0173 0.0112 −0.0173 − 0.0173 − 0.0122 0 0

Education 0.0009 −0.0035 −0.0038 0.0280 0.0260 0.0298 0 0 0
aDifferences in correlations are calculated as correlation in analysis type minus correlation in full simulated data
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imputed data adjusted using PMM (Table 3). Figure 1
shows the bias, MSE and coverage of the different
methods and confirms that fitting the mixed effects model
to the AC achieved the least biased results.
Again, the coefficients from fitting the mixed effects

model to the AC when global cognitive function and
education are missing were similar, but less precise,
compared to the coefficients from the full simulated data
analysis (Table 3). All slope coefficients from fitting the
mixed effects model to data imputed using the two-fold
FCS algorithm were similar but more precise compared
to the AC with education missing, but the slope coeffi-
cients were less precise than when smoking status was
missing for both variables with and without missing
data. With global cognitive function and education miss-
ing, less bias was again observed in the slope coefficients
from fitting the mixed effects model to the AC com-
pared to data imputed using the two-fold FCS algorithm

or imputed data adjusted using PMM (Fig. 1). The AC
coefficients and precision were similar in both analyses
with smoking status or education missing. However, %
bias (Fig. 1a) and MSE (Fig. 1b) were smaller and cover-
age was closer to 95% (Fig. 1c) for the slope coefficients
from fitting the mixed effects model to the AC com-
pared to analysing data imputed using the two-fold FCS
algorithm or imputed data adjusted using PMM (Fig. 1).
The correlations among repeated memory cognitive func-

tion were approximately 0.45, less than half of those ob-
served for global cognitive function (Table 4). Correlations
among repeated smoking status measurements had similar
high correlations to the global cognitive function data
(Table 2). However, correlations between all other covari-
ates were low (Table 4). With missing memory cognitive
function and smoking status, the mixed effects model fitted
to the AC, gave larger underestimated slope coefficients
and were less precise (Table 5) compared to those with

Table 3 Slope coefficients and SE from mixed effects substantive model (random intercepts and slopes) with global cognitive score
outcome and 5% of participants with informative attrition

Observed in
Whitehall II
study

Full
simulated
data

Estimation method Estimation method

Available
case

MI PMM Available
case

MI PMM

Impute smokinga Impute educationa

Coefficient (SE)

Reference − 0.3120 − 0.3120
(0.0095)

− 0.3082
(0.0139)

−0.3026
(0.0141)

− 0.3401
(0.0153)

− 0.3090
0.0133)

− 0.2885
(0.0104)

− 0.3240
(0.0119)

Smoking status

Ex-smoker −0.3271 − 0.3272
(0.0096)

− 0.3236
(0.0142)

− 0.3208
(0.0145)

− 0.3710
(0.0159)

− 0.3244
(0.0135)

− 0.3040
(0.0108)

− 0.3377
(0.0123)

Current smoker −0.4228 − 0.4229
(0.0110)

− 0.4185
(0.0159)

− 0.3970
(0.0162)

− 0.4558
(0.0176)

−0.4190
(0.0156)

− 0.3975
(0.0131)

−0.4447
(0.0152)

Age Category (year)

50 and < 55 −0.3619 −0.3619
(0.0091)

− 0.3577
(0.0135)

−0.3510
(0.0138)

− 0.3925
(0.0151)

−0.3585
(0.0129)

− 0.3377
(0.0100)

−0.3779
(0.0117)

55 and < 60 − 0.4400 −0.4398
(0.0093)

−0.4350
(0.0139)

− 0.4262
(0.0142)

− 0.4789
(0.0156)

− 0.4359
(0.0132)

− 0.4133
(0.0105)

− 0.4644
(0.0124)

60 and < 65 − 0.5029 −0.5029
(0.0095)

−0.4971
(0.0154)

− 0.4824
(0.0158)

− 0.5517
(0.0170)

− 0.4984
(0.0148)

− 0.4700
(0.0128)

− 0.5390
(0.0145)

65 −0.5699 − 0.5703
(0.0108)

−0.5648
(0.0419)

− 0.5382
(0.0417)

−0.5717
(0.0425)

− 0.5637
(0.0433)

−0.5204
(0.0433)

− 0.5588
(0.0438)

Employment grade

Intermediate −0.2481 −0.2483
(0.0091)

−0.2434
(0.0135)

− 0.2358
(0.0137)

− 0.2928
(0.0151)

− 0.2443
(0.0126)

− 0.2237
(0.0100)

− 0.2805
(0.0117)

Low − 0.2178 − 0.2173
(0.0129)

− 0.2093
(0.0198)

− 0.1974
(0.0200)

− 0.2963
(0.0226)

−0.2096
(0.0189)

− 0.1857
(0.0178)

−0.2870
(0.0208)

Education

School −0.3222 −0.3223
(0.0052)

− 0.3214
(0.0063)

−0.3198
(0.0064)

− 0.3260
(0.0068)

−0.3213
(0.0059)

− 0.3165
(0.0059)

−0.3274
(0.0063)

University −0.3232 − 0.3232
(0.0043)

− 0.3229
(0.0051)

− 0.3224
(0.0052)

− 0.3220
(0.0055)

− 0.3229
(0.0052)

− 0.3241
(0.0051)

− 0.3304
(0.0054)

MI multiple imputation, PMM pattern mixture modelling
aMissing global cognitive function scores also imputed
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global cognitive function, due to lower correlations among
the repeated memory measures. The slope coefficients from
fitting the mixed effects model to data imputed using the
two-fold FCS algorithm were generally more underesti-
mated, but also more precise, compared to AC (Table 5)
due to higher correlations in the imputed data (Table 4).
However, the slope coefficients from fitting the mixed ef-
fects model to imputed data adjusted using
PMM were similar to the full data analysis coefficients

compared to fitting mixed effects model to the AC or
data imputed using the two-fold FCS algorithm (Table 5).
Figure 2a confirms that slope coefficients from analysing
imputed data adjusted using PMM had the least bias,
smallest MSE (Fig. 2b) and coverages closest to 95%
(Fig. 2c). Using the two-fold FCS algorithm to impute
the missing values increased precision, but some bias
still existed in the coefficients, which was reduced, but
not completely removed, using PMM (Fig. 2).
When memory cognitive function and education were

missing, more precise slope coefficients but greater
underestimation was observed when fitting the mixed ef-
fects model to data imputed using the two-fold FCS
algorithm compared to missing memory cognitive func-
tion and smoking status since we did not condition on
repeated education measurements at other phases to re-
duce bias. Due to the larger bias in the coefficients from
analysing data imputed using the two-fold FCS
algorithm, adjusting the imputed data using PMM did
not reduce this to less than the AC analysis slope
coefficients, which had least bias (Fig. 2a), smallest MSE
(Fig. 2b) and coverages closest to 95% (Fig. 2c).

Discussion
This study described a PMM approach to account for bias
due to informative attrition in a longitudinal, cohort study

with non-monotone missing data. We found adjusting im-
puted data using PMM unnecessary when using a mixed ef-
fects substantive model and data with highly correlated
repeated outcome measurements. The mixed effects model
fitted to AC gave least bias slope coefficient because enough
information was available in the repeated measurements.
The mixed effects model slope coefficients from the AC

had more bias and less precision with lower to moderate
correlations among the repeated outcome measurements,
because not enough information is available in the ob-
served data to adequately use the between and within par-
ticipant correlations to adjust for the missing values. The
two-fold FCS algorithm included additional information,
not available in the AC, to reduce bias and precision. From
fitting the mixed effects model to data imputed using the
two-fold FCS algorithm, the time-dependent smoking sta-
tus explanatory variable slope coefficient increased preci-
sion because the two-fold FCS algorithm conditions on
highly correlated smoking status measurements at other
phases. However, using the two-fold FCS algorithm to im-
pute missing values for the time-independent explanatory
variable education did not increase precision as much for
variables with and without missing data possibly because
no highly correlated repeated measurements exist to con-
dition on. We may have observed greater bias reduction
since education had a higher correlation with the outcome
compared to smoking status [27]. Some bias in the slope
coefficients from analysing data imputed using the two--
fold FCS algorithm was still observed, but this reduced
after adjusting the imputed data using PMM. However,
the slope coefficients from fitting the mixed effects
model to imputed data adjusted using PMM still under-
estimated the full data analysis slope coefficients. Al-
though it is unlikely that such high correlations, as seen
among repeated global cognitive function, will be

a b c

Fig. 1 Slope coefficient bias for smoking status and education categories with global cognitive function outcome when imputing the outcome
together with either smoking status or education. a - % bias, b - mean square error ratio, c – coverage. a - % bias closest to zero indicates least bias
approach. b - Ratios relative to available case analysis MSE. Ratio less than one indicates less bias compared to the available case analysis. c - Coverage
close to 95% indicate proper control of the type I error rate for testing a null hypothesis of no effect
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observed in existing epidemiological datasets, it is more
likely that correlations like those seen for repeated
memory cognitive function will be observed. However,
the results from analysing data with high and moderate

correlations among repeated outcome measurements
can be compared.
The intercept coefficients were not reported in the re-

sults since fitting the mixed effect model to the AC and

Table 4 Correlations among variables in full simulated memory cognitive score data and differences compared to correlations
among variables in available case analyses data, data imputed using multiple imputation and after applying pattern mixture
modelling

Memory cognitive function Smoking status Age Grade Education

Phase 5 7 9 5 7 9 5 5 5

Full simulated data Mem 5 1

Mem 7 0.4419 1

Mem 9 0.4423 0.4458 1

Smoke 5 −0.0806 −0.0884 −0.1041 1

Smoke 7 − 0.0715 − 0.0800 − 0.0948 0.9616 1

Smoke 9 −0.0636 −0.0764 − 0.0902 0.9337 0.9592 1

Age −0.2729 − 0.3127 − 0.3379 0.0281 0.0369 0.0451 1

Grade −0.2404 − 0.1913 − 0.1660 0.0983 0.0881 0.0817 −0.0501 1

Education 0.2058 0.1919 0.1779 −0.1114 − 0.1043 − 0.1005 − 0.0784 − 0.3691 1

Differencesa in correlations from those above

Available case Mem 5 0

Mem 7 0.0355 0

Mem 9 0.0544 0.0630 0

Smoke 5 0.0159 0.0029 0.0040 0

Smoke 7 0.0071 0.0032 0.0004 0.0009 0

Smoke 9 0.0137 −0.0005 0.0050 0.0025 0.0087 0

Age −0.1632 − 0.1679 − 0.2154 − 0.0253 − 0.0237 − 0.0194 0

Grade −0.0120 − 0.0102 − 0.0125 0.0066 0.0043 0.0004 −0.0104 0

Education 0.0052 0.0032 0.0339 −0.0050 − 0.0022 0.0015 − 0.0151 − 0.0031 0

Multiple imputation Mem 5 0

Mem 7 0.0157 0

Mem 9 0.0970 0.0364 0

Smoke 5 0.0528 0.0579 0.0306 0

Smoke 7 0.0522 0.0550 0.0360 0.0062 0

Smoke 9 0.0532 0.0506 0.0377 0.0083 0.0080 0

Age −0.0186 −0.0298 − 0.0269 − 0.1200 − 0.1246 − 0.1237 0

Grade 0.0067 − 0.0012 − 0.0070 − 0.0116 − 0.0145 − 0.0079 0 0

Education − 0.0067 0.0169 0.0066 0.0282 0.0272 0.0329 0 0 0

Pattern mixture modelling Mem 5 0

Mem 7 0.0115 0

Mem 9 0.0877 0.0099 0

Smoke 5 0.0528 0.0675 0.0410 0

Smoke 7 0.0522 0.0655 0.0464 0.0062 0

Smoke 9 0.0532 0.0612 0.0481 0.0083 0.0080 0

Age −0.0186 − 0.0204 − 0.0194 − 0.1200 − 0.1246 − 0.1237 0

Grade 0.0067 0.0020 0.0007 −0.0116 − 0.0145 − 0.0079 0 0

Education −0.0067 0.0123 −0.0001 0.0282 0.0272 0.0329 0 0 0
aDifferences in correlations are calculated as correlation in analysis type minus correlation in full simulated data
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Table 5 Slope coefficients and SE from mixed effects substantive model (random intercepts and slopes) with memory cognitive
score outcome and 5% of participants with informative attrition

Observed in
Whitehall II
study

Full
simulated
data

Estimation method Estimation method

Available
case

MI PMM Available
case

MI PMM

Imputea smoking Imputea education

Coefficient (SE)

Reference − 0.2492 − 0.2508
(0.0356)

− 0.2320
(0.0507)

− 0.2290
(0.0487)

−0.2439
(0.0486)

− 0.2331
(0.0491)

− 0.1583
(0.0413)

− 0.1765
(0.0414)

Smoking status

Ex-smoker −0.2978 −0.2989
(0.0361)

−0.2792
(0.0513)

− 0.2798
(0.0489)

−0.3104
(0.0489)

− 0.2799
(0.0496)

−0.2055
(0.0414)

− 0.2246
(0.0415)

Current smoker −0.2698 −0.2718
(0.0418)

−0.2459
(0.0581)

− 0.2202
(0.0543)

−0.2564
(0.0544)

− 0.2444
(0.0574)

−0.1724
(0.0474)

− 0.2008
(0.0473)

Age Category (year)

50 and < 55 −0.3059 −0.3064
(0.0347)

−0.2821
(0.0493)

− 0.2776
(0.0476)

−0.2980
(0.0477)

− 0.2829
(0.0472)

−0.2099
(0.0401)

− 0.2343
(0.0401)

55 and < 60 −0.3405 −0.3414
(0.0357)

−0.3076
(0.0511)

− 0.3003
(0.0492)

−0.3316
(0.0492)

− 0.3085
(0.0489)

−0.2338
(0.0411)

− 0.2687
(0.0410)

60 and < 65 −0.3967 −0.3978
(0.0360)

−0.3486
(0.0553)

− 0.3302
(0.0523)

−0.3831
(0.0526)

− 0.3508
(0.0527)

−0.2661
(0.0456)

− 0.3218
(0.0457)

65 −0.3318 −0.3327
(0.0410)

−0.2803
(0.1437)

− 0.2400
(0.1081)

−0.2561
(0.1078)

− 0.2764
(0.1481)

−0.1795
(0.1132)

− 0.2037
(0.1135)

Employment grade

Intermediate -0.1616 − 0.1638
(0.0335)

− 0.1388
(0.0479)

− 0.1342
(0.0465)

− 0.1577
(0.0463)

− 0.1390
(0.0462)

− 0.0746
(0.0389)

− 0.1027
(0.0393)

Low −0.2059 − 0.2080
(0.0484)

− 0.1703
(0.0695)

− 0.1656
(0.0664)

− 0.2031
(0.0659)

− 0.1736
(0.0662)

− 0.1182
(0.0611)

− 0.1602
(0.0617)

Education

School −0.2413 − 0.2414
(0.0206)

− 0.2317
(0.0249)

− 0.2298
(0.0238)

− 0.2368
(0.0238)

− 0.2321
(0.0253)

− 0.2116
(0.0233)

− 0.2245
(0.0233)

University − 0.2533 − 0.2540
(0.0178)

− 0.2480
(0.0212)

− 0.2482
(0.0203)

− 0.2517
(0.0204)

− 0.2480
(0.0211)

− 0.2558
(0.0200)

− 0.2657
(0.0201)

MI multiple imputation, PMM pattern mixture modelling
aMissing memory cognitive function scores also imputed

a b c

Fig. 2 Slope coefficient bias for smoking status and education categories with memory cognitive function outcome when imputing the outcome
together with either smoking status or education. a - % bias, b - mean square error ratio, c – coverage. a - % bias closest to zero indicates least
bias approach. b - Ratios relative to available case analysis MSE. Ratio less than one indicates less bias compared to the available case analysis. c -
Coverage close to 95% indicate proper control of the type I error rate for testing a null hypothesis of no effect

Welch et al. BMC Medical Research Methodology  (2018) 18:89 Page 12 of 15



data imputed using the two-fold FCS algorithm showed
similar bias and precision. For some analyses, for ex-
ample with the global cognitive function outcome,
slightly more precise and less bias intercept coefficients
were observed when analysing data imputed using the
two-fold FCS algorithm compared to AC analysis, but
the AC analysis achieved the least bias slope estimates.
However, the difference in bias between analysing the
AC and imputed data was small, and it may be prefera-
ble to analyse the AC in practice. For memory cognitive
function outcome, the least bias intercept and slope co-
efficients were observed from fitting mixed effects model
to imputed data adjusted using PMM.
Some participants chose to stop participation in the

Whitehall II study, but did not formally withdraw, so
may contribute to the bias due to informative attrition.
Initially, it was assumed that all participants who for-
mally withdrew were due to informative attrition. The
analyses were repeated, overestimating the bias by as-
suming all participants with attrition and non-response
status contributed to the bias due to informative attri-
tion, which increased the percentage with non-ignorable
missingness from 5 to 20%. The coefficients had larger
bias compared to 5%, but the general findings were the
same (results not shown).
Historically, the literature recommended using MI to

impute missing values and then delete imputed outcome
values before analysis. If both outcome and explanatory
variables have missing values, imputing both outcome
and explanatory variables will provide some information
for the substantive model, by improving prediction of
missing explanatory variables with observed outcome
[14], but cases with imputed outcome contain no infor-
mation about the regression of the outcome on explana-
tory variables [28]. However, more recent research does
not recommended deletion since analysing data imputed
using an imputation model with auxiliary variables asso-
ciated with missing outcome found biased coefficients
when observations with imputed outcomes were re-
moved from the analysis [29]. We therefore chose to use
MI to impute all the missing values and analyse the im-
puted data without any deletion.
For this paper, auxiliary variables were not included in

the imputation model to simplify the analysis and interpret-
ation. Slope coefficients from fitting mixed effects model to
imputed data adjusted using PMM for moderately corre-
lated time-dependent outcomes were underestimated. To
increase precision, auxiliary variables highly correlated with
the outcome values could be included, and this also reduces
bias if the auxiliary variables are also correlated with the
probability the variable is missing [30]. A monotone obser-
vational study investigated MI and a joint model of the
cross-sectional and longitudinal data [31]. Under
non-ignorable missingness, both methods resulted in biased

estimates. However, including auxiliary variables correlated
with the variables with missing values reduced the bias.
Wang, et al., recommend future work to evaluate the effect-
iveness of auxiliary variables to impute missing values in
non-monotone missingness data [31].
A prospective cohort study investigated the association

between diabetes diagnosis and cognitive decline using a
mixed effects model (which implicitly assumes the same
distribution for those who drop out and for those who stay
in the study) and used generalised estimating equations to
avoid the implicit imputation [32]. In the study, they im-
puted missing scores due to drop out for both alive and
deceased and investigated the effect of including auxiliary
variables associated with cognitive function and the prob-
ability of drop out and death. Rawlings, et al., found simi-
lar results for mixed effects model and generalised
estimating equations [32]. However, when auxiliary vari-
ables associated with drop out were included in the im-
putation model, MI effectively reduced the bias in the
estimates. Some clinical trial studies with monotone miss-
ing data have also investigated incorporating reason for
drop out. Standard PMM assumes non-random drop out
and Lotz, et al., found that, when additionally stratifying
standard PMM by random and non-random reasons for
drop-out, the results had less bias [33]. For the purposes
of this simulation study, a simple missingness mechanism
was chosen where the outcome was associated with drop
out. However, in reality, it is likely to be more complex
and associated with other variables such as smoking sta-
tus. Mein, et al., investigated risk factors associated with
drop out in the Whitehall II study, which could be incor-
porated in the analysis [34].
Biering, et al., investigated a similar MI approach to the

two-fold FCS algorithm when imputing missing values in
a non-monotone missing longitudinal observational data;
the Mental Component Summary from Short Form
12-item survey [35]. This study imputed missing data due
to non-response and attrition at each time conditional on
measurements at adjacent time and death, but did not im-
pute measurements missing due to death. Biering, et al.,
changed imputed outcome values by a fixed amount, simi-
lar to PMM, which also effectively accounted for a
non-ignorable missingness mechanism.
The main strength of this study was using a large, com-

plex cohort in a real-life epidemiological setting to de-
scribe PMM in non-monotone missing cohort data; the
findings are likely to be generalisable to other longitudinal
studies. Using the two-fold FCS algorithm is another
strength because it is the appropriate approach for imput-
ing non-monotone longitudinal data, particularly for
time-dependent variables, which imputes missing values
for each phase sequentially conditional on observed infor-
mation at adjacent phases [4]. This approach avoids pos-
sible convergence problems due to collinearity by
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restricting imputation to a short time window. Also, the
results from a simulation study found increased precision
when analysing time-dependent explanatory variables im-
puted using the two-fold FCS algorithm compared to
standard approaches, such as AC [5]. The two-fold FCS
algorithm can reduce bias and increase precision by
conditioning on correlated repeated measures of the
time-dependent outcome variable at adjacent phases.
Therefore, using PMM to adjust data imputed using the
two-fold FCS algorithm may be most suitable for longitu-
dinal studies with many measurement phases, participants
and variables. A previous study that used the two-fold
FCS to impute missing outcome and explanatory variables
found similar results to other MI approaches, but these
analyses were restricted to 3 data collection waves [36].
A limitation of using the two-fold FCS algorithm is

that it overestimates the random slope (results not
shown) because it does not correctly consider multilevel
structure by conditioning on the random intercept and
slope in the imputation [37]. However, methods de-
scribed in this paper are suitable for fixed effects. Demir-
tas and Shchafer investigated using MI to average
marginal estimates from each pattern [8]. The authors
observed under coverage in the results because of uncer-
tainty due to model misspecification was not taken into
account. However, they repeated the imputations using a
three-level linear mixed effects imputation model which
included a random level due to each pattern, accommo-
dating model uncertainty in the imputation process [38].
A potential limitation is that k, the mean difference be-

tween the imputed outcome values and the unknown
missing outcome values, was assumed to be constant, and
this may be unrealistic [3]. For a more general specifica-
tion in future studies, a distribution for k could be speci-
fied and a sensitivity analysis performed to investigate the
effects of changing the variance of k as well its mean. Also,
PMM may not reduce bias for outcome-dependent,
non-ignorable missingness if large residual errors exist
since the probability of missingness depends on residual
errors as well as true outcome values [39]. For instance,
participants with high observed outcome scores who are
more likely to drop out may also have high measurement
error values and, therefore, the mean of measurement er-
rors within each missing pattern may no longer be zero.
This may be an issue with the Whitehall II cognitive func-
tion data. Participants know of the tests in advance, since
the tests repeat at each phase, so participants can prepare
[40] and a higher than expected cognitive functioning in
participants has been observed. However, in the data sim-
ulated for this paper, the residual error for each missing
pattern was examined and the means were close to zero.
The National Research Council panel for handling

missing data in clinical trials, USA, recom-mended
undertaking more research to understand appropriate

methods to impute missing values in non-monotone
data [41], so this study adds to the evidence base.

Conclusions
Our findings suggest that with moderate correlations in
the repeated outcome measurements and a linear mixed
effects substantive model, using PMM reduces bias and
increases precision but may still underestimate the true
slope coefficient. With high correlations between re-
peated outcome measurements, the linear mixed effects
model fitted to the available cases can adequately re-
cover information. We recommend a few considerations
for further analysis when using PMM, which may reduce
bias and increase precision. First, select appropriate aux-
iliary variables for the imputation model with highly cor-
related repeated measurements or correlated with the
outcome. Also, incorporate the reason for drop out in
the imputation model.
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